Skip to main content

Calcium Binding to Troponin C and the Regulation of Muscle Contraction: a Comparative Approach

  • Conference paper
Calcium and Calcium Binding Proteins

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Muscle contraction consists of the cyclic attachment and detachment of the heads of myosin in the thick filament to actin in the thin filament. The attachment is followed by a change in the angle of myosin-actin attachment, so that the thick and thin filaments slide past each other and contractile force is generated. The energy for this process is supplied by ATP and is released by the interaction of actin with myosin, which activates the ATPase activity of myosin. The regulation of the actin-myosin-ATP interaction has been studied by analyzing the actin-activated myosin ATPase activity, which is the in vitro correlate of muscle contraction (Taylor 1979; Adelstein and Eisenberg 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelstein RS, Eisenberg E (1980) Regulation and kinetics of the actin-myosin-ATP interaction. Ann Rev Biochem 49:921–956

    Article  PubMed  CAS  Google Scholar 

  • Babu YS, Sack JS, Greehough TJ, Bugg CE, Means AR, Cook WJ (1985) Three-dimensional structure of calmodulin. Nature (Lond) 315:37–40

    Article  CAS  Google Scholar 

  • Benzonana G, Kohler L, Stein EA (1974) Regulatory proteins of crayfish tail muscle. Biochim Biophys Acta 638:247–258

    Google Scholar 

  • Best PM, Donaldson SKB, Kerrick WGL (1977) Tension in mechanically disrupted mammalian cardiac cells: effects of magnesium adenosine triphosphate. J Physiol 265:1–17

    PubMed  CAS  Google Scholar 

  • Brandt PW, Cox RN, Kawai M (1980) Can the binding of Ca2+ to two regulatory sites on troponin C determine the steep pCa/tension relationship of skeletal muscle? Proc Natl Acad Sci USA 77: 4717–4720

    Article  PubMed  CAS  Google Scholar 

  • Brandt PW, Diamond MS, Schachat FH (1984) The thin filament of vertebrate skeletal muscle cooperatively activates as a unit. J Mol Biol 180:379–384

    Article  PubMed  CAS  Google Scholar 

  • Bremel RD, Weber A (1972) Cooperation within actin filament in vertebrate skeletal muscle. Nature New Biol 238:97–101

    PubMed  CAS  Google Scholar 

  • Brinley FJ, Scarpa A, Tiffert T (1977) The concentration of ionized magnesium in barnacle muscle fibers. J Physiol 266:545–565

    PubMed  CAS  Google Scholar 

  • Bullard B, Dabrowska R, Winkelman L (1973) The contractile and regulatory proteins of insect flight muscle. Biochem J 135:277–286

    PubMed  CAS  Google Scholar 

  • Chalovich JM, Eisenberg E (1982) Inhibition of actomyosin ATPase activity without blocking the binding of myosin to actin. J Biol Chem 257:2432–2437

    PubMed  CAS  Google Scholar 

  • Chantier P (1982) Retreats from the steric blocking of muscle contraction. Nature (Lond) 198: 120–121

    Article  Google Scholar 

  • Collins JH, Potter JD, Horn MJ, Wilshire G, Jackman N (1973) The amino acid sequence of rabbit skeletal muscle troponin C: gene replication and homology with calcium-binding proteins from carp and hake muscle. FEBS Lett 36:268–272

    Article  PubMed  CAS  Google Scholar 

  • Collins JH, Greaser ML, Potter JD, Horn MJ (1977) Determination of the amino acid sequence of troponin C from rabbit skeletal muscle. J Biol Chem 252:6356–6362

    CAS  Google Scholar 

  • Cox JA, Comte M, Stein EA (1981) Calmodulin-free skeletal-muscle troponin C prepared in the absence of urea. Biochem J 195:205–211

    PubMed  CAS  Google Scholar 

  • Dabrowska R, Sherry JMF, Aromatorio DK, Hartshorne DJ (1978) Modulator protein as a component of the myosin light chain kinase from chicken gizzard. Biochemistry 17:253–258

    Article  PubMed  CAS  Google Scholar 

  • Donaldson SKB, Kerrick WGL (1975) Characterization of effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned skeletal muscle fibers. J Gen Physiol 66:427–444

    Article  PubMed  CAS  Google Scholar 

  • Ebashi S, Endo M (1968) Calcium ions and muscle contraction. Progr Biophys Mol Biol 18:123–183

    Article  CAS  Google Scholar 

  • Ebashi S, Endo M, Ohtsuki I (1969) Control of muscle contraction. Quart Rev Biophys 2:351–384

    Article  CAS  Google Scholar 

  • Eisenberg E, Hill TL (1985) Muscle contraction and free energy transduction in biological systems. Science 227:999–1006

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg E, Kielley WW (1974) Troponin-tropomyosin complex. Column chromatography separation and activity of the three active troponin components with and without tropomyosin present. J Biol Chem 249:4742–4748

    PubMed  CAS  Google Scholar 

  • Endo T, Obinata T (1981) Troponin and its components from ascidian smooth muscle. J Biochem (Tokyo) 89:1599–1608

    CAS  Google Scholar 

  • Evans JS, Levine BA, Leavis PC, Gergely J, Grabarek Z, Drabikowski W (1980) Proton magnetic resonance studies on proteolytic fragments of troponin C. Structural homology with the native protein. Biochim Biophys Acta 623:10–20

    PubMed  CAS  Google Scholar 

  • Fabiato A, Fabiato F (1975) Effects of magnesium on contractile activation of skinned cardiac cells. J Physiol 249:497–517

    PubMed  CAS  Google Scholar 

  • Fuchs F (1977) The binding of calcium to glycerinated muscle fibers in rigor. The effect of filament overlap. Biochim Biophys Acta 491:523–531

    PubMed  CAS  Google Scholar 

  • Fuchs F, Black B (1980) The effects of magnesium ions on the binding of calcium ions to glycerinated rabbit psoas muscle fibers. Biochim Biophys Acta 622:52–62

    PubMed  CAS  Google Scholar 

  • Godt RE (1974) Calcium-activated tension of skinned muscle fibers of the frog. Dependence on magnesium adenosine triphosphate concentration. J Gen Physiol 63:722–739

    Article  PubMed  CAS  Google Scholar 

  • Goldberg A, Lehman W (1978) Troponin-like proteins from muscles of the scallop, Aequipecten irradians. Biochem J 171:413–418

    PubMed  CAS  Google Scholar 

  • Goodman M, Pechère JF, Haiech J, Demaille JG (1979) Evolutionary diversification of structure and function in the family of intracellular calcium-binding proteins. J Mol Evol 13:331–352

    Article  PubMed  CAS  Google Scholar 

  • Grabarek Z, Drabikowski W, Vinokurov L, Lu RC (1981a) Digestion of troponin C with trypsin in the presence and absence of Ca2+. Identification of cleavage points. Biochim Biophys Acta 671:227–233

    PubMed  CAS  Google Scholar 

  • Grabarek Z, Drabikowski W, Leavis PC, Rosenfeld SS, Gergely J (1981b) Proteolytic fragments of troponin C. Interactions with the other troponin subunits and biological activity. J Biol Chem 256:13121–13127

    PubMed  CAS  Google Scholar 

  • Grabarek Z, Grabarek J, Leavis PC, Gergely J (1983) Cooperative binding to the Ca2+-specific sites of troponin C in regulated actin and actomyosin. J Biol Chem 258:14098–14102

    PubMed  CAS  Google Scholar 

  • Grabarek Z, Leavis PC, Gergely J (1986) Calcium binding to the low affinity sites in troponin C induces conformational changes in the high affinity domain. A possible route of information transfer in activation of muscle contraction. J Biol Chem 261:608–613

    PubMed  CAS  Google Scholar 

  • Graeser ML, Gergely J (1971) Reconstitution of troponin activity from three protein components. J Biol Chem 246:4226–4233

    Google Scholar 

  • Greene LE, Eisenberg E (1980) Cooperative binding of myosin subfragment-1 to the actin-troponin-tropomyosin complex. Proc Natl Acad Sci USA 77:2616–2620

    Article  PubMed  CAS  Google Scholar 

  • Gupta RK, Moore RD (1980) 31P-NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J Biol Chem 255:3987–3992

    PubMed  CAS  Google Scholar 

  • Hanson J (1968) Recent X-ray diffraction studies of muscle. Quart Rev Biophys 1:177–216

    Article  CAS  Google Scholar 

  • Hanson J, Lowy J (1962) The structure of F-actin and of actin filaments isolated from muscle. J Mol Biol 6:46–60

    Article  Google Scholar 

  • Hartshorne DJ, Siemankowski R (1981) Regulation of smooth muscle actomyosin. Ann Rev Physiol 43:519–530

    Article  CAS  Google Scholar 

  • Haselgrove JC (1972) X-ray evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle. Cold Spring Harbor Symp Quant Biol 37:341–352

    Google Scholar 

  • Herzberg O, James MNG (1985a) Structure of the calcium regulatory muscle protein troponin C at 2.8 Å resolution. Nature (Lond) 313:653–659

    Article  CAS  Google Scholar 

  • Herzberg O, James MNG (1985b) Common structural framework of the two Ca2+/Mg2+ binding loops of troponin C and other Ca2+ binding proteins. Biochemistry 24:5298–5302

    Article  PubMed  CAS  Google Scholar 

  • Herzberg O, Moult J, James MNG (1986) A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J Biol Chem 261:2638–2644

    PubMed  CAS  Google Scholar 

  • Hill TL (1983) Two elementary models for the regulation of skeletal muscle contraction by calcium. Biophys J 44:383–396

    Article  PubMed  CAS  Google Scholar 

  • Hill TL, Eisenberg E, Chalovich JM (1981) Theoretical models for cooperative steady-state ATPase activity of myosin subfragment-1 on regulated actin. Biophys J 35:99–112

    Article  PubMed  CAS  Google Scholar 

  • Hincke MT, Sykes BD, Kay CM (1981) Hydrogen-1 nuclear magnetic resonance investigation of bovine cardiac troponin C. Comparison of tyrosyl assignments and calcium-induced structural changes to those of two homologous proteins, rabbit skeletal troponin C and bovine brain calmodulin. Biochemistry 20:3286–3294

    Article  PubMed  CAS  Google Scholar 

  • Hoar PE, Wnuk W, Kerrick WGL (1985) Crayfish troponin C can substitute for the endogenous troponin C of skinned rabbit skeletal muscle fibers. Biophys J 47:61a

    Google Scholar 

  • Holroyde MJ, Robertson SP, Johnson JD, Solaro RJ, Potter JD (1980) The calcium and magnesium binding sites on cardiac troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem 255:11688–11693

    PubMed  CAS  Google Scholar 

  • Huxley HE (1972) Structural changes in the actin- and myosin-containing filaments of vertebrate striated muscle. Cold Spring Harbor Symp Quant Biol 37:361–376

    Google Scholar 

  • Irving M (1985) Weak and strong crossbridges. Nature (Lond) 316:292–293

    Article  CAS  Google Scholar 

  • Johnson JD, Charlton SC, Potter JD (1979) A fluorescence stopped-flow analysis of Ca2+ exchange with troponin C. J Biol Chem 254:3497–3502

    PubMed  CAS  Google Scholar 

  • Johnson JD, Robinson DE, Robertson SP, Schwartz A, Potter JD (1981) Ca2+ exchange with troponin and the regulation of muscle contraction. In: Grinnel A (ed) The regulation of muscle contraction: excitation-contraction coupling. Acadmic Press, New York, pp 241–259

    Google Scholar 

  • Kawasaki Y, Van Eerd JP (1972) The effect of Mg2+ on the conformation of the Ca2+-binding component of troponin. Biochim Biophys Res Commun 49:898–905

    Article  CAS  Google Scholar 

  • Kendrick-Jones J, Scholey JM (1981) Myosin-linked regulatory systems. J Muscle Res Cell Motil 2:347–362

    Article  CAS  Google Scholar 

  • Kerrick WGL, Bolles LL (1981) Regulation of Ca2+-activated tension in Limulus striated muscle. Pflügers Arch 392:121–124

    Article  PubMed  CAS  Google Scholar 

  • Kerrick WGL, Hoar PE (1985) The effects of nucleotide diphosphate and inorganic phosphate on tension in skinned soleus and smooth muscle cells. Biophys J 47:296a Klee CB, Vanaman TC (1982) Calmodulin. Adv Prot Chem 35:213–321

    Google Scholar 

  • Konno K (1978) Two calcium regulation systems in squid muscle. Preparation of calcium-sensitive myosin and troponin-tropomyosin. J Biochem (Tokyo) 84:1431–1440

    CAS  Google Scholar 

  • Leavis PC, Gergely J (1984) Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. CRC Crit Rev Biochem 16:235–305

    Article  PubMed  CAS  Google Scholar 

  • Leavis PC, Rosenfeld SS, Gergely J, Grabarek Z, Drabikowski W (1978) Proteolytic fragments of troponin C. J Biol Chem 253:5452–5459

    PubMed  CAS  Google Scholar 

  • Lehman W (1975) Hybrid troponin reconstituted from vertebrate and arthropod subunits. Nature (Lond) 255:424–426

    Article  CAS  Google Scholar 

  • Lehman W (1982) The location and periodicity of a troponin-T-like protein in the myofibril of the horseshoe crab. J Mol Biol 154:385–391

    Article  PubMed  CAS  Google Scholar 

  • Lehman W, Ferrell M (1980) Phylogenetic diversity of troponin subunit-C amino acid composition. FEBS Lett 121:273–274

    Article  PubMed  CAS  Google Scholar 

  • Lehman W, Szent-Györgyi AG (1975) Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom. J Gen Physiol 66:1–30

    Article  PubMed  CAS  Google Scholar 

  • Lehman W, Head JF, Grant PW (1980) The stoichimetry and location of troponin I- and troponin C-like proteins in the myofibril of the bay scallop, Aequipecten irradions. Biochem J 187: 447–456

    PubMed  CAS  Google Scholar 

  • Levine BA, Thornton JM, Fernandes R, Kelly CM, Mercola D (1978) Comparison of the calcium-and magnesium-induced structural changes of troponin C. A proton magnetic resonance study. Biochim Biophys Acta 535:11–24

    PubMed  CAS  Google Scholar 

  • Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617–4624

    Article  PubMed  CAS  Google Scholar 

  • Miledi R, Parker I, Schalow G (1977) Measurements of calcium transients in frog muscle by the use of arsenazo (III). Proc R Soc Lond, Ser B 198:201–210

    CAS  Google Scholar 

  • Moews PG, Kretsinger RH (1975) Refinement of the structure of carp muscle calcium binding parvalbumin by model building and difference Fourier analysis. J Mol Biol 91:201–228

    Article  PubMed  CAS  Google Scholar 

  • Murray JM, Weber A (1980) Cooperativity of the calcium switch of regulated rabbit actomyosin system. Mol Cell Biochem 35:11–15

    Article  Google Scholar 

  • Murray JM, Weber A, Knox MK (1981) Myosin subfragments binding to relaxed actin filaments and steric model of relaxation. Biochemistry 20:641–649

    Article  PubMed  CAS  Google Scholar 

  • Nagashima H, Asakura S (1982) Studies on a co-operative properties of tropomyosin-actin and tropomyosin-troponin-actin complexes by the use of N-ethylmaleimide-treated and untreated species of myosin subfragment 1. J Mol Biol 155:409–428

    Article  PubMed  CAS  Google Scholar 

  • Nagy B, Gergely J (1979) Extent and localization of conformational changes in troponin C caused by calcium binding. Spectral studies in the presence and absence of 6 M urea. J Biol Chem 254:12732–12737

    PubMed  CAS  Google Scholar 

  • Pearlstone JR, Carpenter MR, Johnson P, Smillie LB (1976) Amino-acid sequence of tropomyosin-binding component of rabbit skeletal muscle troponin. Proc Natl Acad Sci USA 73:1902–1906

    Article  PubMed  CAS  Google Scholar 

  • Potter JD (1974) The content of troponin, tropomyosin, actin and myosin in rabbit skeletal muscle myofibrils. Arch Biochem Biophys 162:436–441

    Article  PubMed  CAS  Google Scholar 

  • Potter JD, Gergely J (1975) The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem 250:4628–4633

    PubMed  CAS  Google Scholar 

  • Potter JD, Johnson JD (1982) Troponin. In: Cheung WY (ed) Calcium and cell function Vol II. Academic Press, New York London, pp 145–173

    Google Scholar 

  • Potter JD, Robertson SP, Johnson JD (1981) Magnesium and regulation of muscle contraction. Fed Proc 49:2653–2656

    Google Scholar 

  • Regenstein JM, Szent-Györgyi AG (1975) Regulatory proteins of lobster striated muscle. Biochemistry 14:917–925

    Article  PubMed  CAS  Google Scholar 

  • Reid RE, Hodges RS (1980) Cooperativity and calcium/magnesium binding to troponin C and muscle calcium binding parvalbumin: an hypothesis. J Theor Biol 84:401–444

    Article  PubMed  CAS  Google Scholar 

  • Ridgway EB, Gordon AM, Martyn DA (1983) Histeresis in the force-caclium relation in muscle. Science 219:1075–1077

    Article  PubMed  CAS  Google Scholar 

  • Robertson SP, Johnson JD, Potter JD (1981) The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J 34:559–569

    Article  PubMed  CAS  Google Scholar 

  • Romero-Herrera AE, Cartillo O, Lehmann H (1976) Human skeletal muscle proteins. The primary structure of troponin C. J Mol Evol 8:251–270

    Article  PubMed  CAS  Google Scholar 

  • Sin IL, Fernandes R, Mercola D (1978) Direct identification of the high and low affinity calcium binding sites of troponin C. Biochem Biophys Res Commun 82:1132–1139

    Article  PubMed  CAS  Google Scholar 

  • Smillie LB (1979) Structure and functions of tropomyosins from muscle and non-muscle sources. Trends Biochem Sci 4:151–155

    Article  CAS  Google Scholar 

  • Solaro RJ, Shiner JS (1976) Modulation of Ca2+ control of dog and rabbit cardiac myofibrils by Mg2+. Comparison with rabbit skeletal myofibrils. Circ Res 39:8–14

    PubMed  CAS  Google Scholar 

  • Sundaralingam M, Bergstrom R, Strasburg G, Rao ST, Roychowdhury P, Greaser M, Wang BC (1985a) Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science 227:945–948

    Article  PubMed  CAS  Google Scholar 

  • Sundaralingam M, Drendel W, Greaser M (1985b) Stabilization of the long central helix of troponin C by intrahelical salt bridges between charged amino acid side chains. Proc Natl Acad Sci USA 82:7944–7947

    Article  PubMed  CAS  Google Scholar 

  • Szent-Györgyi AG, Szentkiralyi EM, Kendrick-Jones J (1973) The light chains of scallop myosin as regulatory subunits. J Mol Biol 74:179–203

    Article  PubMed  Google Scholar 

  • Takagi T, Konishi K (1983) Amino acid sequence of troponin C obtained from ascidian (Halocynthia roretzi) body wall muscle. J Biochem (Tokyo) 94:1753–1760

    CAS  Google Scholar 

  • Taylor EW (1979) Mechanisms of actomyosin ATPase and the problem of muscle contraction. CRC Crit Rev Biochem 6:103–164

    Article  PubMed  Google Scholar 

  • Trybus KM, Taylor EW (1980) Kinetic studies of the cooperative binding of subfragment 1 to regulated actin. Proc Natl Acad Sci USA 77:7209–7213

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya T, Head JF, Lehman (1982) The isolation and characterization of a troponin C-like protein from the mantle muscle of the squid Loligo pealei. Comp Biochem Physiol 71B:507–509

    CAS  Google Scholar 

  • Van Eerd JP, Takahashi K (1976) Determination of the complete amino acid sequence of bovine cardiac troponin C. Biochemistry 15:1171–1180

    Article  PubMed  Google Scholar 

  • Van Eerd JP, Capony JP, Ferraz C, Pechère JF (1978) The amino-acid sequence of troponin C from frog skeletal muscle. Eur J Biochem 91:231–242

    Article  PubMed  Google Scholar 

  • Wagner P, Stone DB (1983) Calcium-sensitive binding of heavy meromyosin to regulated actin requires light chain 2 and the head-tail junction. Biochemistry 22:1334–1342

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi T, Huxley HE, Amos LA, Klug A (1975) Three-dimensional image reconstruction of actin-tropomyosin complex and actin-tropomyosin-troponin T-troponin I complex. J Mol Biol 93:477–497

    Article  PubMed  CAS  Google Scholar 

  • Wang CK, Cheung HC (1985) Energetics of the binding of calcium and troponin I to troponin C from rabbit skeletal muscle. Biophys J 48:727–739

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Kitaura T, Yamaguchi M (1982) Crayfish myosin has no Ca2+-dependent regulation in actomyosin. J Biochem (Tokyo) 92:1635–1641

    CAS  Google Scholar 

  • Watterson DM, Sharief F, Vanaman TC (1980) The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. J Biol Chem 255:962–975

    PubMed  CAS  Google Scholar 

  • Weber A, Murray JM (1973) Molecular control mechanisms in muscle contraction. Physiol Rev 53:612–673

    PubMed  CAS  Google Scholar 

  • Weeds AG, McLachlan AD (1974) Structural homology of myosin alkali light chains, troponin C and carp calcium binding protein. Nature (Lond) 252:646–649

    Article  CAS  Google Scholar 

  • Wegner Y, Walsh TP (1981) Interaction of tropomyosin-troponin with actin filaments. Biochemistry 20:5633–5642

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson JM (1976) The amino acid sequence of troponin C from chicken skeletal muscle. FEBS Lett 70:254–256

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson JM (1980) Troponin C from rabbit slow skeletal and cardiac muscle is the product of a single gene. Eur J Biochem 103:179–188

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson JM, Grand RJA (1975) The amino acid sequence of troponin I from rabbit skeletal muscle. Biochem J 149:493–496

    PubMed  CAS  Google Scholar 

  • Wilkinson JM, Grand RJA (1978) Comparison of amino acid sequence of troponin I from different striated muscles. Nature (Lond) 271:31–35

    Article  CAS  Google Scholar 

  • Wnuk W, Stein EA (1978) Evolution of the Ca-binding properties of troponin C. Experientia 34:920

    Google Scholar 

  • Wnuk W, Stein EA (1980) Does the cooperative response of myofibrils to Ca2+ result from multiple Ca2+-sites on troponin C? In: Siegel FL, Carafoli E, Kretsinger RH, MacLennan DH, Wasserman RH (eds) Calcium binding proteins: structure and function. Elsevier North-Holland, New York, pp 343–344

    Google Scholar 

  • Wnuk W, Cox JA, Stein EA (1982) Parvalbumins and other soluble high-affinity calcium-binding proteins from muscle. In: Cheung WY (ed) Calcium and cell function. Vol II. Academic Press, New York London, pp 243–278

    Google Scholar 

  • Wnuk W, Schoechlin M, Stein EA (1984) Regulation of actomyosin ATPase by a single calcium-binding site on troponin C from crayfish. J Biol Chem 259:9017–9023

    PubMed  CAS  Google Scholar 

  • Wnuk W, Schoechlin M, Kobayashi T, Takagi T, Konishi K, Hoar PE, Kerrick WGL (1986) Two isoforms of troponin C from crayfish. Their characterization and a comparison of their primary structure with the tertiary structure of skeletal troponin C. J Muscle Res Cell Motil 7:67

    Google Scholar 

  • Zot HG, Potter JD (1982) A structural role for the Ca2+-Mg2+ sites on troponin C in the regulation of muscle contraction. Preparation and properties of troponin C depleted myofibrils. J Biol Chem 257:7678–7683

    PubMed  CAS  Google Scholar 

  • Zot HG, Potter JD (1984) The role of calcium in the regulation of the skeletal muscle contraction-relaxation cycle. In: Siegel H (ed) Metal Ions in biological systems. Vol XVII. Decker, New York Basel, pp 381–410

    Google Scholar 

  • Zot HG, Iida S, Potter JD (1983) Thin filament interactions and Ca2+ binding to Tn. Chem Scr 21:135–138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wnuk, W. (1988). Calcium Binding to Troponin C and the Regulation of Muscle Contraction: a Comparative Approach. In: Gerday, C., Bolis, L., Gilles, R. (eds) Calcium and Calcium Binding Proteins. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73042-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73042-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73044-3

  • Online ISBN: 978-3-642-73042-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics