Skip to main content

Rosmarinic Acid: Production in Plant Cell Cultures

  • Chapter
Book cover Medicinal and Aromatic Plants I

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 4))

Abstract

Rosmarinic acid, or α-0-caffeoyl-3,4-dihydroxyphenyllactic acid (Fig. 1), is a representative of a major class of plant secondary metabolites, the ester- or amide-linked conjugates of hydroxycinnamic acids. These compounds, along with the flavonoid tannins, are believed to serve as the substrates for peroxidases and polyphenol oxidases during the browning of damaged plant tissues and the hypersensitive response to pathogen attack (Tomiyama et al. 1967). Auto-oxidation and enzymic oxidation convert the hydroxycinnamoyl moiety to various reactive species which can readily couple covalently with electron-deficient centers in proteins, nucleic acids and other metabolites (Pierpoint et al. 1977; Igarashi and Yasui 1985). Since this process can rapidly destroy the functional integrity of a cell, hydroxycinnamoyl conjugates in living cells must normally be sequestered in a cellular compartment which isolates them from oxidative enzyme catalysis. The limited evidence on this point indicates that the soluble conjugates are normally stored within the central vacuole (Chaprin and Ellis 1984). There is also a pool of insoluble conjugates associated with the cell wall (El-Basyouni et al. 1964), but their metabolic relationship to the soluble conjugates remains unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amhorim HV, Dougall DK, Sharp WR (1977) The effect of carbohydrate and nitrogen concentration on phenol synthesis in Paul’s Scarlet-rose cells grown in tissue culture. Physiol Plant 39:91–95.

    Article  Google Scholar 

  • Auf’Mkolk M, Ingbar JC, Amir SM, Winterhoff W, Sourgens H, Hesch RD, Ingbar S (1985a) Inhibition by certain plant extracts of the binding and adenylate cyclase stimulating effect of bovine thyrotropin in human thyroid membranes. Endocrinology 115:527–534.

    Article  Google Scholar 

  • Auf’Mkolk M, Amir SM, Kubota K, Ingbar SH (1985b) The active principles of plant extracts with antithyrotropic activity: oxidation products of derivatives of 3,4-dihydroxycinnamic acid. Endocrinology 116:1677–1686.

    Article  CAS  Google Scholar 

  • Berlin J (1983) Naturstoff aus pflanzlichen Zellkulturen. Chem Unserer Zeit 17:77–84.

    Article  CAS  Google Scholar 

  • Böhm H (1980) The formation of secondary metabolites in plant tissue and cell cultures. Int Rev Cytol Suppl 11B:183–208.

    Google Scholar 

  • Bu’lock JD (1975) The two-faced microbiologist: contributions of pure and applied microbiology to good research. Dev Ind Microbiol 16:11–19.

    CAS  Google Scholar 

  • Bult H, Herman AG, Rampart M (1985) Modification of endotoxin-induced haemodynamic and haematological changes in the rabbit by methyl prednisolone, F (ab′)2 fragments and rosmarinic acid. Br J Pharmacol 84:317–327.

    PubMed  CAS  Google Scholar 

  • Chaprin N, Ellis BE (1984) Microspectrophotometric evaluation of rosmarinic acid accumulation in single cultured plant cells. Can J Bot 62:2278–2282.

    Article  CAS  Google Scholar 

  • Constabel F, Shyluk JP, Gamborg OL (1971) The effect of hormones on anthocyanin accumulation in cell cultures of Haplopappus gracilis. Planta 96:306–316.

    Article  CAS  Google Scholar 

  • Davies ME (1972) Polyphenol synthesis in cell suspension cultures of Paul’s Scarlet Rose. Planta 104:50–65.

    Article  CAS  Google Scholar 

  • De-Eknamkul W, Ellis BE (1984) Rosmarinic acid production and growth characteristics of Anchusa officinalis cell suspension cultures. Planta Med 51:346–350.

    Article  Google Scholar 

  • De-Eknamkul W, Ellis BE (1985a) Effects of macronutrients on growth and rosmarinic acid formation in cell suspension cultures of Anchusa officinalis. Plant Cell Rep 4:46–49.

    Article  CAS  Google Scholar 

  • De-Eknamkul W, Ellis BE (1985b) Effects of auxins and cytokinins on growth and rosmarinic formation in cell suspension cultures of Anchusa officinalis. Plant Cell Rep 4:50–53.

    Article  CAS  Google Scholar 

  • Döpp H, Musso H (1973) Die Konsitution des Muscaflavins aus Amanita muscaria und über Betalaminsäure. Naturwissenschaften 60:477.

    Article  Google Scholar 

  • El-Basyouni SZ, Neish AC, Towers GHN (1964) The phenolic acids in wheat-III. Insoluble derivatives of phenolic cinnamic acids as natural intermediates in lignin biosynthesis. Phytochemistry 3:627–639.

    Article  CAS  Google Scholar 

  • Ellis BE (1984) Probing secondary metabolism in plant cell cultures. Can J Biol 62:2912–2917.

    CAS  Google Scholar 

  • Ellis BE (1985) Characterization of clonal cultures of Anchusa officinalis derived from single cells of known productivity. J Plant Physiol 119:149–158.

    CAS  Google Scholar 

  • Evans DA, Sharp WR (1983) Single gene mutations in tomato plants regenerated from tissue cultures. Science 221:949–951.

    Article  PubMed  CAS  Google Scholar 

  • Fowden L (1972) Amino acid complement of plants. Phytochemistry 11:2271–2276.

    Article  CAS  Google Scholar 

  • Fukui H, Yazaki K, Tabata M (1984) Two phenolic acids from Lithospermum erythrorhizon cell suspension cultures. Phytochemistry 23:2398–2399.

    Article  CAS  Google Scholar 

  • Gamborg OL, Eveleigh DE (1968) Culture methods and detection of glucanases in suspension cultures of wheat and barley. Can J Biochem 46:417–421.

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB (1966) Caffeic acid ester distribution in higher plants. Z Naturforsch 21b:604–605.

    Google Scholar 

  • Hazum E, Sabatka JJ, Chang K-J, Brent DA, Findlay JWA, Cuatrecasas P (1981) Morphine in cow and human milk: could dietary morphine consitute a ligand for specific morphine (μ) receptors? Science 213:1010–1012.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Yasui T (1985) Oxidation of free methionine and methionine residues in protein involved in the browning reaction of phenolic compounds. Agric Biol Chem 49:2309–2315.

    Article  CAS  Google Scholar 

  • Knobloch K-H (1982) Uptake of phosphate and its effect on phenylalanine ammonia-lyase activity and cinnamoyl putrescine accumulation in cell suspension cultures of Nicotiana tabacum. Plant Cell Rep 1:128–130.

    Article  CAS  Google Scholar 

  • Knobloch K-H, Berlin J (1980) Influence of medium composition on the formation of secondary compounds in cell suspension cultures of Catharanthus roseus (L.) G Don Z Naturforsch 35c:551–556.

    CAS  Google Scholar 

  • Knobloch K-H, Berlin J (1981) Phosphate mediated regulation of cinnamoyl putrescine biosynthesis in cell suspension cultures of Nicotiana tabacum. Planta Med 42:167–172.

    Article  PubMed  CAS  Google Scholar 

  • Knobloch K-H, Beutnagel G, Berlin J (1982) Influence of accumulated phosphate on culture growth and formation of cinnamoyl putrescines in medium-induced cell suspension cultures of Nicotiana tabacum. Planta 153:582–585.

    Article  Google Scholar 

  • König B, Dustmann JH (1985) The caffeoylics as a new family of natural antiviral compounds. Naturwissenschaften 72:659–661.

    Article  PubMed  Google Scholar 

  • Landsmann J, Uhrig H (1985) Somaclonal variation in Solanum tuberosum detected at the molecular level. Theor Appl Genet 71:500–505.

    Article  CAS  Google Scholar 

  • Lang E (1978) Untersuchungen zur Bildung monoterpenoider und einfacher phenylpropanoider Verbindungen in Ocimum basilicum Zellkulturen. Ph D Thesis, Westfälische Wilhlems-Universität, Münster, FRG.

    Google Scholar 

  • Luckner M, Nover L, Böhm H (1977) Secondary metabolism and cell differentiation. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Mantell SH, Smith H (1983) Cultural factors that influence secondary metabolite accumulations in plant cell and tissue cultures. In: Mantell SH, Smith H (eds) Plant biotechnology. Univ Press, Cambridge, pp 75–108.

    Google Scholar 

  • Maretzki A, Thorn M, Nickell LG (1974) Utilization and metabolism of carbohydrates in cell and callus cultures. In: Street HE (ed) Tissue culture and plant science. Academic Press, London New York, pp 329–362.

    Google Scholar 

  • Martin SM, Rose D (1976) Growth of plant cell (Ipomoea) suspension cultures at controlled pH levels. Can J Bot 54:1264–1270.

    Article  CAS  Google Scholar 

  • Nash DT, Davies ME (1972) Some aspects of growth and metabolism of Paul’s Scarlet Rose cell suspensions. J Exp Bot 23:75–91.

    Article  CAS  Google Scholar 

  • Phillips R, Henshaw GG (1977) The regulation of synthesis of phenolics in stationary phase cell culture of Acer pseudoplatanus L. J Exp Bot 28:785–794.

    Article  CAS  Google Scholar 

  • Pierpoint WS, Ireland RJ, Carpenter JM (1977) Modification of proteins during the oxidation of leaf phenols: reaction of potato virus X with chlorogenoquinine. Phytochemistry 16:29–34.

    Article  CAS  Google Scholar 

  • Razzaque A, Ellis BE (1977) Rosmarinic acid production in Coleus cell cultures. Planta 137:287–291.

    Article  CAS  Google Scholar 

  • Sasse F, Knobloch K-M, Berlin J (1982) Induction of secondary metabolism in cell suspension cultures of Catharanthus roseus, Nicotiana tabacum and Peganum harmala. In: Fujiwara A (ed) Plant Tissue Culture 1982. Maruzen, Tokyo, pp 343–344.

    Google Scholar 

  • Scowcroft WR, Larkin PJ (1982) Somaclonal variation: A new option for plant improvement. In: Vasil IK, Scowcroft WR, Frey KJ (eds) Plant improvement and somatic cell genetics. Academic Press, London New York, pp 159–178.

    Google Scholar 

  • Shah RR, Subbaiah KV, Mehta AR (1976) Hormonal effect on polyphenol accumulation in Cassia tissues cultured in vitro. Can J Bot 54:1240–1245.

    Article  CAS  Google Scholar 

  • Thiel K-D, Helbig B, Klocking R, Wutzler P, Sprossig M, Schweizer H (1981) Comparison of the in vitro activities of ammonium humate and of enzymically oxidized chlorogenic and caffeic acids against Type I and Type 1 human herpes virus. Pharmazie 36:50–53.

    PubMed  CAS  Google Scholar 

  • Tomiyama K, Sakai R, Sakuma T, Ishizaka N (1967) The role of polyphenols in the defense reaction in plants induced by infection. In: Mirocha CJ, Uritani I (eds) The dynamic role of molecular constituents in plant-parasite interaction. Am Phytopathol Soc, St Paul, Minn, p 165.

    Google Scholar 

  • Ulbrich B, Wiesner W, Arens H (1985) Large-scale production of rosmarinic acid from plant cell cultures of Coleus blumei Benth. In: Neumann K-H, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin Heidelberg New York Tokyo, pp 293–303.

    Chapter  Google Scholar 

  • Westcott RJ, Henshaw GG (1976) Phenolic synthesis and phenylalanine ammonia-lyase activity in suspension cultures of Acer pseudoplatanus L. Plants 131:67–73.

    Article  CAS  Google Scholar 

  • Whitaker RJ, Hashimoto T, Evans DA (1984) Production of the secondary metabolite, rosmarinic acid, by plant cell suspension cultures. Ann NY Acad Sci 435:364–366.

    Article  CAS  Google Scholar 

  • Wink M, Witte L (1983) Evidence for a wide-spread occurrence of the genes of quinolizidine alkaloid biosynthesis. FEBS Lett 159:196–200.

    Article  CAS  Google Scholar 

  • Zenk MH, El-Shagi H, Ulbrich B (1977) Production of rosmarinic acid by cell suspension cultures of Coleus blumei. Naturwissenschaften 64:585–586.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De-Eknamkul, W., Ellis, B.E. (1988). Rosmarinic Acid: Production in Plant Cell Cultures. In: Bajaj, Y.P.S. (eds) Medicinal and Aromatic Plants I. Biotechnology in Agriculture and Forestry, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73026-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73026-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73028-3

  • Online ISBN: 978-3-642-73026-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics