Caffeine: Production by Plant (Coffea spp.) Cell Cultures

  • T. W. Baumann
  • P. M. Frischknecht
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 4)


During evolution Homo sapiens has selected from the plant kingdom’s vast diversity a few species containing caffeine and related purine alkaloids [PA] and has manufactured them into pleasant “stimulants”. This process occurred in different civilizations from East to West and resulted in six “self-prescribed” drugs which are coffee (Coffea arabica L. and C. canephora Pierre ex Froehner), tea (Camellia sinensis (L.) O. Kuntze), cocoa (Theobroma cacao L.), maté (Ilex paraguariensis St. Hil.), guarana (Paullinia cupana H.B.K.) and cola (Cola nitida Schott et Endl.). Since they are taken daily or at least very frequently, caffeine, the active principle, is a regular component of the human diet. For the major dietary caffeine sources Barone and Roberts (1984) suggest caffeine content values as follows; 85, 60 and 3 mg of caffeine per 5-oz cup for ground roasted, instant, and decaffeinated coffee respectively; 40. and 30 mg per 5-oz cup for leaf or bag tea and instant tea respectively; 18 mg per 6-oz glass for colas; 4 mg per 5-oz cup for cocoa or hot chocolate; and 5 mg per 8-oz glass for chocolate milk. From product usage and consumption analyses, the same authors estimate that the mean daily intake is approximately 3 mg/kg for all adults in the general population.


Suspension Culture Chlorogenic Acid Coffee Plant Coffee Bean Green Coffee Bean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barone JJ, Roberts H (1984) Human consumption of caffeine. In: Dews PB (ed) Caffeine. Perspectives from recent research. Springer, Berlin Heidelberg New York Tokyo, pp 59–73.Google Scholar
  2. Baumann TW, Frischknecht PM (1982) Biosynthesis and biodegradation of purine alkaloids in tissue cultures. In: Fujiwara A (ed) Plant tissue culture 1982. Tokyo, Maruzen, pp 365–366.Google Scholar
  3. Baumann TW, Gabriel H (1984) Metabolism and excretion of caffeine during germination of Coffea arabica L. Plant Cell Physiol 25:1431–1436.Google Scholar
  4. Baumann TW, Wanner H (1972) Untersuchungen über den Transport von Kaffein in der Kaffeepflanze (Coffea arabica). Planta 108:11–20.CrossRefGoogle Scholar
  5. Baumann TW, Wanner H (1980) The 1,3,7,9-tetramethyluric acid content of cupa (Theobroma grandiflorum Schum.). Acta Amazon 10:425.Google Scholar
  6. Baumann TW, Oechslin M, Wanner H (1976) Coffein and methylierte Harnsäuren: Chemische Muster während der vegetativen Entwicklung von Coffea liberica. Biochem Physiol Pflanzen 170:217–225.Google Scholar
  7. Baumann TW, Dupont-Looser E, Wanner H (1978) 7-Methylxanthosine — an intermediate in caffeine biosynthesis. Phytochemistry 17:2075–2076.CrossRefGoogle Scholar
  8. Baumann TW, Koetz R, Morath P (1983) N-Methyltransferase activities in suspension cultures of Coffea arabica L. Plant Cell Rep 2:33–35.Google Scholar
  9. Berthaud J, Guillaumet J-L, Le Pierres D, Lourd M (1977) Les prospections des caféiers sauvages et leur mise en collection. 8e Coll Sci Int Café (Abidjan), ASIC (Paris), pp 365-372.Google Scholar
  10. Bertrand G (1901) Sur la composition chimique du café de la Grande Comore. CR Acad Sci (Paris) 132:162–164.Google Scholar
  11. Bertrand G (1902) Recherche et dosage de la caféine dans plusieurs espèces de Café. Bull Soc Pharm 5:283–285.Google Scholar
  12. Buchanan RL, Tice G, Marino D (1981) Caffeine inhibition of ochratoxin A production. J Food Sci 47:319–321.CrossRefGoogle Scholar
  13. Buckland E, Townsley PM (1975) Coffee cell suspension cultures. Caffeine and chlorogenic acid content. J Inst Can Sci Technol Aliment 8:164–165.Google Scholar
  14. Capot J (1975) Obtention et perspectives d’un nouvel hybride de caféier en Côte d’Ivoire: l’Arabusta. 7e Coll Sci Int Café (Hamburg), ASIC (Paris), pp 449-457.Google Scholar
  15. Charrier A (1978) La structure génétique des caféiers spontanés de la région malgache (Mascarocoffea). Leurs relations avec les caféiers d’origine africaine (Eucoffea). Mem Orstom N0 87 (Paris).Google Scholar
  16. Charrier A, Berthaud J (1975) Variation de la teneur en caféine dans le genre Coffea. Café, Cacao, Thé (Paris) 19:251–263.Google Scholar
  17. Chevalier A (1947) Les Caféiers du Globe. Systematique des caféiers et faux caféiers. Maladies et insectes nuisibles. Encycl. biol. XXVIII, Fas. III, P. Lechevalier, Paris.Google Scholar
  18. Dews PB (ed) (1984) Caffeine. Perspectives from recent research. Springer, Berlin Heidelberg New York Tokyo.Google Scholar
  19. Dublin P (1984) Techniques de reproduction végétative in vitro et amélioration génétique chez les caféiers cultivés. Café, Cacao, Thé (Paris) 28:231–243.Google Scholar
  20. Ducruix A, Pascard C, Hammonniere M, Poisson J (1977) The crystal and molecular structure of mascaroside, a new bitter glycoside from coffee beans. Acta Cryst B 33:2846–2850.CrossRefGoogle Scholar
  21. Eichler O (ed) (1976) Kaffee und Coffein. Springer, Berlin Heidelberg New York.Google Scholar
  22. Frischknecht PM, Baumann TW (1979) Synthesis of [2-14C]theobromine. J Lab Cpds Radiopharm 16:669–672.CrossRefGoogle Scholar
  23. Frischknecht PM, Baumann TW (1980) The pattern of purine alkaloid formation in suspension cultures of Coffea arabica. Planta Med 40:245–249.CrossRefGoogle Scholar
  24. Frischknecht PM, Baumann TW (1985) Stress induced formation of purine alkaloids in plant tissue culture of Coffea arabica. Phytochemistry 24:2255–2257.CrossRefGoogle Scholar
  25. Frischknecht PM, Baumann TW, Wanner H (1977) Tissue culture of Coffea arabica. Growth and caffeine formation. Plant Med 31:344–350.CrossRefGoogle Scholar
  26. Frischknecht PM, Eller BM, Baumann TW (1982) Purine alkaloid formation and CO2 gas exchange in dependence of development and of environmental factors in leaves of Coffea arabica L. Planta 156:295–301.CrossRefGoogle Scholar
  27. Frischknecht PM, Ulmer-Dufek J, Baumann TW (1986) Purine alkaloid formation in buds and developing leaflets of Coffea arabica: Expression of an optimal defence strategy? Phytochemistry 25:613–616.CrossRefGoogle Scholar
  28. Harborne J (ed) (1982) Introduction of Ecological Biochemistry. Academic Press, London New York Herman EB, Haas GJ (1975) Clonal propagation of Coffea arabica L. from callus culture. Hort-science 10:588–589.Google Scholar
  29. Illy E (1982) Quality: first motor of the consumption of coffee. 10e Coll Sci Int Café (Bahia), ASIC (Paris), pp 15–19.Google Scholar
  30. Johnson TB (1937) Purines in the plant kingdom: The discovery of a new purine in tea. J Am Chem Soc 59:1261–1264.CrossRefGoogle Scholar
  31. Kalberer P (1965) Breakdown of caffeine in the leaves of Coffea arabica L. Nature (London) 205:597–598.CrossRefGoogle Scholar
  32. Kappeler AW, Baumann TW (1985) Purine alkaloid pattern in coffee brans. 11e Coll Sci Int Café (Lomé), ASIC (Paris) pp 273–279.Google Scholar
  33. Keller H, Wanner H, Baumann TW (1972) Kaffeinsynthese in Früchten und Gewebekulturen von Coffea arabica. Planta 108:339–350.CrossRefGoogle Scholar
  34. Kihlman BA (ed) (1977a) Caffeine and chromosomes. Elsevier, Amsterdam New York.Google Scholar
  35. Kihlman BA (1977b) 1,3,7,9-Tetramethyluric acid — a chromosome-damaging agent occurring as a natural metabolite in certain caffeine-producing plants. Mutation Res 39:297–316.PubMedGoogle Scholar
  36. Kossel A (1888) Über eine neue Base aus dem Pflanzenreich. Chem Ber 21:2164–2167.CrossRefGoogle Scholar
  37. Leroy JF (1967) Récherches sur les caféiers. Sur les classifications biologiques des caféiers et sur l’origine et l’aire du genre Coffea. CR Acad Sci (Paris) 165:1043–1045.Google Scholar
  38. Looser E, Baumann TW, Wanner H (1974) The biosynthesis of caffeine in the coffee plant. Phytochemistry 13:2515–2518.CrossRefGoogle Scholar
  39. Monaco LC, Sondahl MR, Carvalho A, Crocomo J, Sharp WR (1977) Applications of tissue culture in the improvement of coffee. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue, and organ culture. Springer, Berlin Heidelberg New York, pp 109–129.Google Scholar
  40. Nathanson JA (1984) Caffeine and related methylxanthines: possible naturally occurring pesticides. Science 226:184–187.PubMedCrossRefGoogle Scholar
  41. Orozco FJ, Schieder O (1984) Isolation of mesophyll protoplasts of the genus Coffea. Turrialba 34:534–536.Google Scholar
  42. Petermann JB, Baumann TW (1983) Metabolic relations between methylxanthines and methyluric acids in Coffea L. Plant Physiol 73:961–964.PubMedCrossRefGoogle Scholar
  43. Petermann JB, Baumann TW, Wanner H (1977) A new tetramethyluric acid from Coffea liberica and C. dewevrei. Phytochemistry 16:620–621.CrossRefGoogle Scholar
  44. Pfrunder R, Wanner H, Frischknecht PM, Baumann TW (1980) An attempt to localize caffeine in the cell by its washout kinetics. 9e Coll Sci Int Café (London), ASIC (Paris), pp 169-175.Google Scholar
  45. Prabhuji SK, Srivastava GC, Rizvi SJH, Mathur SN (1983) 1,3,7-Trimethylxanthine (caffeine); a new natural fish fungicide. Experientia 39:177–179.CrossRefGoogle Scholar
  46. Prenosil JE, Hegglin M, Baumann TW, Frischknecht PM, Kappeler AW, Brodelius P, Haldimann D (1987a) Purine alkaloid producing cell cultures: fundamental aspects and possible applications in biotechnology. Enzyme Microb Technol 9:450–458.CrossRefGoogle Scholar
  47. Prenosil JE, Hegglin M, Bourne JR, Hamilton R (1987b) Purine alkaloid production by free and immobilized Coffea arabica cells. In: Laskin AI, Mosbach K, Thomas D, Wingard LB Jr (eds) Enzyme engineering, vol 8. Ann NY Acad Sci, New York, 501, 390–394.Google Scholar
  48. Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores, their interaction with secondary plant metabolites. Academic Press, London New York, pp 3–54.Google Scholar
  49. Rizvi SJH, Pandey SK, Murkerji D, Mathur SN (1980) 1,3,7-Trimethylxanthine, a new chemosterilant for stored grain pest, Callosobruchus chinensis (L). Z Angew Ent 90:378–381.CrossRefGoogle Scholar
  50. Rizvi SJH, Mukerji D, Mathur SN (1981) Selective phyto-toxicity of 1,3,7-trimethylxanthine between Phaseolus mungo and some weeds. Agric Biol Chem 45:1255–1256.CrossRefGoogle Scholar
  51. Runge FF (1820) Neueste Phytochemische Entdeckungen zur Begründung einer wissenschaftlichen Phytochemie. 1. Lieferung, Berlin.Google Scholar
  52. Snyder SH (1984) Adenosine as a mediator of the behavioral effects of xanthines. In: Dews PB (ed) Caffeine. Perspectives from recent research. Springer, Berlin Heidelberg New York Tokyo, pp 129–141.Google Scholar
  53. Sondahl MR, Chapman MS, Sharp WR (1980) Protoplast liberation, cell wall reconstitution, and callus proliferation in Coffea arabica L. callus tissues. Turrialba 30:161–165.Google Scholar
  54. Sondahl MR, Nakamura T, Medina-Filho HP, Carvalho A, Fazuoli LC, Costa WM (1984) Coffee. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture, vol 3. Crop species. Macmillan, New York, pp 564–590.Google Scholar
  55. Suzuki T, Takahashi E (1975a) Metabolism of xanthine and hypoxanthine in the tea plant. Biochem J 146:79–85.PubMedGoogle Scholar
  56. Suzuki T, Takahashi E (1975b) Biosynthesis of caffeine by tea-leaf extracts. Enzymic formation of theobromine from 7-methylxanthine and of caffeine from theobromine. Biochem J 146:87–96.PubMedGoogle Scholar
  57. Suzuki T, Takahashi E (1976) Caffeine biosynthesis in Camellia sinensis. Phytochemistry 15:1235–1239.CrossRefGoogle Scholar
  58. Swain T (1977) Secondary compounds as protective agents. Annu Rev Plant Physiol 28:479–501.CrossRefGoogle Scholar
  59. Townsley PM (1974) Production of coffee from plant cell suspension cultures. J Inst Can Sci Technol Aliment 7:79–81.Google Scholar
  60. Van de Voort F, Townsley PM (1974) A gas Chromatographic comparison of the fatty acids of the green coffee bean, Coffea arabica and the submerged coffee cell culture. J Inst Can Sci Technol Aliment 7:82–85.Google Scholar
  61. Van de Voort F, Townsley PM (1975) A comparison of the unsaponifiable lipids isolated from coffee cell cultures and from green coffee beans. J Inst Can Sci Technol Aliment 8:199–201.Google Scholar
  62. Vasconcelos MNL, Leao da Silva M, Maia JGS, Gottlieb OR (1975) Estudo quimico das sementes do Cupuacu. Acta Amazon 5:293–295.Google Scholar
  63. Waller GR, Macvean CD, Suzuki T (1983) High production of caffeine and related enzyme activities in callus cultures of Coffea arabica L. Plant Cell Rep 2:109–112.CrossRefGoogle Scholar
  64. Wanner H, Pesakova M, Baumann TW, Charubala R, Guggisberg A, Hesse M, Schmid H (1975) O (2),1,9-Trimethyluric acid and 1,3,7,9-tetramethyluric acid in leaves of different Coffea species. Phytochemistry 14:747–750.CrossRefGoogle Scholar
  65. Weevers T (1930) Die Funktion der Xanthinderivate im Pflanzenstoffwechsel. Arch Neerl Sci Exact Nat III B, 5:111–195.Google Scholar
  66. Woskresensky A (1842) Über das Theobromin. Ann Pharm 41:125–127.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • T. W. Baumann
    • 1
  • P. M. Frischknecht
    • 2
  1. 1.Institute of Plant BiologyUniversity of ZurichZurichSwitzerland
  2. 2.ThalwilSwitzerland

Personalised recommendations