Selfsimilarity of Developed Turbulence

  • H. Effinger
  • S. Grossmann
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 37)


One aspect of fluid flow with large Reynolds number and energy input is to understand its chaotic structure, the Lyapunov spectrum, the K-entropy, the invariant measure, etc., starting from the properties of the Navier-Stockes equations1. This would justify a statistical mechanics of turbulence. The question of which measurable statistical properties emanate from that have found even longer lasting interest2. A quantity of particular interest is the structure function
$$ D(r) = \ll {\left| {\overrightarrow u (\overrightarrow x + \overrightarrow r ) - \overrightarrow u (\overrightarrow x )} \right|^2} \gg $$
in stationary, homogeneous, isotropic turbulence. \( \overrightarrow u (\overrightarrow x, t) \) is the Eulerian velocity field, ≪...≫ denotes the ensemble average (which then is independent of \( \overrightarrow x \) and t). \( \overrightarrow u \) is solenoidal and solves the Navier-Stockes equations (NS-E)
$$ {\partial_t}{u_i}(\overrightarrow x, t) = - {u_j}(\overrightarrow x, t) - {\partial_{{{x_i}}}}p(\overrightarrow x, t) + \nu {\Delta_x}{u_i}(\overrightarrow x, t) + {f_i}(\overrightarrow x, t) $$


Eddy Viscosity Lyapunov Spectrum Galilean Invariance Brute Force Method Lagrangian Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Ruelle, Comm.Math.Phys.87,287(1982);93,285(1984)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    A. N. Kolmogorov, A. M. Oboukhov, C. F. von Weizsäcker, W. Heisenberg, L. Qnsager, in the 1940th, detailed references see ref.6Google Scholar
  3. 2a.
    S. A. Orzag, Les Houches Proc. 1973, Lectures on the Statistical Theory of Turbulence, Eds. R. Balian, J. L. Peube, Gordon & Breach, London, 1977Google Scholar
  4. 3.
    R. H. Kraichnan, J. Fluid. Mech.5,497(1959)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 3a.
    R. H. Kraichnan, J. Fluid. Mech.83,349(1977);MathSciNetADSMATHCrossRefGoogle Scholar
  6. 3b.
    R. H. Kraichnan, Phys.Fluids 7,1030; 1723(1964);MathSciNetCrossRefGoogle Scholar
  7. 3c.
    R. H. Kraichnan, Phys.Fluids 7,8,575(1965)MathSciNetADSCrossRefGoogle Scholar
  8. 4.
    P. C. Martin, E. D. Siggia, H. A. Rose, Phys. Rev.A8,423(1973);ADSCrossRefGoogle Scholar
  9. 4a.
    H. Horner, R. Lipowski, Z. Phys. B33,223(1979);ADSGoogle Scholar
  10. 4b.
    C. Foias, O. P. Manley, R. Temam, Phys.Rev. Lett.51,617(1983)MathSciNetADSCrossRefGoogle Scholar
  11. 5.
    D. Forster, D. R. Nelson, M. J. Stephen, Phys.Rev.Lett.36,867(1976)ADSCrossRefGoogle Scholar
  12. 5a.
    D. Forster, D. R. Nelson, M. J. Stephen, Phys.Rev. A16,732(1977);MathSciNetADSGoogle Scholar
  13. 5b.
    M. Lücke, Phys.Rev. A18,282(1978);ADSGoogle Scholar
  14. 5c.
    M. Lücke and A. Zippelius, Z.Phys. B31,201(1978);ADSGoogle Scholar
  15. 5d.
    V. Yakhot, S. A. Orszag, Phys.Rev.Lett.57,1722(1986)Google Scholar
  16. 6.
    S. A. Orzag, Les Houches Proc. 1973, Lectures on the Statistical Theory of Turbulence, Eds. R. Balian, J. L. Peube, Gordon & Breach, London, 1977Google Scholar
  17. 7.
    H. Effinger, S. Grossmann, Z.Phys.B66, 289 (1987)ADSCrossRefGoogle Scholar
  18. 8.
    C. W. Van Atta, W. Y. Chen, J. Fluid Mech. 44, 145(1970);ADSCrossRefGoogle Scholar
  19. 8a.
    R. A. Antonia, B. R. Satyaprakash, A. J. Chambers, Phys.Fluids 25, 29(1982);ADSCrossRefGoogle Scholar
  20. 8b.
    F. Anselmet, Y. Gagne, E. J. Hopfinger, R. A. Antonia, J.Fluid Mech. 140,63(1984);ADSCrossRefGoogle Scholar
  21. 8c.
    P. Mestayer, J. Fluid Mech. 125,475(1982)Google Scholar
  22. 9.
    Such variable scale separation was introduced in momentum space: S.Grossmann, Z. Naturforsch. 26a,1782(1971);ADSGoogle Scholar
  23. 9a.
    C. M. Tchen, Phys.Fluids 16,13 (1973)ADSMATHCrossRefGoogle Scholar
  24. 10.
    S. Grossmann, S. Thomae, Z.Phys. B49,253(1982)ADSCrossRefGoogle Scholar
  25. 11.
    If the switch-over of e(r)in from ε to 0 in the range r≅L is given (assumed), D can be evaluated also1 in the non-universal input rangeGoogle Scholar
  26. 12.
    G. K. Batchelor, Proc.Camb.Phil.Soc. 47,359(1951)MathSciNetGoogle Scholar
  27. 13.
    H. Effinger, S. Grossmann, Phys.Rev.Lett. 53,442(1984);ADSCrossRefGoogle Scholar
  28. 13a.
    S. Grossmann, I. Procaccia, Phys.Rev. A29,1358(1984)ADSCrossRefGoogle Scholar
  29. 14.
    A. N. Kolmogorov, Izv.Acad.Nauk(SSSR), Ser VI, No 1–2,56(1942)Google Scholar
  30. 15.
    L. Prandtl, ZAMM 5,136(1925);MATHGoogle Scholar
  31. 15a.
    B. E. Launder, D. B. Spalding, Math. Models of Turbulence, Academic Press, London, 1972;Google Scholar
  32. 15b.
    H. Tennekes, J. L. Lumley, A First Course in Turbulence, MIT-Press, Cambridge (Mass), 1972Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • H. Effinger
    • 1
  • S. Grossmann
    • 1
  1. 1.Fachbereich Physik der Philipps-UniversitätMarburgFed. Rep. of Germany

Personalised recommendations