Anisotropy and Fluctuation in Diffusion Limited Aggregation

Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 37)


Diffusion limited aggregation (DLA) models many different physical phenomena from dielectric breakdown to viscous finger instabilities. The resulting patterns can be analysed in terms of fractal geometries. They depend in a very sensitive way on the anisotropy and the noise of the growth rules. Here, several different variants of DLA are reviewed. In particular, simulations with enhanced growth in the direction of the axes of the underlying lattice are analysed to show that even a slight anisotropy distroys the spherical, self-similar structure in favor of a self-affine structure whose scaling properties depend on the symmetry of the lattice. Growth on a square lattice suggests that there is a crossover from off-lattice DLA with a fractal dimension of D=1.71 to a cross-like self-affine pattern with D=1.5 along the axes and D=2.0 along the diagonals. Qualitative arguments are advanced to explain these results in terms of classical aggregation, i.e. neglecting fluctuations.


Fractal Dimension Diffusion Limited Particle Aggregation Lattice Anisotropy Growth Rule Classical Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.A.Witten and L.M.Sander, Phys.Rev.Lett. 47, 1400 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    ‘Kinetics of Aggregation and Gelation’, F.Family and D.P.Landau (eds.), North-Holland (1984)Google Scholar
  3. 3.
    P.Meakin, Phys.Rev. A27, 604, 1495 (1983)MathSciNetADSGoogle Scholar
  4. 4.
    S.K.Ma, ‘Modern Theory of Critical Phenomena’, Benjamin (1976)Google Scholar
  5. 5.
    ‘Phase Transitions and Critical Phenomena’, Vol. 6, C.Domb and M.S.Green (eds.), Academic Press (1976)Google Scholar
  6. 6.
    R.Jullien, M.Kolb and R.Botet, J.Physique 45, 395 (1984)CrossRefGoogle Scholar
  7. 7.
    R.C.Ball and R.M.Brady, J.Phys. A18, L809 (1985)ADSGoogle Scholar
  8. 8.
    P.Meakin, J.Phys. A18, L661 (1985)ADSGoogle Scholar
  9. 9.
    M.Kolb, unpublishedGoogle Scholar
  10. 10.
    P.Meakin and T.J.Vicsek, Phys.Rev. A32, 685 (1985)ADSGoogle Scholar
  11. 11.
    M.Kolb, J. de Physique 46, L631 (1985)CrossRefGoogle Scholar
  12. 12.
    R.Voss, unpublishedGoogle Scholar
  13. 13.
    L.Turkevich and H.Sher, Phys.Rev.Lett. 55, 1026 (1985)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    R.C.Ball, R.M.Brady, G.Rossi and B.R.Thompson, Phys.Rev.Lett. 55, 1406 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    ‘On Growth and Form’, H.E.Stanley and N.Ostrowski (eds.), Matinus Nijhoff (1985)Google Scholar
  16. 16.
    P.Meakin, Phys.Rev. A27, 1495 (1983)MathSciNetADSGoogle Scholar
  17. 17.
    P.Meakin, Phys.Rev. A33, 3371 (1986)MathSciNetADSGoogle Scholar
  18. 18.
    B.Shraiman and D.Bensimon, Phys.Rev. A30, 2840 (1984)MathSciNetADSGoogle Scholar
  19. 19.
    D.Bensimon, Phys.Rev. A33, 1302 (1986)ADSGoogle Scholar
  20. 20.
    F.Family and H.G.E.Hentschel, preprintGoogle Scholar
  21. 21.
    R.Ball, talk at STATPHYS 16, Boston (1986)Google Scholar
  22. 22.
    M.Matsushita, H.Kondo, S.Ohnishi and Y.Sawada, J.Phys.Soc.Japan 55, 61 (1986)ADSCrossRefGoogle Scholar
  23. 23.
    J.Kertesz and T.J.Vicsek, J.Phys. A19, L257 (1986)ADSGoogle Scholar
  24. 24.
    M.Matsushita and H.Kondo, J.Phys.Soc.Japan 55, 2483 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    J.Nittmann and H.E.Stanley, Nature 321, 663 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    B.B.Mandelbrot, in ‘Fractals in Physics’, L.Pietronero and E.Tosatti (eds.), North Holland (1986)Google Scholar
  27. 27.
    P.Meakin, R.C.Ball, P.Ramanlal and L.M.Sander, preprintGoogle Scholar
  28. 28.
    P.Meakin and F.Family, Phys. Rev. A34, 2558 (1986)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. Kolb
    • 1
  1. 1.des SolidesUniversité de Paris-SudOrsayFrance

Personalised recommendations