Advertisement

The Basic (n,2n)-Fold of Steady Axisymmetric Taylor Vortex Flows

  • R. Meyer-Spasche
  • M. Wagner
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 37)

Abstract

We study steady axisymmetric flows in a wide gap between concentric cylinders. End effects are neglected (periodic boundary conditions). With both cylinders rotating, there are four parameters in the problem: The Reynolds number Re, the axial period λ, the radius ratio η, and the rotation rate μ. We solve the Navier-Stokes equations for such flows numerically, using the very reliable methods described earlier: Discretization by Fourier decomposition in the axial direction and centered finite differences in the radial direction; systematic variation of Re and λ by using the method of continuation with Gauss-Newton iterations. η and μ are mostly kept fixed at μ = 0 and η = 0.727, the wide gap value of the Burkhalter/Koschmieder experiments and of numerical investigations.

Keywords

Bifurcation Point Couette Flow Discretization Error Periodic Repetition Bifurcation Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.P. Andreichikov (1975) Branching of secondary modes in the now between rotating cylinders. Fluid dynamics (1977), translated from Izv. Akad. Nauk SSSR, Mekh.Zhidk. Gaza, No. 1, 47 – 53Google Scholar
  2. 2.
    D. Armbruster, O(2)-symmetric bifurcation theory for convection rolls. To be publishedGoogle Scholar
  3. 3.
    J.E. Burkhalter and E.L. Koschmieder (1974) Steady supercritical Taylor vortices after sudden starts. Phys. Fluids 17, 1929 – 1935ADSCrossRefGoogle Scholar
  4. 4.
    F.H. Busse and A.C. Or (1986) Subharmonic and asymmetric convection rolls. ZAMP 37, 608–623ADSMATHCrossRefGoogle Scholar
  5. 5.
    F.H. Busse, Transition to asymmetric convection rolls. Proc. “Bifurcation”, Dortmund 1986. (ed. Küpper, Seydel, Troger), Birkhauser, in pressGoogle Scholar
  6. 6.
    S. Chandrasekhar (1961) Hydrodynamic and Hydromagnetic Stability. Oxford University PressMATHGoogle Scholar
  7. 7.
    N. Dinar and H.B. Keller, Computations of Taylor vortex flows using multigrid continuation methods. To be publishedGoogle Scholar
  8. 8.
    G. Frank and R. Meyer-Spasche (1981) Computation of transitions in Taylor vortex flows. ZAMP 32, 710 – 720ADSMATHCrossRefGoogle Scholar
  9. 9.
    M.E. Henderson and H.B. Keller, Complex bifurcation. To be publishedGoogle Scholar
  10. 10.
    C.A. Jones (1981) Nonlinear Taylor vortices and their stability. JFM 102, 249 – 261ADSMATHCrossRefGoogle Scholar
  11. 11.
    C.A. Jones (1982) On flow between counter-rotating cylinders. JFM 120, 433 – 450ADSMATHCrossRefGoogle Scholar
  12. 12.
    H.B. Keller (1977) Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Applications of Bifurcation Theory (ed. P. Rabinowitz), 359 – 384Google Scholar
  13. 13.
    K. Kirchgässner (1961) Die Instabilität der Strömung zwischen rotierenden Zylindern gegenüber Taylorwirbeln für beliebige Spaltbreiten. ZAMP 12, 14 – 30ADSMATHCrossRefGoogle Scholar
  14. 14.
    R. Meyer-Spasche and H.B. Keller (1980) Computations of the axisymmetric flow between rotating cylinders. J. Comp. Phys. 35, 100 – 109ADSMATHCrossRefGoogle Scholar
  15. 15.
    R. Meyer-Spasche and H.B. Keller (1985) Some bifurcation diagrams for Taylor vortex flows. Phys. Fluids 28, 1248 – 1252ADSMATHCrossRefGoogle Scholar
  16. 16.
    R. Meyer-Spasche and M. Wagner, Steady axisymmetric Taylor vortex flows with free stagnation points of the poloidal flow. Proc. “Bifurcation”, Dortmund 1986. (ed. Küpper, Seydel, Troger), Birkhäuser, in pressGoogle Scholar
  17. 17.
    S.N. Ovchinnikova and V.I. Yudovich (1974) Stability and bifurcation of Couette flow in the case of a narrow gap between rotating cylinders. Prikl. Mat. Mekh. 38, No.6Google Scholar
  18. 18.
    M. Paffrath (1986) Das Taylorproblem und die numerische Behandlung von Verzweigungen. Ph. D. dissertation in mathematics, U BonnGoogle Scholar
  19. 19.
    H. Riecke and H.-G. Paap (1986) Stability and wave vector restriction of axisymmetric Taylor vortex flows. Phys. Rev. A 33, 547ADSCrossRefGoogle Scholar
  20. 20.
    H. Riecke (1986) Wellenlängeneinschränkung in quasi-eindimensionalen strukturbildenden Systemen. Ph. D. dissertation in physics, U BayreuthGoogle Scholar
  21. 21.
    H. Specht and M. Wagner, Diplomarbeit in Mathematik, FU Berlin, in preparationGoogle Scholar
  22. 22.
    G.I. Taylor (1923) Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. A, vol CCXXIII, 289 – 343ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • R. Meyer-Spasche
    • 1
  • M. Wagner
    • 2
  1. 1.Max-Planck-Institu für PlasmaphysikGarchingFed. Rep. of Germany
  2. 2.Institut für Mathematik IIIFreie UniversitätBerlin 33Germany

Personalised recommendations