Pattern Selection in Anisotropic Systems

  • L. Kramer
  • E. Bodenschatz
  • W. Pesch
  • W. Zimmermann
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 37)

Abstract

We examine the possible stationary patterns and their stability slightly above threshold in systems that are extended in two dimensions and possess an axial anisotropy. The universal amplitude equations used show interesting defect solutions which are discussed briefly. The connection to various experimental systems, such as electrohydrodynamic convection in liquid crystals, is outlined.

Keywords

Vortex Anisotropy Convection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. H. Busse: Rep. Prog. Phys. 41, 28 (1978)CrossRefGoogle Scholar
  2. 1a.
    and in Hydrodynamic Instabilities and the Transition to Turbulence, 2nd, ed., H. L. Swinney and J. P. Gollub, eds. (Springer, Berlin 1986).Google Scholar
  3. 2.
    M. C. Cross and A. C. Newell: Physica 10D, 299 (1984).MathSciNetADSGoogle Scholar
  4. 3.
    M. S. Heutmaker, P. N. Fraenkel and J. P. Gollub: Phys. Rev. Lett. 54, 1369 (1985)ADSCrossRefGoogle Scholar
  5. 3a.
    G. Ahlers, D. S. Cannell, and V. Steinberg: Phys. Rev. Lett. 54, 1373 (1985)ADSCrossRefGoogle Scholar
  6. 3b.
    P. Le Gal, A. Pocheau and V. Croquette: Phys. Rev. Lett. 54, 2501 (1985)ADSCrossRefGoogle Scholar
  7. 3c.
    P. Le Gal, A. Pocheau and V. Croquette: Phys. Rev. Lett. 55, 1094 (1985)ADSCrossRefGoogle Scholar
  8. 4.
    V. L. Ginzburg and L. Pitaevskii: Zh. Exp. Teor. Fiz. 34, 1240 (1958) [English transl.: Sov. Phys. JETP 7, 858 (1958)].MathSciNetGoogle Scholar
  9. 5.
    W. Pesen and L. Kramer: Z. Phys. B63, 121 (1986).ADSGoogle Scholar
  10. 6.
    W. Eckhaus: Studies in Nonlinear Stability Theory (Springer, Berlin, 1965) p.63ff.Google Scholar
  11. 7.
    A. C. Newell and J. A. Whitehead: J. Fluid Mech. 38, 279 (1969).ADSMATHCrossRefGoogle Scholar
  12. 8.
    L. Kramer and W. Zimmermann: Physica 16D, 221 (1985).ADSGoogle Scholar
  13. 9.
    The full Eckhaus-evolution for the one-dimensional case was studied recently by H. Schober, W. Zimmermann and L. Kramer: to be published; experiments were performed by M. Lowe and J. P. Gollub: Phys. Rev. Lett. 55, 2575 (1985).Google Scholar
  14. 10.
    E. Bodenschatz and L. Kramer: Physica D, in press.Google Scholar
  15. 11.
    W. F. Vinen: in Quantum Fluids, D. F. Brewer, ed. (North-Holland, Amsterdam, 1966) p.74.Google Scholar
  16. 12.
    E. D. Siggia and A. Zippelius: Phys. Rev. A24. 1036 (1981).ADSGoogle Scholar
  17. 13.
    Y. Pomeau, S. Zaleski and P. Manneville: Phys. Rev. A27, 2710 (1983).MathSciNetADSGoogle Scholar
  18. 14.
    Y. Pomeau: in Cellular Structures in Instabilities, J. E. Wesfreid and S. Zaleski, eds. (Springer, Berlin, 1984) p. 207CrossRefGoogle Scholar
  19. 14a.
    H. Riecke: Europhys. Lett. 2, 1 (1986).ADSCrossRefGoogle Scholar
  20. 15.
    M. G. Cross, P. G. Daniels, P. C. Hohenberg and E. D. Siggia: J. Fluid. Mech. 127, 155 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 15a.
    Y. Pomeau and S. Zaleski: J. Physique 42, 515 (1981)MathSciNetCrossRefGoogle Scholar
  22. 15b.
    L. Kramer and P. C. Hohenberg: Physica 13D, 357 (1984)MathSciNetADSGoogle Scholar
  23. 15c.
    P. C. Hohenberg, L. Kramer and H. Riecke: Physica 15D, 402 (1985).MathSciNetGoogle Scholar
  24. 16.
    R. M. Hornreich, M. Luban and S. Shtrikman: Phys. Rev. Lett 35, 1678 (1975)ADSCrossRefGoogle Scholar
  25. 16a.
    R. M. Hornreich, M. Luban and S. Shtrikman: Physica 86A, 465 (1977).ADSGoogle Scholar
  26. 17.
    L. A. Segel: J. Fluid Mech. 38, 203 (1969).ADSMATHCrossRefGoogle Scholar
  27. 18.
    E. D. Belotskii and P. M. Tomchuk: Zh. Eksp. Teor. Fiz. 88. 1634 (1985) [English transl.: Sov. Phys.-JETP 61, 974 (1985)].Google Scholar
  28. 19.
    S. Chang-Qing and Lin Lei: 11th Int. Liquid Crystal Conference, Berkeley, 1986 (to be published in Mol. Cryst. and Liq. Cryst.)Google Scholar
  29. 20.
    S. Chandrasekhar: Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford, 1961) p.186.MATHGoogle Scholar
  30. 21.
    B. Lehnert and N. C. Little: Tellus 9, 97 (1957). For recent experiments on the influence of a horizontal magnetic field on Rayleigh-Bénard convection see S. Fauve, C. Laroche and A. Libchaber: J. Physique Lett. 42, L-455 (1981); 45, L-101 (1984).ADSCrossRefGoogle Scholar
  31. 21a.
    For recent experiments on the influence of a horizontal magnetic field on Rayleigh-Bénard convection see S. Fauve, C. Laroche and A. Libchaber: J. Physique Lett. 42, L-455 (1981); 45, L-101 (1984).Google Scholar
  32. 21b.
    For recent experiments on the influence of a horizontal magnetic field on Rayleigh-Bénard convection see S. Fauve, C. Laroche and A. Libchaber: J. Physique Lett. 42, L-455 (1981); 45, L-101 (1984).CrossRefGoogle Scholar
  33. 22.
    I. A. Eltayeb: Proc. R. Soc. Lond. A326, 229 (1972).ADSGoogle Scholar
  34. 23.
    E. R. Krüger, A. Gross and R. C. Di Prima: J. Fluid Mech. 24, 521 (1966)ADSCrossRefGoogle Scholar
  35. 23a.
    H. A. Snyder: Int. J. Non-Linear Mechanics 5, 659 (1970).ADSCrossRefGoogle Scholar
  36. 24.
    C. D. Andereck, S. S. Liu and H. L. Swinney: J. Fluid Mech. 164, 155 (1986).ADSCrossRefGoogle Scholar
  37. 25.
    P. Pieranski and E. Guyon: Phys. Rev. Lett. 39, 1281 (1977)ADSCrossRefGoogle Scholar
  38. 25a.
    E. Guazzelli and E. Guyon: J. Physique 43, 985 (1982)CrossRefGoogle Scholar
  39. 25b.
    E. Guazzelli and A.-J. Koch: J. Physique 46, 673 (1985).CrossRefGoogle Scholar
  40. 26.
    E. Dubois-Violette and F. Rothen: J. Physique 10, 1039 (1978)Google Scholar
  41. 26a.
    J. Sadik, F. Rothen, W. Bestgen and E. Dubois-Violette: J. Physique 42, 915 (1981)CrossRefGoogle Scholar
  42. 26b.
    A.-J. Koch, F. Rothen, J. Sadik and O. Schöri: J. Physique, 46. 699 (1985).MathSciNetCrossRefGoogle Scholar
  43. 27.
    E. Guazzelli, E. Guyon and J. E. Wesfreid: Phil. Mag. A48, 709 (1983)ADSGoogle Scholar
  44. 27a.
    E. Dubois-Violette, E. Guazzelli and J. Prost: Phil. Mag. A48, 727 (1983).ADSGoogle Scholar
  45. 28.
    E. Guazzelli, G. Dewel, P. Borckmann and D. Walgraef: to be published.Google Scholar
  46. 29.
    R. Williams: J. Chem.Phys, 39, 384 (1963)ADSCrossRefGoogle Scholar
  47. 29a.
    A. P. Kapustin and L. S. Larinova: Kristallografia 9, 297 (1964)Google Scholar
  48. 29b.
    E. F. Carr: Mol. Cryst. Liq. Cryst. 7, 253 (1969).CrossRefGoogle Scholar
  49. 30.
    W. Helfrich: J. Chem. Phys. 51, 4092 (1969)ADSCrossRefGoogle Scholar
  50. 30a.
    E. Dubois-Violette, P. G. de Gennes and O. Parodi: J. Physique 32, 305 (1971)CrossRefGoogle Scholar
  51. 30a.
    S. A. Pikin: Zh. Eksp. Teor. Fiz. 60, 1185 (1971) [English transl.: Sov. Phys.-JETP 33, 641 (1971)]Google Scholar
  52. 30b.
    P. A. Penz and G. W. Ford: Phys. Rev. A6. 414 (1972).ADSGoogle Scholar
  53. 31.
    A. Joets and R. Ribotta: in Cellular Structures in Instabilities, J. E. Wesfreid and S. Zaleski, eds. (Springer, Berlin 1984) p.294CrossRefGoogle Scholar
  54. 31a.
    A. Joets and R. Ribotta: J. Physique 47, 595 (1986)CrossRefGoogle Scholar
  55. 31b.
    R. Ribotta, A. Joets and Lin Lei: Phys. Rev. Lett. 56, 1595 (1986).ADSCrossRefGoogle Scholar
  56. 32.
    W. Zimmermann and L. Kramer: Phys. Rev. Lett. 55, 402 (1985).ADSCrossRefGoogle Scholar
  57. 33.
    E. Bodenschatz, W. Zimmermann and L. Kramer: to be published.Google Scholar
  58. 34.
    R. Ribotta and A. Joets: in Cellular Structures in Instabilities, J. E. Wesfreid and S. Zaleski, eds. (Springer, Berlin, 1984) p.249.CrossRefGoogle Scholar
  59. 35.
    A. Joets, L. Kramer, R. Ribotta, J. Salan and W. Zimmermann: to be published.Google Scholar
  60. 36.
    F. Lonberg and R. B. Meyer: Phys. Rev. Lett. 55, 718 (1985)ADSCrossRefGoogle Scholar
  61. 36a.
    E. Miraldi, C. Oldano and A. Strigazzi: Phys, Rev. A34, 4348 (1986)ADSGoogle Scholar
  62. 36b.
    W. Zimmermann and L. Kramer: Phys. Rev. Lett. 56, 2655 (1986)ADSGoogle Scholar
  63. 36c.
    U. D. Kini: J. Physique 47, 693 (1986)CrossRefGoogle Scholar
  64. 36d.
    U. D. Kini: J. Physique 47, 1829 (1986)CrossRefGoogle Scholar
  65. 37.
    Yu. P. Bobylev and S. A. Pikin: Zh. Eksp. Teor. Fiz. 72, 369 (1977) [English transl.: Sov. Phys.-JETP 45, 195 (1977)]Google Scholar
  66. 37a.
    Y. P. Bobylev, V. G. Chigrinov and S. A. Pikin: J. Physique Coll. 40, C3–331 (1979)Google Scholar
  67. 37b.
    M. I. Barnik, L. M. Blinov, A. N. Trufanov and B. A. Umanskii: Zh. Eksp. Teor. Fiz 73, 1936 (1977) [English transl.: Sov. Phys.-JETP 46. 1016 (1977)]Google Scholar
  68. 37c.
    M. I. Barnik, L. M. Blinov, A. N. Trufanov and B. A. Umanskii: J. Physique 39. 417 (1978)Google Scholar
  69. 38.
    N. V. Madhusudana, V. A. Raghunathan and K. R. Sumathy: to be published.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • L. Kramer
    • 1
  • E. Bodenschatz
    • 1
  • W. Pesch
    • 1
  • W. Zimmermann
    • 1
  1. 1.Physikalisches Institut der Universität BayreuthBayreuthFed. Rep. of Germany

Personalised recommendations