Production and Inactivation of Catecholamines During Hypoxia and Recovery

  • O. Schwab
  • E. Kastendieck
  • R. Paulick
  • H. Wernze


It is well established that levels of fetal free catecholamines, i.e. norepinephrine (NE), epinephrine (E), and dopamine (DA) rise during hypoxia. High levels of free catecholamines cause a redistribution of fetal cardiac output favoring the brain, the heart, the adrenal glands, and the umbilical circulation (Cohn et al. 1974). Moreover, free catecholamines effect an increase in pulmonary surfactant effux (Lawson et al. 1978) and inhibit fetal pulmonary fluid secretion (Walters and Olver 1978). Finally, free catecholamines play a part in perinatal glucose homeostasis (Sperling et al. 1984). However, little is known about the inactivation of catecholamines. Therefore, in order to investigate the behavior of catecholamines during hypoxia and recovery and to study mechanisms of catecholamine inactivation, we performed experiments with chronically instrumented sheep and measured catecholamines in the cord blood of human newborns. The aim of our study was to answer the following four questions:
  1. 1.

    At what degree of hypoxia do catecholamine levels rise in the sheep fetus?

  2. 2.

    How quickly are free catecholamines inactivated in the sheep fetus at the end of hypoxia?

  3. 3.

    What role does sulfoconjugation of free catecholamines play in catecholamine inactivation in human newborns?

  4. 4.

    What is the role of the human placenta in catecholamine inactivation?



Human Placenta Umbilical Artery Sheep Fetus Oxygen Saturation Level Uterine Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander N, Yoneda S, Vlachakis ND, Maronde RF (1984) Role of conjugation and red blood cells for inactivation of circulating catecholamines. Am J Physiol 247: R203–R207PubMedGoogle Scholar
  2. Castrén O, Saarikoski S (1974) The simultaneous function of catechol-O-methyltransferase and monoamine oxidase in human placenta. Acta Obstet Gynecol Scand 53: 41–47PubMedCrossRefGoogle Scholar
  3. Cohn HE, Sacks EJ, Heymann MA, Rudolph AM (1974) Cardiovascular responses to hypoxemia and acidaemia in fetal lambs. Am J Obstet Gynecol 120: 817–824PubMedGoogle Scholar
  4. Claustre J, Serusclat P, Peyrin L (1983) Glucuronide and sulfate catecholamine conjugates in rat and human plasma. J Neural Transm 56: 265–278PubMedCrossRefGoogle Scholar
  5. Johnson GA, Baker CA, Smith RT (1980) Radioenzymatic assay of sulfate conjugates of catecholamines and dopa in plasma. Life Sci 26:1591–1598PubMedCrossRefGoogle Scholar
  6. Jones CT, Robinson RO (1975) Plasma catecholamines in foetal and adult sheep. J Physiol 248:15–33PubMedGoogle Scholar
  7. Lawson EE, Brown ER, Torday JS, Mandansky DL, Taeusch HW (1978) The effect of epinephrine on tracheal fluid flow and surfactant efflux in fetal sheep. Am Rev Respir Dis 118:1023–1026PubMedGoogle Scholar
  8. Paulick R, Kastendieck E, Weth B, Wernze H (1987) Metabolische, kardiovaskuläre und sympathoadrenal Reaktionen des Feten auf eine progrediente Hypoxie — tierexperimentelle Untersuchungen. Z Geburtshilfe Perinatol 191:130–139PubMedGoogle Scholar
  9. Paulick R, Schwab O, Kastendieck E, Wernze H (1988) Plasma free and sulfoconjugated catecholamines during acute hypoxia in the sheep fetus — relation to cardiovascular parameters. J Perinat Med (in press)Google Scholar
  10. Peuler J, Johnson GA (1977) Simultaneous single isotope radioenzymatic assay of plasma norepinephrine, epinephrine and dopamine. Life Sci 21: 625–636PubMedCrossRefGoogle Scholar
  11. Reilly FD, Russell PT (1977) Neurohistochemical evidence supporting an absence of adrenergic and cholinergic innervation in the human placenta and umbilical cord. Anat Rec 188: 277–285PubMedCrossRefGoogle Scholar
  12. Schwab O, Wernze H, Paulick R, Kastendieck E (1985) Circulating free and sulfate-conjugated catecholamines in the umbilical vessels as related to fetal stress. Acta Endocrinol 108 [Suppl 267]: 60–61Google Scholar
  13. Sperling MA, Ganguli S, Leslie N, Landt K (1984) Fetal perinatal catecholamine secretion: role in perinatal glucose homeostasis. Am J Physiol 247: E69–E74PubMedGoogle Scholar
  14. Tipton KF (1973) Biochemical aspects of monoamine oxidase. Br Med Bull 29:116–119Google Scholar
  15. Vandongen R (1984) The significance of sulfate-conjugated catecholamines in man. Neth J Med 27:129–135PubMedGoogle Scholar
  16. Walters DV, Olver RE (1978) The role of catecholamines in lung liquid absorption at birth. Pe-diatr Res 12: 239–242Google Scholar
  17. Wang PC, Buu NT, Kuchel O, Genest J (1983) Conjugation pattern of endogenous plasma catecholamines in human and rat. J Lab Clin Med 101:141–151PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • O. Schwab
    • 1
  • E. Kastendieck
    • 2
  • R. Paulick
    • 2
  • H. Wernze
    • 3
  1. 1.Department of PediatricsUniversity of WürzburgWürzburgGermany
  2. 2.Department of Gynecology and ObstetricsUniversity of WürzburgWürzburgGermany
  3. 3.Department of Internal MedicineUniversity of WürzburgWürzburgGermany

Personalised recommendations