Biological Timekeeping During Pregnancy and the Role of Circadian Rhythms in Parturition

  • L. D. Longo
  • S. M. Yellon


A considerable body of evidence suggests that both the hour of onset of labor and the hour of birth in humans, as well as many animal species, is related to time of day. In humans, over 30 studies have demonstrated such a relationship, with the peak hours of onset of labor and of birth between 2300 and 0400 hours. In day-active animals a similar pattern exists, while in night-active species the reverse holds. Underlying the 24-h periodicity in onset of labor and birth time may be a rhythm in uterine myometrial activity. In rhesus macaques, uterine contractions show a 24-h rhythmicity with peak activity between 2300 and 0300 hours. The mechanism responsible for daily rhythms in uterine activity is proposed to reflect 24-h patterns of endocrine secretion. Several hormones in maternal and fetal circulation, including melatonin, Cortisol (mother only), dehydroepiandrosterone (fetus only), and progesterone, have also been shown to demonstrate 24-h rhythms, although not all these hormones have been studied in any one species. Evidence in sheep demonstrates that the circadian melatonin pattern mediates the effect of photoperiod and controls the neuroendocrine system regulating reproduction. Extending this concept to the mechanism timing parturition, we raise the possibility that the 24-h melatonin pattern conveys information about photoperiod and synchronizes various maternal and fetal endocrine rhythms to the light-dark cycle. We hypothesize that the temporal coordination of these endocrine and uterine rhythms with environmental photoperiod plays a key role in the initiation of parturition.


Pineal Gland Clock Time Circadian System Daily Rhythm Fetal Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aladjem S (ed) (1980) Obstetrical practice. Mosby, St. LouisGoogle Scholar
  2. Bane A (1961) Förlossningen hos sto och des förebud. Medlemsbl Sveriges Vet Forb 10: 253–261Google Scholar
  3. Berlinski (1848) Dissertatio de nascentium morientiumque numero. RostockGoogle Scholar
  4. Boháč V (1938) Tydenní rythmus porodû. Stat Obzor 17–18Google Scholar
  5. Bosc MJ, Nicolle A (1979) Effect of stress on the course of labor and parturition time in normal or adrenalectomized rats. Ann Biol Anim Bioch Biophys 19: 31–44CrossRefGoogle Scholar
  6. Bosc MJ, Nicolle A (1980) Influence of photoperiod on the time of parturition in the rat. I. Effect of the length of daily illumination on normal or adrenalectomized animals. Re-prod Nutr Develop 20: 735–745CrossRefGoogle Scholar
  7. Bowden D, Winter P, Ploog D (1967) Pregnancy and delivery behavior in the squirrel monkey (Saimiri sciureus) and other primates. Folia Primatol (Basel) 5:1–42CrossRefGoogle Scholar
  8. Browne T (circa 1672) A letter to a friend upon occasion of the death of his intimate friend. In: Keynes G (ed) The Works of Sir Thomas Browne, vol 1. Faber and Gwyer, London, p169Google Scholar
  9. Calhoun RA, Harvey VK, Jr, Holwager KE (1959) An analysis of 1957 Indiana births by time of day and day of week. J Indiana State Med Assoc 52:1992–1996PubMedGoogle Scholar
  10. Catalá S, Deis RP (1973) Effect of oestrogen upon parturition, maternal behaviour and lactation in ovariectomized pregnant rats. J Endocrinol 56: 219–225PubMedCrossRefGoogle Scholar
  11. Challis JRG, Socol M, Murata Y, Manning FA, Martin CB Jr (1980) Diurnal variations in maternal and fetal steroids in pregnant rhesus monkeys. Endocrinology 106:1283–1288PubMedGoogle Scholar
  12. Charles E (1953) The hour of birth. A study of the distribution of times of onset of labour and of delivery throughout the 24-hour period. Br J Prev Soc Med 7: 43–59PubMedGoogle Scholar
  13. Christen A (1968) Haltung und Brutbiologie von Cebuella. Folia Primatol (Basel) 8: 41–49CrossRefGoogle Scholar
  14. Danz CF, Fuchs CF (1848) Physisch-medicinische Topographie des Kreises Schmalkalden. Gesellschaft zur Beförderung der gesamten Naturwissenschaften zu Marburg 6: 205–206Google Scholar
  15. Deakin A, Fraser EB (1935) Fecundity and nursing capacity of large Yorkshire sows. Sci Agriculture 15: 458–462Google Scholar
  16. DePorte JV (1932) The prevalent hour of stillbirth. Am J Obstet Gynecol 23: 31–37Google Scholar
  17. Downing SJ, Sherwood OD (1985) The physiological role of relaxin in the pregnant rat. I. The influence of relaxin on parturition. Endocrinology 116:1200–1205PubMedCrossRefGoogle Scholar
  18. Doyle GA, Pelletied A, Bekker T (1967) Courtship, mating and parturition in the lesser bush-baby (Galago senegalensis moholi) under semi-natural conditions. Folia Primatol (Basel) 7: 169–197CrossRefGoogle Scholar
  19. Ducsay CA, Cook MJ, Walsh SW, Novy MJ (1983) Circadian patterns and dexamethasone-induced changes in uterine activity in pregnant rhesus monkeys. Am J Obstet Gynecol 45: 389–396Google Scholar
  20. Dukes M, Chester R, Atkinson P (1974) Effect of oestradiol and prostaglandin F2a on the timing of parturition in the rat. J Reprod Fertil 38: 325–334PubMedCrossRefGoogle Scholar
  21. Erhardt CL, Nelson FG, McMahon M (1967) Hour of birth. NY State J Med 67: 421–423Google Scholar
  22. Gauquelin M (1967) Note sur le rythme journalier du début des douleurs de l’accouchement. Gynecol Obstet (Paris) 66: 229–236Google Scholar
  23. Goldman BD, Darrow JM (1983) The pineal gland and mammalian photo-periodism. Neuro-endocrinology 37: 389–396Google Scholar
  24. Gordon WL, Sherwood OD (1982) Evidence that luteinizing hormone from the maternal pituitary gland may promote antepartum release of relaxin, luteolysis, and birth in rats. Endocrinology 111: 1299–1310PubMedCrossRefGoogle Scholar
  25. Guthmann H, Bienhüls M (1936) Wehenbeginn, Geburtsstunde und Tageszeit. Monatsschr Geburts Gynäkol 103: 337–348Google Scholar
  26. Harbert GM, JR, Spisso KR (1980) Biorhythms of the primate uterus (Macaca m ulatta) during labor and delivery. Am J Obstet Gynecol 138: 686–696PubMedGoogle Scholar
  27. Harbert GM, Jr, Spisso KR (1981) Effect of adrenergic blockade on dynamics of the pregnant primate uterus (Macaca mulatta). Am J Obstet Gynecol 139: 767–780PubMedGoogle Scholar
  28. Hartman CG, Tinklepaugh OL (1932) Weitere Beobachtungen über die Geburt beim Affen Macacus rhesus. Arch Gynaekol 149: 21–37CrossRefGoogle Scholar
  29. Henry J-R (1932) Sur les heures de début du travail et de l’accouchement. Marseille Med 1: 203–205Google Scholar
  30. Hill AB (1937) Principles of medical statistics. Lancet, London, pp 90–91Google Scholar
  31. Hopf S (1967) Notes on pregnancy, delivery, and infant survival in captive squirrel monkeys. Primates 8: 323–332CrossRefGoogle Scholar
  32. Horn J (1910) Naar i døgnet begynder og naar afsluttes den spontane fødsel? Norsk Mag Laegevidenskab 8: 630–631Google Scholar
  33. Hosemann H (1946) Über die Dauer der Geburt. Klin Wochenschr 71:181–184Google Scholar
  34. Jenny E (1933) Tagesperiodische Einflüsse auf Geburt und Tod. Schweiz Med Wochenschr 63:15–17Google Scholar
  35. Jensen GD, Bobbitt RA (1967) Changing parturition time in monkeys (Macaca nemestrina) from night to day. Lab Anim Care 17: 379–381PubMedGoogle Scholar
  36. Jolly A (1972) Hour of birth in primates and man. Folia Primatol (Basel) 18:108–121CrossRefGoogle Scholar
  37. Kaiser F, Maurath J (1949) Kreislauf dynamische 24-Stunden-Rhythmik beim Menschen. Klin Wochenschr 27: 659–662CrossRefGoogle Scholar
  38. Kaiser IH (1961) Circadian aspects of birth and development. In: Circadian systems. Report of the 39th Ross Conference on Pediatric Research. Ross Laboratories. Columbus, Ohio, pp 33–34Google Scholar
  39. Kaiser IH, Halberg F (1962) Circadian periodic aspects of birth. Ann NY Acad Sci 98: 1056–1068CrossRefGoogle Scholar
  40. Kennaway DJ, Matthews CD, Seamark RF, Phillipou G, Schilthuis M (1977) On the presence of melatonin in the plasma of foetal sheep. J Steroid Biochem 8: 559–563PubMedCrossRefGoogle Scholar
  41. King PD (1956) Increased frequency of births in the morning hours. Science 123: 985–986PubMedCrossRefGoogle Scholar
  42. King PD (1960) Distortion of the birth frequency curve. Am J Obstet Gynecol 79: 399–400PubMedGoogle Scholar
  43. Kirchhoff H (1935) Unterliegt der Wehenbeginn kosmischen Einflüssen? Zentralbl Gynaekol 59:134–144Google Scholar
  44. Kirschsofer R (1960) Einige Verhaltensbeobachtungen an einem Guereza-Jungen Colobus polykomos kikuyensis unter besonderer Berücksichtigung des Spiels. Z Tierpsychol 17: 506–514CrossRefGoogle Scholar
  45. Knapp CB (1909) The hour of birth. Bull Lying - In Hosp City New York 6: 69–74Google Scholar
  46. Kuehn RE, Jensen GD, Morrill RK (1965) Breeding Macaca nemestrina: a program of birth engineering. Folia Primatol (Basel) 3: 251–262CrossRefGoogle Scholar
  47. Liggins GC (1979) Initiation of parturition. Br Med Bull 35:145–150PubMedGoogle Scholar
  48. Lincoln DW, Porter DG (1976) Timing of the photoperiod and the hour of birth in rats. Nature 260: 780–781PubMedCrossRefGoogle Scholar
  49. Lindahl IL (1964) Time of parturition in ewes. Anim Behav 12: 231–234CrossRefGoogle Scholar
  50. Lorenz R, Heinemann H (1967) Beiträge zur Morphologie und körperlichen Jugendentwicklung des Spring-tamarin Callimico geldii. Folia Primatol (Basel) 6:1–27CrossRefGoogle Scholar
  51. Lucas NS, Hume EM, Smith HH (1937) The breeding of the common marmoset in captivity. Proc Zool Soc Lond 107: 205–211Google Scholar
  52. Lynch FW (1907) Hour of birth. A discussion as to the hour at which birth most often occurs. Surg Gynecol Obstet 5: 677–680Google Scholar
  53. Málek J (1952) The manifestation of biological rhythms in delivery. Gynaecologia (Basel) 133: 365–372Google Scholar
  54. Málek J (1954) Der Einfluß des Lichtes und der Dunkelheit auf den klinischen Geburtsbeginn. Gynaecologia (Basel) 138:401–405Google Scholar
  55. Málek J, Šebasta J (1949) Vliv některých faktorů na denní rytmus klinického začátku porodu. Stat Obzor 29:124–129Google Scholar
  56. Málek J, Budinsky J, Budinska M (1950) Analyse du rhythme journalier du début clinique de l’accouchement. Rev Fr Gynecol Obstet 45: 222–226PubMedGoogle Scholar
  57. Málek J, Maly V, Masák J (1958) Vztah denniho rytmu klinického zacátku porodu k délce porodu. Sb Lek Fak Karlovy Univ 60:13–23Google Scholar
  58. Málek J, Gleich J, Maly V (1962) Characteristics of the daily rhythm of menstruation and labor. NY Acad Sci 98:1042–1055CrossRefGoogle Scholar
  59. Merton H (1937) Studies on reproduction in the albino mouse. I. The period of gestation and the time of parturition. R Soc Edinburgh Proc 58: 80–97Google Scholar
  60. Mitchell JA, Yochim JM (1970) Influence of environmental lighting on duration of pregnancy in the rat. Endocrinology 87: 472–480PubMedCrossRefGoogle Scholar
  61. Moller M, Mollgard K, Kimble JE (1975) Presence of pineal nerve in sheep and rabbit fetuses. Cell Tissue Res 158: 451–459PubMedCrossRefGoogle Scholar
  62. Moore RY (1978) The innervation of the mammalian pineal gland. Prog Brain Res 4: 1–29Google Scholar
  63. Murakami N, Abe T, Yokoyama M, Katsume A, Kuroda H, Etoh T (1987) Effect of photoperiod, injection of pentobarbitone sodium or lesion of the suprachiasmatic nucleus on pre-partum decrease of blood progesterone concentrations of time of birth in the rat. J Reprod Fértil 79: 325–333PubMedCrossRefGoogle Scholar
  64. Orban VG, Czeizel E (1967) Der Tagesrhythmus der Geburten. Gynaecologia (Basel) 163: 173–178Google Scholar
  65. Petter-Rousseaux A (1964) Reproductive physiology and behavior of the Lemuroidea. In: Buettner-Janusch (ed) Evolutionary and genetic biology of the primates, vol 2. Academic, New York, pp 91–132Google Scholar
  66. Plaut SM, Grota LJ, Ader R, Graham CW III (1970) Effects of handling and the light-dark cycle on time of parturition in the rat. Lab Anim Care 20: 447–453PubMedGoogle Scholar
  67. Points TC (1956a) Twenty-four hours in a day. Obstet Gynecol 8: 245–248PubMedGoogle Scholar
  68. Points TC (1956b) Day after day. Obstet Gynecol 8: 748–752PubMedGoogle Scholar
  69. Porter DG (1972) The light regimen and gestation length in the mouse. J Reprod Fértil 28: 9–14PubMedCrossRefGoogle Scholar
  70. Pritchard JA, MacDonald PC, Gant NF (1985) Williams obstetrics. Appleton-Century-Crofts, Norwalk, ConnGoogle Scholar
  71. Reid DE, Ryan KJ, Benirschke K (1972) Principles and management of human reproduction. Saunders, PhiladelphiaGoogle Scholar
  72. Reppert SM (1983) Time of birth in the rat is gated to the daily light-dark cycle by a circadian mechanism. Pediatr Res 17:154 AGoogle Scholar
  73. Reppert SM (1985) Maternal entrainment of the developing circadian system. Ann NY Acad Sci 453:162–169PubMedCrossRefGoogle Scholar
  74. Reppert SM, Henshaw D, Schwartz WJ, Weaver DR (1987) The circadian-gated timing of birth in rats: disruption by maternal SCN lesions or by removal of the fetal brain. Brain Res 403:398–402PubMedCrossRefGoogle Scholar
  75. Reppert SM, Schwartz WJ (1983) Maternal coordination of the fetal biological clock in utero. Science 220: 969–971PubMedCrossRefGoogle Scholar
  76. Richter J (1933) Die geburtshilflich-gynäkologische Tierklinik der Universität Leipzig in den Jahren 1927–1931. Berl Tierarztl Wochenschr 33: 517–521Google Scholar
  77. Rippmann ET (1964) Die zeitliche Verteilung von 10000 Geburten auf die 24-Stunden des Tages. Gynaecologia (Basel) 158: 31–34Google Scholar
  78. Rossdale PD, Short RV (1967) The time of foaling of thoroughbred mares. J Reprod Fértil 13: 341–343PubMedCrossRefGoogle Scholar
  79. Schlegel VL, Stembera ZK, Porkorny J (1966) Tagesrhythmus der Wehentätigkeit unter der Geburt. Gynaecologia (Basel) 162:185–196Google Scholar
  80. Serón-Ferré M, Taylor NF, Rotten D, Koritnik DR, Jaffe RB (1983) Changes in fetal rhesus monkey plasma dehydroepiandrosterone sulfate: relationship to gestational age, adrenal weight and preterm delivery. J Clin Endocrinol Metab 57:1173–1178PubMedCrossRefGoogle Scholar
  81. Sherwood OD, Downing SJ, Golos TG, Gordon WL, Tarbeil MK (1983) Influence of light-dark cycle on antepartum serum relaxin and progesterone immunoreactivity levels and on birth in the rat. Endocrinology 113: 997–1003PubMedCrossRefGoogle Scholar
  82. Sherwood OD, Downing SJ, Rieber AJ, Fraley SW, Bohrer RE, Richardson BC, Shanks RD (1985) Influence of litter size on antepartum serum relaxin and progesterone immunoreactivity levels and on birth in the rat. Endocrinology 116: 2554–2562PubMedCrossRefGoogle Scholar
  83. Shettles LB (1960) Hourly variation in onset of labor and rupture of membranes. Am J Obstet Gynecol 79:177–179PubMedGoogle Scholar
  84. Simpson AS (1952) Are more babies born at night? Br Med J 2: 831CrossRefGoogle Scholar
  85. Spiegelberg O (1868) Bericht über die Leistungen der gynäkologischen Klinik und Poliklinik and der Universität zu Breslau in den Studienjahren vom October 1865 bis ebendahin 1967. Monatsschr Geburtskd Frauenkr 32: 267–307Google Scholar
  86. Spiller V (1940) An inquiry into the hour of birth. Br Med J 1: 435PubMedCrossRefGoogle Scholar
  87. Strauss JF, III, Sokoloski J, Caploe P, Duffy P, Mintz G, Stambaugh RL (1975) On the role of prostaglandins in parturition in the rat. Endocrinology 96:1040–1045PubMedCrossRefGoogle Scholar
  88. Sugiyama Y (1965) Behavioral development and social structure in two troops of Hanuman langurs (Presbytis entellus). Primates 6: 213–247CrossRefGoogle Scholar
  89. Svorad D, Šáchová V (1959) Periodicity of the commencement of birth in mice and the influence of light. Physiol Bohemoslov 8: 439–442Google Scholar
  90. Takeshita H (1961–1962) On the delivery behavior of squirrel monkeys (Saimiri sciurea) and a mona monkey (Cercopithecus mona). Primates 3: 59–72CrossRefGoogle Scholar
  91. Tamby Raja RL, Hobel CJ (1983) Characterization of 24-h uterine activity in the second half of the human pregnancy. Proceedings of the 30th Annual Meeting of the Society for Gynecologic Investigation 17–20 March 1983, Washington, DC, p 280Google Scholar
  92. Taylor NF, Martin MC, Nathanielsz PW, Serón-Ferré M (1983) The fetus determines circadian oscillation of myometrial electromyographic activity in the pregnant rhesus monkey. Am J Obstet Gynecol 146: 557–567PubMedGoogle Scholar
  93. Thorburn GD, Challis JRG (1979) Endocrine control of parturition. Physiol Rev 59: 863–918PubMedGoogle Scholar
  94. Viet G (1855) Beiträge zur geburtshülflichen Statistik. Monatsschr Geburtskd S: 344–381Google Scholar
  95. Wallace LR (1949) Parturition in ewes and lamb mortality. Sheepfarming Annual. Massey Agricultural College, Palmerston North, New Zealand, pp 5–24Google Scholar
  96. Walsh SW, Ducsay CA, Novy MJ (1984) Circadian hormonal interactions among the mother, fetus and amniotic fluid. Am J Obstet Gynecol 150: 745–753PubMedGoogle Scholar
  97. White CS (1905) The relation of conception and birth to season and hour. Am J Obstet 52: 527–532Google Scholar
  98. Williams JW (1922) Obstetrics. A textbook for the use of students and practitioners, 4th edn. Appleton, New York, p 251Google Scholar
  99. Wurster K (1949) Untersuchung zur Frage tagesperiodischer, lunarer und meteorobiologischer Einflüsse auf den Wehenbeginn. Zentralbl Gynäkol 2:159–168Google Scholar
  100. Yellon SM, Foster DL (1986) Development of the pineal melatonin rhythm and its role in normal and delayed puberty in the female lamb. In: Gupta D, Reiter RJ (eds) The pineal gland during development: from fetus to adult. Croom Helm, London, pp 153–165Google Scholar
  101. Yellon SM, Longo LD (1987) Melatonin rhythms in fetal and maternal circulation during pregnancy in the sheep. Am J Physiol 252: E 799–E 802Google Scholar
  102. Yerganian G (1958) The striped-back or Chinese hamster, Cricetulus griseus. J Natl Cancer In-stit 20: 705–721Google Scholar
  103. Yerushalmy J (1938) Hour of birth and stillbirth and neonatal mortality rates. Child Dev 9: 373–378CrossRefGoogle Scholar
  104. Zwoliński J, Siudiński S (1965) Dobowy rozklad wyźrebienń u klaczy. Med Wet 21: 614–616Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • L. D. Longo
    • 1
  • S. M. Yellon
  1. 1.Division of Perinatal Biology, Departments of Physiology, Obstetrics and Gynecology, and Pediatrics, School of MedicineLoma Linda UniversityLoma LindaUSA

Personalised recommendations