Modulation Efficiency Limited High Frequency Performance of the MODFET

  • M. C. Foisy
  • J. C. Huang
  • P. J. Tasker
  • L. F. Eastman
Part of the Springer Series in Electronics and Photonics book series (SSEP, volume 24)


Epilayer design for the modulation doped field-effect transistor (MODFET) is frequently performed using the depletion approximation [1,2]. The work of authors such as GRAY and LUNDSTROM [3], STERN and DAS SARMA [4], and PONSE et al. [5] have provided tools by which electron distributions and capacitances can be calculated without this assumption. Their results demonstrate that for two-dimensional electron gas (2DEG) sheet densities significantly below the saturation value, free and bound electrons are present in the electron supplying layer. Because these electrons must be modulated with the 2DEG electrons, the gate capacitance is increased while the transcon- ductance is decreased [6]. The unity current gain frequency, fT, is thus decreased.


Modulation Efficiency Gate Capacitance Sheet Density Charge Control Carrier Heating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Lee, M.S. Shur, T.J. Drummond, H. Morkoç: IEEE Trans. ED-30, 207–212 (1983)Google Scholar
  2. 2.
    K. Lee, M.S. Shur, T.J. Drummond, H. Morkoç: IEEE Trans. ED-31, 29–35(1984)ADSGoogle Scholar
  3. 3.
    J.L. Gray, M.S. Lundstrom: IEEE Trans. ED-32, 2102–2109 (1985)CrossRefGoogle Scholar
  4. 4.
    F. Stern, S. Das Sarma: Phys. Rev. B 30, 840–848 (1984)CrossRefADSGoogle Scholar
  5. 5.
    F. Ponse, W.T. Masselink, and H. Morkoç: IEEE Trans. ED-32, 1017–1023 (1985)CrossRefADSGoogle Scholar
  6. 6.
    M. Moloney, F. Ponse, H. Morkoç: IEEE Trans. ED-32, 1675–1684 (1985)CrossRefADSGoogle Scholar
  7. 7.
    N. Chand, T. Henderson, J. Klem, W.T. Masselink, R. Fischer, Y. Chang, H. Morkoc: Phys. Rev. B 30, 4481–4492 (1984)CrossRefADSGoogle Scholar
  8. 8.
    B. Vinter: Appl. Phys. Lett. 44, 307–309 (1984)CrossRefADSGoogle Scholar
  9. 9.
    T. Yoshida: IEEE Trans. ED-33, 154–156 (1986)CrossRefGoogle Scholar
  10. 10.
    J.C. Huang, M.C. Foisy, P.J. Tasker, S.R. Seidman, G.W. Wicks, L.F. Eastman: (to be submitted for publication)Google Scholar
  11. 11.
    S. Adachi: J. Appl. Phys. 58, R1 - R29 (1985)CrossRefADSGoogle Scholar
  12. 12.
    L.H. Camnitz: Ph.D. Thesis, Cornell University, Ithaca, NY (1986)Google Scholar
  13. 13.
    G. Wang, W.H. Ku: IEEE Trans. ED-33, 657–663 (1986)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. C. Foisy
    • 1
    • 2
  • J. C. Huang
    • 1
    • 2
    • 3
  • P. J. Tasker
    • 1
    • 2
  • L. F. Eastman
    • 1
    • 2
  1. 1.School of Electrical EngineeringCornell UniversityIthacaUSA
  2. 2.National Research and Resource Facility of Submicron StructuresCornell UniversityIthacaUSA
  3. 3.Department of Applied PhysicsCornell UnivesityUSA

Personalised recommendations