Skip to main content

Monte Carlo Simulation of a Double-Beta Decay Experiment with Superconducting-Superheated Tin Granules

  • Conference paper
Low Temperature Detectors for Neutrinos and Dark Matter

Abstract

The double beta process[1] is a rare but very important nuclear decay mode which exists in some tens of even-A nuclei, where the relative position of the energy states of the isobars is abnormal, i.e. the usual β decay (A,Z) → (A, Z ± 1) is energetically forbidden -or very hindered because of selection rules-, leaving the ββ transition (A,Z) → (A, Z ± 2) as the only allowed way of decaying. In the nuclear tables one rrlay find up to 26 cases of ββ parents [2]. Their decay, if the neutrino is a Dirac particle \((v \ne \bar v)\), leads to the daughter nuclei plus two electrons and two antineutrinos in the so called two-neutrino double beta decay (ββ 2v). If the neutrino is a Majorana fermion \((v = \bar v)\) and hence the lepton number L is not conserved, then in addition to that mode the neutrinoless one (ββov) is also possib1e, and in this case the two ejected electrons carry all the energy released in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For recent reviews see for example T. Kotani: Double Beta Decay and Majorana Neutrino. Prog. Theor. Phys. Suppl., No. 83 (1985)

    Google Scholar 

  2. W.C Haxton, G.J. Stephenson Jr.: Double Beta Decay. Progress in Particle and Nucl. Phys. Volume 12, 409 (1984).

    Article  ADS  Google Scholar 

  3. E. Fiorini: La Rivista del Nuovo Cimento 2, 1 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Kirsten, H. Richter and E.K. Jessberger: Z. Phys. C16, 189 (1983).

    ADS  Google Scholar 

  5. W.C. Haxton, G.A. Cowan and M. Goldhaber: Phys. Rev. C28 467 (1983).

    ADS  Google Scholar 

  6. H hoe and D. Lowenthal. Phys. Rev. C22 2186 (1986).

    Google Scholar 

  7. S.R. Elliott, A.A. Hahn, and M.K. Moe: UCI Preprint (FEB 86/, unpublished).

    Google Scholar 

  8. E. Fiorini etal, Phy. Lett. 25B, 602 (1967).

    Article  ADS  Google Scholar 

  9. E. Bellotti, et al, Phys. Lett. 146B. 450 (1984).

    ADS  Google Scholar 

  10. A. F. Pacheco: Mod. Phys. Lett. 1, 167 (1986).

    Article  ADS  Google Scholar 

  11. H. Bernas, J.P. Burger, G. Deutscher, C. Valette, S. Williamson, Phys. Lett. 24A 721 (1987).

    ADS  Google Scholar 

  12. G. Waysand: these proceedings.

    Google Scholar 

  13. A. Molina and P. Pascual: Nuovo Cimento A41, 756 (1977).

    ADS  Google Scholar 

  14. K. Grotz and H.V. Klapdor: Phys. Lett. 142B. 323 (1984).

    ADS  Google Scholar 

  15. W.C. Haxton, G.J. Stephenson and D. Strottman: Phys. Rev. D25, 2360 (1982).

    ADS  Google Scholar 

  16. In a microscopic calculation GROTZ and KLAPDOR [16] obtained T1/2 2v (124Sn) = 9.3 *1019 years.

    Google Scholar 

  17. K. Grotz and H.V. Klapdor: Phys. Lett. 157B. 242 (1985).

    ADS  Google Scholar 

  18. D.O. Caldwell, et al, Phys. Rev. Lett. 54, 281 (1985).

    Article  ADS  Google Scholar 

  19. W. R. Nelson, H. Hirayama, D.W.O. Rogers: SLAC Report 265 (1985).

    Google Scholar 

  20. D.W.O. Rogers: Nucl. Instr. Meth. 227, 535 (1984).

    Article  ADS  Google Scholar 

  21. D.W.O. Rogers, A.F. Bielajew: The use of EGS for Monte Carlo Calculations in Medical Physics. Report PXNR-2692 (1984). National Research Council of Canada.

    Google Scholar 

  22. G. Moliére: Theorie der Streeung schneller geladener Teilchen II. Mehrfach und Vielfachstreuung. Z. Naturforschog 3a, 78 (1948).

    ADS  Google Scholar 

  23. L. González-Mestres, D. Perret-Gallix: New Results on the Basic Properties of Superheated Granules Detectors. LAPP-EXP-86–05, January (1987)

    Google Scholar 

  24. L. González-Mestres: private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andreo, P., Esteve, J.G., Pacheco, A.F. (1987). Monte Carlo Simulation of a Double-Beta Decay Experiment with Superconducting-Superheated Tin Granules. In: Pretzl, K., Schmitz, N., Stodolsky, L. (eds) Low Temperature Detectors for Neutrinos and Dark Matter. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72959-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72959-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72961-4

  • Online ISBN: 978-3-642-72959-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics