Skip to main content

Abstract

Superconductors exhibit many attractive properties for particle detection. Among these, spin sensitivity should be mentioned, as well as low threshold energy (as set by the superconducting energy gap or the critical temperature) and potentially high signal to noise ratio. The purpose of this paper is not to review these numerous applications, but rather to present the hotspot model and define its validity range. This concept leads to a class of superconducting detectors. Predictions on particle-induced switching of Josephson junctions and superconducting strips or wires are obtained from this hotspot model. These results agree well with experimental data from the literature. Finally, the propagating hotspot is suggested as a method for very high resolution particle position detection and imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for Instance K. E. Gray, in Noneauilibrium Superconductivity. Phonons. and Kaoitza Boundaries, ed. by K. E. Gray (Plenum, New York, 1981), Vol. 65, p.p. 131-167.

    Google Scholar 

  2. G. H. Wood and B. L. White, Can. J. Phys. 51 2032 (1973)

    Article  ADS  Google Scholar 

  3. G. H. Wood and B. L. White, Appl. Phys. Lett. 15, 237 (1969)

    Article  ADS  Google Scholar 

  4. D. Twerenbold, Europhys. Lett. 1 209 (1986)

    Article  ADS  Google Scholar 

  5. A. Barone, S. de Stefano, G. Darbo, G. Gallinaro, S. Siri, S. Vitale, and R. Vaglio, Proceeding of the LT-15 Conference, ed. U. Eckern, A. Schmid, W. Weber, H. Wühl (Elsevier Science Pub., B. V. 1984)

    Google Scholar 

  6. M. Tinkham. Introduction to Superconductivity (ed. McGraw Hill, New York, 1975)

    Google Scholar 

  7. A. Barone, S. de Stefano, and K. E. Gray, Nucl. Instr. and Meth. A235, 254 (1985)

    ADS  Google Scholar 

  8. R. Magno, M. Nisenoff, P. Shelby, A. B. Campbell and J. Kidd, IEEE Trans. Nucl. Sci. NS28. 3994 (1981)

    Article  ADS  Google Scholar 

  9. R. Magno, R. Shelby, M. Nisenoff, A. B. Campbell, and J. Kidd, IEEE Trans. Mag. MAG 19. 1286 (1983)

    Article  ADS  Google Scholar 

  10. A. Barone, and S. de Stefano, Nucl. Instr. and Meth. 202, 513 (1982)

    Article  Google Scholar 

  11. H. A. Kramers, Physica 1 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  12. P. A. Lee, J. Appl. Phys. 42, 325 (1971)

    Article  ADS  Google Scholar 

  13. T. A. Fulton and L. N. Dunkleberger, Phys. Rev. B9, 4760 (1974)

    ADS  Google Scholar 

  14. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. H. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett 58, 908 (1987)

    Article  ADS  Google Scholar 

  15. K. W. Shepard, W. Y. Lai, and J. E. Mercereau, J. Appl. Phys. 46, 4664 (1975)

    Article  ADS  Google Scholar 

  16. D. E. Spiel, R. W. Broom, and E. C. Crittenden, Appl. Phys. Lett 7, 292 (1965)

    Article  ADS  Google Scholar 

  17. R. F. Broom and E. H. Rhoderick, Br. J. Appl. Phys. 11, 292 (1960)

    Article  ADS  Google Scholar 

  18. D. E. Spiel, R. W. Broom, and E. C. Crittenden, Bull. Am. Phys. Soc. 9, 655 (1964)

    Google Scholar 

  19. K. E. Gray, R. T. Kampwirth, J. F. Zasadzinski, and S. P. Ducharme, J. Phys. F: Met. Phys. 13, 405 (1983).

    Article  ADS  Google Scholar 

  20. M. Morgue and A. Gabriel, Rev. Sci. Instr. 55, 1000 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liengme, O. (1987). VLSI Superconducting Particle Detectors. In: Pretzl, K., Schmitz, N., Stodolsky, L. (eds) Low Temperature Detectors for Neutrinos and Dark Matter. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72959-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72959-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72961-4

  • Online ISBN: 978-3-642-72959-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics