Advertisement

Coherent Neutrino-Nucleus Elastic Scattering in Ultralow-Temperature Calorimetric Detectors

  • T. O. Niinikoski
  • A. Rijllart

Abstract

We speculate on the measurement of the coherent forward peak in the neutrino-nucleus elastic scattering, using ultralow-temperature calorimetric techniques for the determination of the recoil energies down to below 1 keV. The detector would consist of an array of relatively large single crystal calorimeters made of various elements and compounds, cooled to below 100 mK temperature. The detector should be surrounded by veto track detectors for the elimination of the background events due to cosmic rays and neutrons and charged beam particles. The coherent event rate for some existing or projected neutrino beams and sources is calculated for a Ge detector.

Keywords

Neutral Current Recoil Energy Neutrino Beam Charged Beam Particle Quasielastic Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.Z. Freedman, D.N. Schramm and D.L. Tubbs, Ann. Rev. Nucl. Sci. 27, 167 (1977).ADSCrossRefGoogle Scholar
  2. 2.
    T.O. Niinikoski and F. Udo, NP Internal Report 74–6, 1974Google Scholar
  3. 3.
    T.O. Niinikoski, Cosmic-ray disturbances in thermometry and refrigeration, in Liquid and Solid Helium, Halsted (New York 1975) pp. 145–147.Google Scholar
  4. 4.
    S.H. Moseley, J.C. Mather and D. McCammon, J. Appl. Phys. 56, 1257 (1984)ADSCrossRefGoogle Scholar
  5. 4a.
    D. McCammon, S.H. Moseley, J.C. Mather and R.F. Mushotzky, J. Appl. Phys. 56, 1263 (1984).ADSCrossRefGoogle Scholar
  6. 5.
    E. Fiorini and T.O. Niinikoski, Nucl. Inst. Meth. 224, 83 (1984).CrossRefGoogle Scholar
  7. 6.
    T.O. Niinikoski et al., Europhys. Lett. 1, 499 (1986).ADSCrossRefGoogle Scholar
  8. 7.
    A. Alessandrello et al., Proc. Pisa Conference on New Particle Detectors, 1986 (to be published)Google Scholar
  9. 8.
    D. McCammon, M. Juda, J. Zhang, R.L. Kelley, S.H. Moseley and A.E. Szymkowiak, Proc. IEEE Nuclear Science Symposium, San Francisco 1985 (IEEE Trans. Nucl. Sci., to appear).Google Scholar
  10. 9.
    D.Z. Freedman, Phys. Rev. D9, 1389 (1974).ADSGoogle Scholar
  11. 10.
    J. Bemabeu, CERN Report TH.2073-CERN, 8 September 1975.Google Scholar
  12. 11.
    G.J. Gounaris and J.D. Vergados, Neutrino-Nucleus Reactions and the Structure of Neutral Currents, Univ. loannina Report (1977).Google Scholar
  13. 12.
    R. Herman and R. Hofstadter, High-Energy Electron Scattering Tables, Stanford Univ. Press (Stanford 1960).Google Scholar
  14. 13.
    A. Drukier and L. Stodolsky, Phys. Rev. D30, 2295 (1984).ADSGoogle Scholar
  15. 14.
    T.O. Niinikoski and A. Rijllart, Data acquisition and analysis of calorimetric signals, in these Proceedings.Google Scholar
  16. 15.
    V. Zacek, Private communication.Google Scholar
  17. 16.
    P. Fayet, Proc. XVII Rencontre de Moriond, Les Arcs 1982, Ed. J. Tran Thanh Van (Editions Frontieres, Gif-sur- Yvette 1982) Vol.1 p. 483.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • T. O. Niinikoski
    • 1
  • A. Rijllart
    • 1
  1. 1.CERNGeneva 23Switzerland

Personalised recommendations