Skip to main content

The Possible Impact of Thermal Detectors in Nuclear and Subnuclear Physics

  • Conference paper
Low Temperature Detectors for Neutrinos and Dark Matter

Abstract

Historically the first use of a calorimeter in nuclear physics dates to 190: when P. Curie and A. Laborde [1] used a calorimeter to reveal the energy produced by radioactivity. Another great contribution of calorimetry to fundamental physics was the experimental discovery that some energy was missing in beta decay of 220Bi [2]. This fact was interpreted by W. Pauli in his famous letter of Dec. 4–1930 as due to the emission of a neutral particle later named neutrino by Enrico Fermi. In this brief and admittedly incomplete review I will summarize the present experimental status of a few problems in subnuclear physics where the “thermal approach” can lead to important and possibly unexpected results. I will limit myself to bolometers [3] which have been proved recently [4–8] to perform at low temperature as good and sometimes even fast [8] single-particle detectors. Many developments and plans on the “bolometric” and on the equally important “junction” approach have been presented at this conference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Curie and A. Laborde: Compt. Rend. 136, 673 (1903).

    Google Scholar 

  2. CD. Ellis and A. Wooster: Proc. Roy. Soc. (London) A117, 109 (1927).

    ADS  Google Scholar 

  3. I adopt here for bolometer the standard definition in elementary physics, namely: a thermometer, acting as microcalorimeter, such to measure very small changes of temperature due to absorption of energy.

    Google Scholar 

  4. D. McCammon et al.: I.E.E.E. in Nucl.Sci. 33, 236 (1986), also for previous references.

    ADS  Google Scholar 

  5. N. Coron et al.: Nature 314, 75 (1985).

    Article  ADS  Google Scholar 

  6. J.C. Overley et al.: Nucl. Instr. and Meth. B 10/11, 928 (1985).

    Article  ADS  Google Scholar 

  7. C. Boragno et al.: Cryogenics, 24, 681 (1984).

    Article  Google Scholar 

  8. A. Alessandrello et al.: Heat capacity of low - temperature Ge- and Si-calorimeters and optimization of As-implanted silicon thermistors, Nucl. Instr. and Meth. (in press);

    Google Scholar 

  9. T.O. Niinikoski et al. (CERN-Milano Coll.) Europhys. Lett. 1, 499 (1986).

    ADS  Google Scholar 

  10. E. Fiorini: Experimental perspectives in low-energy lepton physics, in Nuclear Beta- Decays and Neutrino, ed. by T. Kotani, H. Ejiri and E. Takasugi, p.11 (1986) (Introductory review).

    Google Scholar 

  11. W.C. Haxton and G.J. Stephenson Jr: Prpgr. in Part, and Nucl. Phys. 12, 409 (1984)

    Article  ADS  Google Scholar 

  12. M. Doi, T. Kotanl and E. Takasugi: Prog, of Theor. Phys. Suppl. No. 83, 1985.

    Google Scholar 

  13. G.F. Dell'Antonio and E. Fiorini: Suppl. Nuovo Cim. 17, 132 (1960).

    Article  Google Scholar 

  14. D. Caldwell: Review of double beta decay results with 76 Ge - Neutrino '86, ed.by. T. Kitagaki and H. Huta, p. 77, 1986.

    Google Scholar 

  15. E. Fiorini and T.O. Niinikoski: Nucl. Instr. and Meth. 224, 83 (1984) also for previous references.

    Article  Google Scholar 

  16. B. Cabrera, D. Caldwell, and B. Sadoulet: Low- temperature detectors for neutrino experiments and dark matter searches, preprint.

    Google Scholar 

  17. L.B. Okun and Y.B. Zeldovich: ITEP Report No. 79, 1978; L.B. Okun: Lepton and Quarks, ed. by North Holland, Amsterdam (1982), p. 181.

    Google Scholar 

  18. E. Segre': Nuclei and Particles, ed. A. Benjamin, New York.

    Google Scholar 

  19. F.T. Avignone et al.: Phys. Rev. D34, 97 (1986) also for previous references.

    ADS  Google Scholar 

  20. E. Bellotti et al.: Phys. Lett. 124B, 435 (1983).

    ADS  Google Scholar 

  21. D. McCammon et al.: A New Technique for Neutrino Mass Measurements, preprint.

    Google Scholar 

  22. A. Blasi et al.: Una Nuova Determinazione di Limiti di Massa per 1'Antineutrino, preprint.

    Google Scholar 

  23. Milano Group: Proposal for the Thermal Determination of the Neutrino Mass, preprint.

    Google Scholar 

  24. T. Ohshima: Review of Neutrino Mass Measurement, INS-REp.-598, July 1986, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiorini, E. (1987). The Possible Impact of Thermal Detectors in Nuclear and Subnuclear Physics. In: Pretzl, K., Schmitz, N., Stodolsky, L. (eds) Low Temperature Detectors for Neutrinos and Dark Matter. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72959-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72959-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72961-4

  • Online ISBN: 978-3-642-72959-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics