Advertisement

The Neuropharmacology of Baclofen

  • W. Zieglgänsberger
  • J. R. Howe
  • B. Sutor

Abstract

Gamma-aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the mammalian central nervous system [see: 36, 69, 92, 98]. GABAergic neurons have been identified throughout the central nervous system with histochemical techniques [see: 75]. GABA is, however, of no therapeutical value because the amino acid does not pass the blood-brain barrier in sufficient amounts to affect neuronal excitability [9, 64].

Keywords

Synaptic Transmission GABAB Receptor Excitatory Synaptic Transmission Neocortical Neuron Pocampal Slice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashby P, White DG (1973) “Presynaptic” inhibition in spasticity and the effect of β(4-chlorophenyl)-GABA. J Neurol Sci 20: 329–338PubMedCrossRefGoogle Scholar
  2. 2.
    Auden N, Wachtel H (1977) Biochemical effects of baclofen (β-parachlorophenyl-GABA) on the dopamine and the noradrenaline in the rat brain. Acta Pharmacol Toxicol (Copenh) 40:310–320Google Scholar
  3. 3.
    Ault B, Evans RH (1978) Central depressant action of baclofen. J Physiol (Lond) 284:131PGoogle Scholar
  4. 4.
    Ault B, Evans RH (1981) The depressant action of baclofen on the isolated spinal cord of the neonatal rat. Eur J Pharmacol 71:357–364PubMedCrossRefGoogle Scholar
  5. 5.
    Ault B, Nadler JV (1982) Baclofen selectively inhibits transmission at synapses made by axons of CA3 pyramidal cells in the hippocampal slice. J Pharmacol Exp Ther 223:291–297PubMedGoogle Scholar
  6. 6.
    Ault B, Nadler JV (1983) Anticonvulsant-like actions of baclofen in the rat hippocampal slice. Br J Pharmacol 78:701–708PubMedGoogle Scholar
  7. 7.
    Ault B, Nadler JV (1983) Effect of baclofen on synaptically-induced cell firing in the rat hippocampal slice. Br J Pharmacol 80:211–219PubMedGoogle Scholar
  8. 8.
    Barry SR (1984) Baclofen has a presynaptic action at the crayfish neuromuscular junction. Brain Res 311:152–156PubMedCrossRefGoogle Scholar
  9. 9.
    Bein HJ (1972) Pharmakologische Differenzierung von Muskelrelaxantien. In: Birkmayer W (ed) Aspekte der Muskelspastik. Huber, Wien, pp 76–82Google Scholar
  10. 10.
    Ben-Ari V, Krnjevic K, Reiffenstein RJ, Reinhardt W (1981) Inhibition conductance changes and action of γ-aminobutyrate in rat hippocampus. Neuroscience 6:2445–2463PubMedCrossRefGoogle Scholar
  11. 11.
    Benecke R, Meyer-Lohmann J (1974) Effects of an antispastic drug β-(4-chlorophenyl)-gamma-aminobutyric acid on Renshaw cell activity. Neuropharmacology 13:1067–1075PubMedCrossRefGoogle Scholar
  12. 12.
    Bianchine JR (1985) Drugs for Parkinson’s disease, spasticity, and acute muscle spasms. In: Goodman, Gilman (eds) The Pharmacological Basis of Therapeutics. Macmillan, London Basingstoke, pp 473–490Google Scholar
  13. 13.
    Birkmayer RW (1972) Spasticity — a topical survey. Huber, WienGoogle Scholar
  14. 14.
    Blaxter TJ, Carlen PL (1985) Pre-and postsynaptic effects of baclofen in the rat hippocampal slice. Brain Res 341:195–199PubMedCrossRefGoogle Scholar
  15. 15.
    Bowery NG, Hill DR, Hudson AL, Doble AL, Middlemiss A, Shaw J, Turnbull M (1980) (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283:92–94PubMedCrossRefGoogle Scholar
  16. 16.
    Bowery NG, Doble A, Hill DR, Hudson AL, Shaw JS, Turnbull MJ, Warrington R (1981) Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur J Pharmacol 71:53–70PubMedCrossRefGoogle Scholar
  17. 17.
    Bowery NG (1982) Baclofen: 10 years on. Trends in Pharmacological Science 3:400–403CrossRefGoogle Scholar
  18. 18.
    Bowery NG, Hill DR, Hudson AL (1983) Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes. Br J Pharmacol 73:191–206Google Scholar
  19. 19.
    Bowery NG, Prive GW, Turnbull MJ, Wilkin GP (1983) Evidence for the presence of GABAB receptors on cerebellar Purkinje dendrites. Br J Pharmacol 79:9PGoogle Scholar
  20. 20.
    Brady RJ, Swann JW (1984) Postsynaptic actions of baclofen associated with its antagonism of bicuculline-induced epileptogenesis in hippocampus. Cell Mol Neurobiol 4:403–408PubMedCrossRefGoogle Scholar
  21. 21.
    Cain CR, Simmonds MA (1982) Effects of baclofen on the olfactory cortex slice preparation. Neuropharmacology 21:371–373PubMedCrossRefGoogle Scholar
  22. 22.
    Capek R, Esplin B (1982) Baclofen-induced decrease of excitability of primary afferents and depression of monosynaptic transmission in cat spinal cord. Can J Physiol Pharmacol 60:160–166PubMedCrossRefGoogle Scholar
  23. 23.
    Cherubini E, North RA (1984) Inhibition of calcium spikes and transmitter release by gamma-aminobutyric acid in the guineapig myenteric plexus. Br J Pharmacol 82:101–105PubMedGoogle Scholar
  24. 24.
    Collins GGS, Anson J, Kelly EP (1982) Baclofen: Effects on evoked field potentials and amino acid neurotransmitter release in the rat olfactory cortex slice. Brain Res 238:371–383PubMedCrossRefGoogle Scholar
  25. 25.
    Connors BW, Gutnick MJ, Prince DA (1982) Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48:1302–1320PubMedGoogle Scholar
  26. 26.
    Curtis DR, Duggan AW, Felix D, Johnston GAR, McLennan H (1971) Antagonism between bicuculline and GABA in the cat brain. Brain Res 33:57–73PubMedCrossRefGoogle Scholar
  27. 27.
    Curtis DR, Game CJA, Johnston GAR, McCulloch RM (1974) Central effects of β-(p-chlorophenyl)-gamma-aminobutyric acid. Brain Res 70:158–170CrossRefGoogle Scholar
  28. 28.
    Curtis DR, Lodge D, Bornstein JC, Peet MJ (1981) Selective effects of (-)-baclofen on spinal synaptic transmission in the cat. Exp Brain Res 42:158–170PubMedCrossRefGoogle Scholar
  29. 29.
    Davidoff RA, Sears ES (1974) The effects of Lioresal on synaptic activity in the isolated spinal cord. Neurology 24:957–963PubMedGoogle Scholar
  30. 30.
    Davies J (1981) Selective depression of synaptic excitation in cat spinal neurons by baclofen: an iontophoretic study. Br J Pharmacol 72:373–384PubMedGoogle Scholar
  31. 31.
    Davies J, Dray A (1976) Substance P in the substantia nigra. Brain Res 107:623–627PubMedCrossRefGoogle Scholar
  32. 32.
    Davies J, Watkins JC (1974) The action of β-phenyl-GABA derivatives on neurones of the cerebral cortex. Brain Res 70:501–505PubMedCrossRefGoogle Scholar
  33. 33.
    Desarmenien M, Feltz P, Occhiopinti G, Santangelo F, Schlichter R (1984) Coexistence of GABAA and GABAB receptors on A delta and C primary afferents. Br J Pharmacol 81:327–333PubMedGoogle Scholar
  34. 34.
    Dreifuss JJ, Kelly JS, Krnjevic K (1969) Cortical inhibition and gamma-aminobutyric acid. Exp Brain Res 9:137–154PubMedCrossRefGoogle Scholar
  35. 35.
    Dunlap K (1981) Two types of gamma-aminobutyric acid receptor on embryonic sensory neurons. Br J Pharmacol 74:579–585PubMedGoogle Scholar
  36. 36.
    Enna SJ, Gallagher JP (1983) Biochemical and electrophysiological characteristics of mammalian GABA receptors. Int Rev Neurobiol 2:181–212CrossRefGoogle Scholar
  37. 37.
    Evans RH, Francis AA, Watkins JC (1976) The effects of substance P like peptides on spinal motoneurones in vitro and antagonism by Lioresal. Proc Br Pharmacol Soc C18Google Scholar
  38. 38.
    Evans RH, Watkins JC (1978) Specific antagonism of excitant amino acids in the isolated spinal cord of the neonatal rat. Eur J Pharmacol 50:123–129PubMedCrossRefGoogle Scholar
  39. 39.
    Fagg GE, Foster AC (1983) Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience 9:701–719PubMedCrossRefGoogle Scholar
  40. 40.
    Fillenz M, Fung SC (1983) Effect of GABA on 3(H)noradrenaline release from rat hippocampal synaptosomes. J Physiol (Lond) 339:39–40 PGoogle Scholar
  41. 41.
    Fotherby KJ, Morrish NJ, Ryall RW (1976) Is lioresal (baclofen) an antagonist of substance P? Brain Res 113:210–213PubMedCrossRefGoogle Scholar
  42. 42.
    Fox S, Krnjevic K, Morris ME, Puil E, Werman R (1978) Action of baclofen on mammalian synaptic transmission. Neuroscience 3:495–515PubMedCrossRefGoogle Scholar
  43. 43.
    Fukuda H, Kudo Y, Ono H (1977) Effects of β-(p-chlorophenyl)-GABA (baclofen) on spinal synaptic activity. Eur J Pharmacol 44:17–24PubMedCrossRefGoogle Scholar
  44. 44.
    Gähwiler BH, Maurer R, Wüthrich HJ (1984) Pitrazepin, a novel GABA A antagonist. Neurosci Lett 45:311–316PubMedCrossRefGoogle Scholar
  45. 45.
    Gähwiler BH, Brown DA (1985) GABAB receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc Natl Acad Sci USA 82:1558–1562PubMedCrossRefGoogle Scholar
  46. 46.
    Gehlert DR, Yamamura HI, Wamsley JK (1985) Gamma-aminobutyric acid-B-receptors in the rat brain: Quantitative autoradiographic localization using μ3H°(-)-baclofen. Neurosci Lett 56: 183–188PubMedCrossRefGoogle Scholar
  47. 47.
    Haas HL, Greene RW, Olpe HR (1985) Stereoselectivity of L-baclofen in hippocampal slices of the rat. Neurosci Lett 55:1–4PubMedCrossRefGoogle Scholar
  48. 48.
    Haefely W (1983) Tranquillizers. In: Grahame-Smith DG, Cowen PJ (eds) Psycho-pharmacology I, part 1: Preclinical psycho-pharmacology. Excerpta Medica, Amsterdam Oxford Princeton, Elsevier, Amsterdam, pp 107–151Google Scholar
  49. 49.
    Haefely W, Polc P (1983) Electrophysiological studies on the interaction of anxiolytic drugs with GABAergic mechanisms. In: Malick JB, Enna SJ, Yamamura HI (eds) Anxiolytics: Neurochemical, Behavioral and Clinical Perspecitives. Raven Press, New York, pp 113–145Google Scholar
  50. 50.
    Heinemann U, Hamon B, Konnerth A (1984) GABA and baclofen reduce changes in extracellular free calcium in area CA1 of rat hippocampal slices. Neurosci Lett 47:295–300PubMedCrossRefGoogle Scholar
  51. 51.
    Henry JL, Ben-Ari Y (1976) Actions of the p-chlorophenyl derivative of GABA, lioresal, on nociceptive and non-nociceptive units in the spinal cord of the cat. Brain Res 117:540–544PubMedCrossRefGoogle Scholar
  52. 52.
    Henry JL (1982) Pharmacological studies on the prolonged depressant effects of baclofen on lumbar dorsal horn units in the cat. Neuropharmacology 21:1085–1093PubMedCrossRefGoogle Scholar
  53. 53.
    Henry JL (1982) Effects of intravenously administered enantiomers of baclofen on functionally identified units in lumbar dorsal horn of the spinal cat. Neuropharmacology 21:1073–1083PubMedCrossRefGoogle Scholar
  54. 54.
    Hill DR, Bowery NG (1981) 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290:149–152PubMedCrossRefGoogle Scholar
  55. 55.
    Howe JR, Sutor B, Zieglgänsberger W (1985) The hyperpolarization by baclofen of rat neocortical neurons is probably unrelated to its depression of postsynaptic potentials. Neurosci Lett [Suppl] 22:S386Google Scholar
  56. 56.
    Howe JR, Sutor B, Zieglgänsberger W (1986) Baclofen reduces postsynaptic potentials of rat neocortical neurons by an action other than its hyperpolarizing action. J Physiol (submitted for publication)Google Scholar
  57. 57.
    Howe JR, Sutor B, Zieglgänsberger W (1986) Characteristics of a long-duration inhibitory postsynaptic potential in rat frontal neocortical neurons in vitro. Cell Mol Neurobiol (submitted for publication)Google Scholar
  58. 58.
    Howe JR, Zieglgänsberger W (1986) D-Baclofen does not antagonize the actions of L-baclofen on rat neocortical neurons. Neurosci Lett (submitted for publication)Google Scholar
  59. 59.
    Inoue M, Matsuo T, Ogata N (1985) Baclofen activates voltage-dependent and 4-aminopyridine sensitive K+ conductance in guinea-pig hippocampal pyramidal cells maintained in vitro. Br J Pharmacol 84:833–841PubMedGoogle Scholar
  60. 60.
    Inoue M, Matsuo T, Ogata N (1985) Characterization of pre-and postsynaptic actions of (-)-baclofen in the guinea-pig hippocampus in vitro. Br J Pharmacol 84:843–851PubMedGoogle Scholar
  61. 61.
    Johnston GAR, Hailstone MH, Freeman CG (1980) Baclofen: stereoselective inhibition of excitant amino acid release. J Pharm Pharmacol 32:230PubMedCrossRefGoogle Scholar
  62. 62.
    Karbon EW, Duman R, Enna SJ (1983) Biochemical identification of multiple GABAB binding sites: association with noradrenergic terminals in rat forebrain. Brain Res 274:393–396PubMedCrossRefGoogle Scholar
  63. 63.
    Kato M, Waldmann U, Murakami S (1978) Effects of baclofen on spinal neurones of cats. Neuropharmacology 17:827–833PubMedCrossRefGoogle Scholar
  64. 64.
    Keberle H, Faigle JW (1972) Synthese sowie Beziehung zwischen Struktur und Wirkung der Gamma-aminobuttersäurederivate. In: Birkmayer W (ed) Aspekte der Muskelspastik. Huber, Wien, pp 90–93Google Scholar
  65. 65.
    Klee MR, Misgeld U, Zeise ML (1981) Pharmacological differences between CA3 and dentate granule cells in hippocampal slices. In: Feher O, Joo F (eds) Advances in Physiological Science, vol 36. Akademiai Kiado, Budapest, pp 155–164Google Scholar
  66. 66.
    Knutsson E, Lindblom U, Martensson A (1974) Plasma and cerebrospinal fluid levels of baclofen (Lioresal) at optimal therapeutic responses in spastic paresis. J Neurol Sci 23:473–484PubMedCrossRefGoogle Scholar
  67. 67.
    Koketsu K, Shoji T, Yamamoto K (1974) Effects of GABA on presynaptic nerve terminals in bullfrog sympathetic ganglia. Experientia 30:382–383PubMedCrossRefGoogle Scholar
  68. 68.
    Krogsgaard-Larsen P, Falch E, Jacobsen P (1984) GABA agonists: Structural requirements for interaction with the GABA-benzodiazepine receptor complex. In: Bowery NG (ed) Actions and Interactions of GABA and Benzodiazepines. Raven Press, New York, pp 109–132Google Scholar
  69. 69.
    Krnjevic K (1974) Chemical nature of synaptic transmission in vertebrates. Physiol Rev 54:418–540Google Scholar
  70. 70.
    Lanthorn TH, Cotman CW (1981) Baclofen selectively inhibits excitatory synaptic transmission in the hippocampus. Brain Res 225:171–178PubMedCrossRefGoogle Scholar
  71. 71.
    Laskey W (1974) Effects of a GABA-derivative on excitability of Ia afferent terminals. Proc Can Fed Biol Soc 17:55Google Scholar
  72. 72.
    Laskey W, Esplin B, Capek R (1975) Effects of the antispastic agent, β-(4-chlorophenyl)-gamma-aminobutyric acid (CPG), on spinal reflexes. Proc Can Fed Biol Soc 18:30Google Scholar
  73. 73.
    Misgeld U, Klee MR, Zeise ML (1982) Differences in burst characteristics and drug sensitivity between CA3 neurons and granule cells. In: Klee MR, Lux HD, Speckmann EJ (eds), Physiology and Pharmacology of Epileptogenic Phenomena. Raven Press, New York, pp 131–139Google Scholar
  74. 74.
    Möhler H, Okada T (1977) GABA receptor binding with 3(H) + bicuculline-methiodide in the rat CNS. Nature 267:65–67PubMedCrossRefGoogle Scholar
  75. 75.
    Mugnaini E, Oertel W (1985) An atlas of the distribution of gabaergic neurons and terminals as revealed by GAD immunohistochemistry. In: Björklund A, Hökfelt T (eds) Handbook of Chemical Neuroanatomy. GABA and Neuropeptides in the CNS, part I. Elsevier, Amsterdam, pp 436–608Google Scholar
  76. 76.
    Newberry NR, Nicoli RA (1984) Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 308:450–452PubMedCrossRefGoogle Scholar
  77. 77.
    Newberry NR, Nicoli RA (1984) A bicuculline-resistant inhibitory post-synaptic potential in rat hippocampal pyramidal cells in vitro. J Physiol (Lond) 348:239–254Google Scholar
  78. 78.
    Newberry NR, Nicoli RA (1985) Comparison of the action of baclofen with gamma-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J Physiol (Lond) 360:161–185Google Scholar
  79. 79.
    Ogata N, Abe H (1982) Neuropharmacology in the brain slice: Effects of substance P on neurons in the guinea pig hypothalamus. Comp Biochem Physiol 72:171–178CrossRefGoogle Scholar
  80. 80.
    Olpe HR, Koella WP, Wolf P, Haas HL (1977) The action of baclofen on neurones of the substantia nigra and of the ventral tegmental area. Brain Res 134:577–580PubMedCrossRefGoogle Scholar
  81. 81.
    Olpe HR, Demieville H, Baltzer V, Bencze WL, Koella WP, Wolf P, Haas HL (1978) The biological activity of D-and L-baclofen (Lioresa®). Eur J Pharmacol 52:133–136PubMedCrossRefGoogle Scholar
  82. 82.
    Olpe HR, Baudry M, Fagni L, Lynch G (1982) The blocking action of baclofen on excitatory transmission in the rat hippocampal slice. J Neurosci 2:698–703PubMedGoogle Scholar
  83. 83.
    Ono H, Fukuda H, Kudo Y (1979) Mechanisms of depressant action of baclofen on the spinal reflex in the rat. Neuropharmacology 18:647–653PubMedCrossRefGoogle Scholar
  84. 84.
    Phillis JW (1976) Is β-(4-chlorophenyl)-GABA a specific antagonist of substance P on cerebral cortical neurons? Experientia 32:593–594PubMedCrossRefGoogle Scholar
  85. 85.
    Pierau FK, Zimmermann P (1973) Action of a GABA-derivative on postsynaptic potentials and membrane properties of cats’ spinal motoneurons. Brain Res 54:376–380PubMedCrossRefGoogle Scholar
  86. 86.
    Pierau FK, Matheson GK, Wurster RD (1975) Presynaptic action of β-(4-chlorophenyl)-GABA. Exp Neurol 48:343–351PubMedCrossRefGoogle Scholar
  87. 87.
    Pinnock RD (1984) Hyperpolarizing action of baclofen on neurons in the rat substantia nigra slice. Brain Res 322:337–340PubMedCrossRefGoogle Scholar
  88. 88.
    Polc P, Haefely W (1976) Effects of two benzodiazepines, phenobarbitone and baclofen on synaptic transmission in the cat cuneate nucleus. Naunyn Schmiedebergs Arch Pharmacol 294:121–131PubMedCrossRefGoogle Scholar
  89. 89.
    Potashner SJ (1979) Baclofen: Effects on amino acid release and metabolism in slices of guinea pig cerebral cortex. J Neurochem 32:103–109PubMedCrossRefGoogle Scholar
  90. 90.
    Potashner SJ, Gerard D (1983) Kainate-enhanced release of D-3(H)aspartate from cerebral cortex and striatum: reversal by baclofen and pentobarbital. J Neurochem 40:1548–1557PubMedCrossRefGoogle Scholar
  91. 91.
    Price GW, Wilkin GP, Turnbull MJ, Bowery NG (1984) Are baclofen-sensitive GABAB receptors present on primary afferent terminals of the spinal cord? Nature 301:71–73CrossRefGoogle Scholar
  92. 92.
    Roberts E, Chase TN, Tower DB (1976) GABA in Nervous System Function. Raven Press, New YorkGoogle Scholar
  93. 93.
    Saito KS, Konishi S, Otsuka M (1975) Antagonism between lioresal and substance P in rat spinal cord. Brain Res 97:177–180PubMedCrossRefGoogle Scholar
  94. 94.
    Schlicker E, Classen K, Göthert M (1984) GABAB receptor-mediated inhibition of serotonin release in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 326:99–105PubMedCrossRefGoogle Scholar
  95. 95.
    Schmidt RF (1971) Presynaptic inhibition in the vertebrate central nervous system. Erg Physiol Biol Exp Pharmacol 63:20–101Google Scholar
  96. 96.
    Scholfield CN (1983) Baclofen blocks postsynaptic inhibition but not the effect of muscimol in the olfactory cortex. Br J Pharmacol 78:79–84PubMedGoogle Scholar
  97. 97.
    Shapovalov AI, Shiriaev BI (1982) Selective modulation of chemical transmission at a dual-action synapse (with special reference to baclofen). General Physiology and Biophysics 1:423–433Google Scholar
  98. 98.
    Simmonds MA (1984) Physiological and pharmacological characterization of the actions of GABA. In: Bowery NG (ed) Actions and interactions of GABA and benzodiazepines. Raven Press, New York, pp 27–41Google Scholar
  99. 99.
    Stevens D, Gallagher JP, Shinnick-Gallagher P (1985) Further studies on the action of baclofen on neurons of the dorsolateral septal nucleus of the rat, in vitro. Brain Res 358:360–363PubMedCrossRefGoogle Scholar
  100. 100.
    Sutor B, Zieglgänsberger W (1984) A GABA-mediated, chloride-dependent depolarizing IPSP in neocortical neurons of the rat in vitro. Pflügers Arch [Suppl] 400: R37Google Scholar
  101. 101.
    Sutor B (1985) Nachweis eines GABA-vermittelten, inhibitorischen postsynaptischen Potentials in Neuronen des Neokortex der Ratte. Ph. D. Thesis, University of Erlangen-NürnbergGoogle Scholar
  102. 102.
    Sutor B, Howe J, Zieglgänsberger W (1985) Baclofen depresses stimulation-evoked postsynaptic potentials of rat neocortical neurons in vitro. Naunyn Schmiedebergs Arch Pharmacol [Suppl] 329:381Google Scholar
  103. 103.
    Swahn CG, Beving H, Sedvall G (1979) Mass fragmentographic determination of 4-amino-3-p-chlorophenylbutyric acid (baclofen) in cerebrospinal fluid and serum. J Chromatogr 162:433–438PubMedCrossRefGoogle Scholar
  104. 104.
    Swaynok J, Dickson C (1984) D-Baclofen is an agonist/antagonist at baclofen receptors mediating antinociception in the spinal cord. Soc Neurosci Abstr 10:32.13Google Scholar
  105. 105.
    Terrence CF, Sax M, Fromm GH, Chang CH, Yoo CS (1983) Effect of baclofen enantiomorphs on the spinal trigeminal nucleus and steric similarities with carbamazepine. Pharmacology 27:85–94PubMedCrossRefGoogle Scholar
  106. 106.
    Wilkin GP, Hudson AL, Hill DR, Bowery NG (1981) Autoradiographic localization of GABAB-receptors in rat cerebellum. Nature 294:584–587PubMedCrossRefGoogle Scholar
  107. 107.
    Wilson PR, Yaksh TL (1978) Baclofen is antinociceptive in the spinal intrathecal space of animals. Eur J Pharmacol 51:323–330PubMedCrossRefGoogle Scholar
  108. 108.
    Wojcik WJ, Neff NH (1984) γ-Amino-butyric acid B receptors are negatively coupled to adenylate cyclase in brain and in the cerebellum these receptors may be associated with granule cells. Mol Pharmacol 25:24–28PubMedGoogle Scholar
  109. 109.
    Young RR, Delwaide PJ (1981) Drug therapy: spasticity. N Engl J Med 304:28–33PubMedCrossRefGoogle Scholar
  110. 110.
    Zieglgänsberger W (1986) Central control of nociception. In: Handbook of Physiology. The Nervous System IV. pp 100–210Google Scholar
  111. 111.
    Zukin SR, Young AB, Snyder SH (1974) Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc Natl Acad Sci USA 71:4802–4807PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • W. Zieglgänsberger
  • J. R. Howe
  • B. Sutor

There are no affiliations available

Personalised recommendations