Partite Construction and Ramsey Space Systems

  • Jaroslav Nešetřil
  • Vojtěch Rödl
Part of the Algorithms and Combinatorics book series (AC, volume 5)

Abstract

We prove several Ramsey type theorems for parameter sets, affine and vector spaces by an amalgamation technique known as Partite Construction. This approach yields solution of several open problems and uniform treatment of several strongest results in the area. Particularly we prove Ramsey theorem for systems of spaces.

Keywords

Dinates Carol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erdos, P., Hajnal, A. (1966): On the chromatic number of graphs and set-systems. Acta Math. Acad. Sci. Hung. 17, 61–69MathSciNetCrossRefGoogle Scholar
  2. Frankl, P., Graham, R.L., Rodl, V. (1987): Induced restricted Ramsey theorems for spaces. J. Comb. Theory, Ser. A 44, 120–128MathSciNetMATHCrossRefGoogle Scholar
  3. Graham, R.L., Rothschild, B. (1971): Ramsey’s theorem for n-parameter sets. Trans. Am. Math. Soc. 159, 257–292MathSciNetMATHGoogle Scholar
  4. Graham, R.L., Leeb, K., Rothschild, B. (1972): Ramsey’s theorem for a class of categories. Adv. Math. 8, 417–433MathSciNetMATHCrossRefGoogle Scholar
  5. Graham, R.L., Rothschild, B., Spencer, J. (1980): Ramsey theorey. J. Wiley & Sons, New York, NY.Google Scholar
  6. Hales, A.W., Jewett, R.I. (1963): Regularity and positional games. Trans. Am. Math. Soc. 106, 222–229MathSciNetMATHCrossRefGoogle Scholar
  7. Lovász, L. (1968): On the chromatic number of finite set-systems. Acta Math. Acad. Sci. Hung. 19, 59–67MATHCrossRefGoogle Scholar
  8. Nešetřil, J., Rödl, V. (1977): A structural generalization of the Ramsey theorem. Bull. Am. Math. Soc. 83, 127–128MATHCrossRefGoogle Scholar
  9. Nešetřil, J., Rödl, V. (1978): Partition (Ramsey) theory - a survey. In: Hajnal, A., Sós, V. (eds.): Combinatorics II. North Holland, Amsterdam, pp. 759–792 (Col- loq. Math. Soc. János Bolyai, Vol. 18)Google Scholar
  10. Nešetřil, J., Rödl, V. (1979): Partition theory and its application. In: Bollobás, B. (ed.): Surveys in combinatorics. Cambridge University Press, Cambridge, pp. 96–156 (Lond. Math. Soc. Lect. Note Ser., Vol. 38)Google Scholar
  11. Nešetřil, J., Rödl, V. (1979): A short proof of the existence of highly chromatic hypergraphs without short cycles. J. Comb. Theory, Ser. B 27, 225–227MATHCrossRefGoogle Scholar
  12. Nešetřil, J., Rödl, V. (1981): Simple proof of the existence of restricted Ramsey graphs by means of a partite construction. Combinatorica 1, 199–202MathSciNetMATHCrossRefGoogle Scholar
  13. Nešetřil, J., Rödl, V. (1982): Two proofs of the partition property of set-systems. Eur. J. Comb. 3, 347–352Google Scholar
  14. Nešetřil, J., Rödl, V. (1984): Sparse Ramsey graphs. Combinatorica 4, 71–78MathSciNetMATHCrossRefGoogle Scholar
  15. Nešetřil, J., Rödl, V. (1987): Partite construction and Ramseyan theorems for sets, numbers and spaces. Commentat. Math. Univ. Carol. 28, 569–580MATHGoogle Scholar
  16. Nešetřil, J., Rödl, V. (1987): Strong Ramsey theorems for Steiner systems. Trans. Am. Math. Soc. 303, 183–192MATHGoogle Scholar
  17. Nešetřil, J., Rödl, V. (1989): Partite construction and Ramsey set-systems. Discrete Math. 75, 149–160Google Scholar
  18. Nešetřil, J., Prömel, H.J., Rôdl, V., Voigt, B. (1985): Canonizing ordering theorems for Hales-Jewett structures. J. Comb. Theory, Ser. A 40, 394–408MATHCrossRefGoogle Scholar
  19. Prömel, H.J. (1985): Induced partition properties of combinatorial cubes. J. Comb. Theory, Ser. A 39, 177–208MATHCrossRefGoogle Scholar
  20. Prömel, H.J, Voigt, B. (1988): A sparse Graham-Rothschild theorem. Trans. Am. Math. Soc. 309, 113–137MATHCrossRefGoogle Scholar
  21. Rado, R. (1933): Studien zur Kombinatorik. Math. Z. 36, 424–480MathSciNetMATHCrossRefGoogle Scholar
  22. Ramsey, F.P. (1930): On a problem of formal logic. Proc. Lond. Math. Soc., II. Ser. 30, 264–286CrossRefGoogle Scholar
  23. Rödl, V. (1981): On Ramsey families of sets. Manuscript (Unpublished)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Jaroslav Nešetřil
  • Vojtěch Rödl

There are no affiliations available

Personalised recommendations