Advertisement

Topological Ramsey Theory

  • Timothy J. Carlson
  • Stephen G. Simpson
Part of the Algorithms and Combinatorics book series (AC, volume 5)

Abstract

We survey the interplay between topology and Ramsey Theory which began with Ellentuck’s Theorem (Ellentuck 1974) (and was anticipated by work of Nash-Williams (1965), Galvin and Prikry (1973) and Silver (1970) by giving a fairly abstract treatment of what have become known as Ellentuck type theorems.

Keywords

Partial Order Product Topology Infinite Subset Inaccessible Cardinal Partition Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlson, T.J., Simpson, S.G. (1984): A dual form of Ramsey’s theorem. Adv. Math. 53, 265–290MathSciNetMATHCrossRefGoogle Scholar
  2. Carlson, T.J. (1987): An infinitary version of the Graham-Leeb-Rothschild theorem. J. Comb. Theory, Ser. A 44, 22–33MATHCrossRefGoogle Scholar
  3. Carlson, T.J. (1988): Some unifying principles in Ramsey theory. Discrete Math. 68, 117–168MathSciNetMATHCrossRefGoogle Scholar
  4. Ellentuck, E. (1974): A new proof that analytic sets are Ramsey. J. Symb. Logic 39, 163–165MathSciNetMATHCrossRefGoogle Scholar
  5. Erdös, P., Rado, R. (1950): A combinatorial theorem. J. Lond. Math. Soc. 25, 249–255MATHCrossRefGoogle Scholar
  6. Galvin, F., Prikry, K. (1973): Borel sets and Ramsey’s theorem. J. Symb. Logic 38, 193–198MathSciNetMATHCrossRefGoogle Scholar
  7. Graham, R.L., Leeb, K., Rothschild, B. (1972): Ramsey’s theorem for a class of categories. Adv. Math. 8, 417–433MathSciNetMATHCrossRefGoogle Scholar
  8. Hindman, N. (1974): Finite sums from sequences within cells of a partition of N. J. Comb. Theory, Ser. A 17, 1–11MathSciNetMATHCrossRefGoogle Scholar
  9. Jech, T. (1978): Set theory. Pure and applied mathematics. Academic Press, New York, NYGoogle Scholar
  10. Mathias, A.R.D. (1977): Happy families. Ann. Math. Logic 12, 59–111MathSciNetMATHCrossRefGoogle Scholar
  11. Milliken, K. (1975): Ramsey’s theorem with sums or unions. J. Comb. Theory, Ser. A 18, 276–290MathSciNetMATHCrossRefGoogle Scholar
  12. Nash-Williams, C.St.J.A. (1965): On well-quasi-ordering transfinite sequences. Proc. Camb. Philos. Soc. 61, 33–39MathSciNetMATHCrossRefGoogle Scholar
  13. Prömel, H.J., Voigt, B. (1983): Canonical partition theorems for parameter sets. J. Comb. Theory, Ser. A 35, 309–327MATHCrossRefGoogle Scholar
  14. Prömel, H.J., Voigt, B. (1985): Canonical forms of Borel-measurable mappings Δ: [ω]ω → ℝ. J. Comb. Theory, Ser. A 40, 404–417Google Scholar
  15. Prömel, H.J., Voigt, B. (1985a): Baire sets of fc-parameter words are Ramsey. Trans. Am. Math. Soc. 291, 189–201MATHGoogle Scholar
  16. Prömel, H.J., Simpson, S.G., Voigt, B. (1986): A dual form of Erdos-Rado’s canonization theorem. J. Comb. Theory, Ser. A 42, 159–178MATHCrossRefGoogle Scholar
  17. Silver, J.H. (1970): Every analytic set is Ramsey. J. Symb. Logic 35, 60–64MathSciNetMATHCrossRefGoogle Scholar
  18. Solovay, R. (1970): A model of set theory in which every set of reals is Lebesgue measurable. Ann. Math. 92, 1–56MathSciNetMATHCrossRefGoogle Scholar
  19. Voigt, B. (1984): Canonization theorems for finite affine and linear spaces. Combinatorica 4, 219–239MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Timothy J. Carlson
  • Stephen G. Simpson

There are no affiliations available

Personalised recommendations