Skip to main content

Partitioning Topological Spaces

  • Chapter
Mathematics of Ramsey Theory

Part of the book series: Algorithms and Combinatorics ((AC,volume 5))

Abstract

The study of partitions of topological spaces is a relatively new addition to Ramsey theory, but one which promises interesting things in the future. We partition topological spaces and hope to obtain a homogeneous set which is topologically relevant — for instance, a set homeomorphic to a well known topological space. We thus add something new to the ordinary partition calculus of set theory. We do, however, borrow the arrow notation. We write

$$X\, \to \,(Y)_\lambda ^n$$

to mean the following statement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumgartner, J.E. (1986): Partition relations for countable topological spaces. J. Comb. Theory, Ser. A 43, 178–195 [This includes Theorems 2.6, 3.5, 3.6 and 3.7 as well as other related information]

    Article  MathSciNet  MATH  Google Scholar 

  • Bregman, Yu.Kh., Shapirovskii, B.E., Shostak, A.P. (1984): On partition of topological spaces. Cas. Pestovani Mat. 109, 27–53 [This is the proof of Theorem 2.23]

    MATH  Google Scholar 

  • Elekes, G., Erdos, P., Hajnal, A. (1978): On some partition properties of families of sets. Stud. Sci. Math. Hung. 13, 151–155 [This contains sketches of the proofs of Theorem 2.26 for regular cardinals and of Theorem 2.28, along with some related material]

    MathSciNet  MATH  Google Scholar 

  • Friedman, H. (1974): On closed sets of ordinals. Proc. Am. Math. Soc. 43, 190–192 [This contains a proof of Lemma 2.3 and some remarks concerning k → (top ω1) 12 ]

    Article  MATH  Google Scholar 

  • Friedman, H. (1975): One hundred and two problems in mathematical logic. J. Symb. Logic 40, 113–129 [ω2→ (top ω1) 12 is problem number 72]

    Article  MATH  Google Scholar 

  • Hajnal, A., Juhász, I., Shelah, S. (1986): Splitting strongly almost disjoint families. Trans. Am. Math. Soc. 295, 369–387 [This contains a synthesis of the proofs of Theorem 2.15 and Theorem 2.23 and gives connections to other combinatorial problems]

    Article  MATH  Google Scholar 

  • Malyhin, V.I. (1979): On Ramsey spaces. Sov. Math., Dokl. 20, 894–898 [This has an independent proof of Corollary 2.16]

    MathSciNet  Google Scholar 

  • Nešetřil, J., Rodl, V. (1977): Ramsey topological spaces. In: Novák, J. (ed.): General topology and its relations to modern analysis and algebra IV, Part B. Society of Czechoslovak Mathematicians and Physicists, Prague, pp. 333–337 [A successful attempt at popularizing Question 4.1]

    Google Scholar 

  • Nešetřil, J., Rödl, V. (1979): Partition theory and its application. In: Bollobás, B. (ed.): Surveys in combinatorics. Cambridge University Press, Cambridge, pp. 96–156 (Lond. Math. Soc. Lect. Note Ser., Vol. 38) [Discussion of the project of extending Ramsey theory to topological spaces]

    Google Scholar 

  • Prikry, K., Solovay, R. (1975): On partitions into stationary sets. J. Symb. Logic 40, 75–80 [The proof that V=L implies that for all k, k \(\not \to \) (topω1) 12 ]

    Article  MathSciNet  Google Scholar 

  • Shelah, S. (1982): Proper forcing. Springer Verlag, Berlin, Heidelberg (Lect. Notes Math., Vol. 940) [This contains the proof of Theorem 2.12, Part (i)]

    Book  MATH  Google Scholar 

  • Todorčevič, S. (1983): Forcing positive partition relations. Trans. Am. Math. Soc. 280, 703–720 [This contains the proof of Theorem 4.7, Part (i) explicitly and Part (ii) implicitly]

    MATH  Google Scholar 

  • Weiss, W. (1980): Partitioning topological spaces. In: Csaśzár, A. (ed.): Topology II. North Holland, Amsterdam, pp. 1249–1255 (Colloq. Math. Soc. János Bolyai, Vol. 23) [This contains an incorrect proof of Theorem 2.15; unfortunately the correction didn’t reach the editors in time. I would like to thank V.I. Malyhin for pointing out the gap in that proof]

    Google Scholar 

  • Wolfsdorf, K. (1983): Färbungen großer Würfel mit bunten Wegen. Arch. Math, 40, 569–576 [Here it is pointed out that the proof of Theorem 2.15 can be slightly modified to partition into continuum-many pieces]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weiss, W. (1990). Partitioning Topological Spaces. In: Nešetřil, J., Rödl, V. (eds) Mathematics of Ramsey Theory. Algorithms and Combinatorics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72905-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72905-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72907-2

  • Online ISBN: 978-3-642-72905-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics