Skip to main content

Circadian Systems in Invertebrates (Including an Evolutionary Perspective of Circadian Signal Transmission in the Visual System)

  • Chapter
Functional Morphology of Neuroendocrine Systems

Abstract

The formal properties and the functional organization of circadian systems in invertebrates are described and partly exemplified with results of anatomical and physiological investigations on circadian clocks in the visual system of the scorpion Androctonus australis. Some ideas concerning phylogenetic aspects of this system in arthropods are discussed under consideration of an efferent neurosecretory fiber system that, at least in chelicerates, controls visual sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arechiga H, Wiersma CAG (1969) Circadian rhythm of responsiveness in crayfish visual units. J Neurobiol 1: 71–85

    Article  PubMed  CAS  Google Scholar 

  • Arechiga H, Fuentes B, Barrera-Mera B (1973) Circadian rhythm of responsiveness in the visual system of crayfish. In: Salanky (ed) Neurobiology of invertebrates, Tihany 1971, pp 403–421

    Google Scholar 

  • Aschoff J (ed) (1981a) Handbook of behavioral neurobiology, Vol 4. Biological rhythms. Plenum Press, New York

    Google Scholar 

  • Aschoff J (1981b): Freerunning and entrained circadian rhythms. In: Aschoff J (ed) Handbook of behavioral neurobiology, Vol 4. Biological rhythms. Plenum Press, New York, pp 81–93

    Google Scholar 

  • Aschoff J, Daan S, Groos GA (eds) (1982) Vertebrate circadian systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Barlow RB jr (1983) Circadian rhythms in the Limulus visual system. J Neurosci 3:856–870

    PubMed  Google Scholar 

  • Barlow RB jr, Bolanowski SJ, Brachman ML (1977) Efferent optic nerve fibers mediate circadian rhythms in the Limulus eye. Science 197:86–89

    Article  PubMed  Google Scholar 

  • Barrera-Mera B (1978) Neural coupling between left and right electroretinographic circadian oscillations in the crayfish P. bouvieri. Comp Biochem Physiol 61A:427–432

    Article  Google Scholar 

  • Battelle BA (1984) Efferent innvervations to Limulus eyes. Trends Neurosci 7:277–282

    Article  Google Scholar 

  • Bennett MF (1979) Extraocular light receptors and circadian rhythms. In: Autrum HJ (ed) Hb Sens Physiol VII/6A, pp 641–663

    Google Scholar 

  • Blest AD (1985) The fine structure of spider photoreceptors in relation to function. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 79–102

    Chapter  Google Scholar 

  • Block GD, McMahon DG (1984) Cellular analysis of the Bulla ocular circadian pacemaker system. III. Localization of the circadian pacemaker. J Comp Physiol [A] 155:387–395

    Article  Google Scholar 

  • Block GD, Wallace SF (1982) Localization of a circadian pacemaker in the eye of a mollusc, Bulla. Science 217:155–157

    Article  PubMed  CAS  Google Scholar 

  • Block GD, McMahon DG, Wallace SF, Friesen WO (1984) Cellular analysis of the Bulla ocular circadian pacemaker system. I. Model for retinal organization. J Comp Physiol [A] 155:365–378

    Article  Google Scholar 

  • Bullock TH (1977) Introduction to nervous systems. Freeman and Co., San Fransisco Chandrashekaran MK, Loher W (1969) The relationship between the intensity of the light pulses and the extent of phase shifts of the circadian rhythm in the eclosion rate of Drosophila pseudoobscura. J Exp Zool 172:145–152

    Google Scholar 

  • Chovnick A (1960) (ed) Biological clocks. Cold Spring Harbor Symp Quant Biol, vol 25. Long Island Biol Ass, New York

    Google Scholar 

  • Corrent G, Eskin A, Kay I (1982) Entrainment of the circadian rhythm from the eye of Aplysia: a role of serotonin. Am J Physiol 242:R326–332

    PubMed  CAS  Google Scholar 

  • Cymborowski B (1981) Transplantation of circadian pacemaker in the house cricket, Acheta domesticus L. J Interdiscipl Cycle Res 12:133–140

    Article  Google Scholar 

  • Douglas RH, Wagner HJ (1982) Endogenous patterns of photomechanical movements in teleosts and their relation to activity rhythms. Cell Tissue Res 226:133–144

    Article  PubMed  CAS  Google Scholar 

  • Edmunds LN (1983) Chronobiology at the cellular and molecular levels: models and mechanisms for circadian timekeeping. Am J Anat 168:389–431

    Article  PubMed  CAS  Google Scholar 

  • Enright JT (1980) The timing of sleep and wakefulness. In: Barlow HB et al. (eds) Studies of brain function, vol 3. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fahrenbach WH (1975) The visual system of the horseshoe crab Limulus polyphemus. Int Rev Cytol 41:285–349

    Article  PubMed  CAS  Google Scholar 

  • Fleissner G (1972) Circadian sensitivity changes in the median eyes of the North African scorpion, Androctonus australis. In: Wehner R (ed) Information processing in the visual system of arthropods. Springer, Berlin Heidelberg New York, pp 133–139

    Chapter  Google Scholar 

  • Fleissner G (1974) Circadiane Adaptation und Schirmpigmentverlagerung in den Sehzellen der Medianaugen von Androctonus australis L. (Buthidae, Scorpiones). J Comp Physiol 91:399–416

    Article  Google Scholar 

  • Fleissner G (1977a) Entrainment of the scorpio’ns circadian rhythm via the median eyes. J Comp Physiol 118:93–99

    Article  Google Scholar 

  • Fleissner G (1977b) Scorpion lateral eyes, extremely sensitive receptors of Zeitgeber stimuli. J Comp Physiol 118:101–108

    Article  Google Scholar 

  • Fleissner G (1977c) The absolute sensitivity of the median and lateral eyes of the scorpion, Androctonus australis L. (Buthidae, Scorpiones). J Comp Physiol 118:109–120

    Article  Google Scholar 

  • Fleissner G (1977d) Differences in the physiological properties of the median and the lateral eyes and their possible meaning for the entrainment of the scorpion’s circadian rhythm. J Interdiscipl Cycle Res 8:15–26

    Article  Google Scholar 

  • Fleissner G (1982) Isolation of an insect circadian clock. J Comp Physiol [A] 149:311–316

    Article  Google Scholar 

  • Fleissner G (1983) Efferent neurosecretory fibres as pathways for the circadian clock signals in the scorpion. Naturwissenschaften 70:366–367

    Article  Google Scholar 

  • Fleissner G (1986) Die innere Uhr und der Lichtsinn von Skorpionen und Käfern — Zur neurobiologischen Analyse der circadianen Uhr der Arthropoden. Naturwissenschaften 73:78–88

    Article  Google Scholar 

  • Fleissner G, Fleissner G (1978) The optic nerve mediates the circadian pigment migration in the median eyes of the scorpion. Comp Biochem Physiol 61A:69–71

    Article  Google Scholar 

  • Fleissner G, Fleissner G (1985) Neurobiology of a circadian clock in the visual system of scorpions. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 349–375

    Google Scholar 

  • Fleissner G, Fleissner G (1986) Circadian rhythms in the compound eye of the carabid beetle Pachymorpha (Anthia) sexguttata. I. Sensitivity rhythms and the bilateral circadian oscillator system. In: den Boer P et al (eds) Carabid beetles. Fischer, Stuttgart New York pp 3–17

    Google Scholar 

  • Fleissner G, Fleissner G (1987) Efferent control of sensitivity in the insect compound eye. In: Lindauer M (ed) Information processing in animals. Akademie der Wissenschaften und der Literatur, math-nat Kl (Mainz), Fischer, Stuttgart New York

    Google Scholar 

  • Fleissner G, Heinrichs S (1982) Neurosecretory cells in the circadian clock system of the scorpion Androctonus australis. Cell Tissue Res 224:233–238

    Article  PubMed  CAS  Google Scholar 

  • Fleissner G, Schliwa M (1977) Neurosecretory fibers in the median eyes of the scorpion Androctonus australis L. Cell Tissue Res 178:189–198

    Article  PubMed  CAS  Google Scholar 

  • Follett BK, Follett DE (eds) (1981) Biological clocks in seasonal reproductive cycles. Scientechnica, Bristol

    Google Scholar 

  • Fowler DJ, Goodnight CJ (1975) In vitro regulation by light of 24-hour rhythmic serotonin production. J interdiscipl Cycle Res 6:121–128

    CAS  Google Scholar 

  • Geethabali, Rao KP (1973) A metasomic neural photoreceptor in the scorpion. J Exp Biol 58:189–196

    Google Scholar 

  • Haen E, Halberg F (1985) Chronopharmakologie und Chronotherapie. DT Aerztebl B 82 (51/ 52):3837–3848

    Google Scholar 

  • Hamm U, Chandrashekaran MK, Engelmann W (1975) Temperature-sensitive events between photoreceptor and circadian clock? Z Naturforsch 30C:240–244

    Google Scholar 

  • Hanna WJB, Pinkhas E, Renninger GH, Kaplan E, Barlow RB jr (1985) The tail of Limulus contains photoreceptors that modulate a circadian clock. Biol Bull 169:552

    Google Scholar 

  • Heinrichs S (1985) Neuronale Komponenten der circadianen Uhr des Skorpions. Anatomie and Verschaltung efferenter neurosekretorischer Neurone im Zentralnervensystem. Inaug. Diss. Univ. Frankfurt/Main

    Google Scholar 

  • Heinrichs S, Fleissner G (1987) Studies on neuronal components of the scorpion’s clock. I. Central anatomy of efferent neurosecretory fibers supplying the median eyes. Cell Tissue Res 250:277–285

    Article  Google Scholar 

  • Holst E von, Mittelstaedt H (1950) Das Reafferenzprinzip. Naturwissenschaften 37:464–476

    Article  Google Scholar 

  • Jacklet JW (1969) Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia. Science 164:562–563

    Article  PubMed  CAS  Google Scholar 

  • Jacklet JW (1985) Neurobiology of circadian rhythms generators. Trends Neurosci 8:69–73

    Article  Google Scholar 

  • Jacklet JW, Colquhoun W (1983) Ultrastructure of photoreceptors and circadian pacemaker neurons in the eye of a gastropod, Bulla. J Neurocytol 12:673–696

    Article  PubMed  CAS  Google Scholar 

  • Kippert F (1985) Chrono-colloquium on the origin of circadian rhythms. J Interdiscipl Cycle Res 16:77–84

    Article  Google Scholar 

  • Koehler WK, Fleissner G (1978) Internal desynchronisation of bilaterally organised circadian oscillators in the visual system of insects. Nature 274:708–710

    Article  PubMed  CAS  Google Scholar 

  • Laughlin S (1981) Neural principles in the peripheral visual system of invertebrates. In: Autrum HJ (ed) Handbook Sens Physiol VII/6B, pp 135–280

    Google Scholar 

  • Levinson G, Burnside B (1981) Circadian rhythms in teleost retinomotor movements: A comparison of the effects of circadian rhythm and light condition on one cone length. Invest Ophtalmol 20:294–303

    CAS  Google Scholar 

  • Menaker M (1982) The search for principles of physiological organization in vertebrate circadian systems. In: Aschoff J, Daan S, Groos G (eds) Vertebrate circadian systems. Springer, Berlin Heidelberg New York, pp 1–12

    Google Scholar 

  • Mizoguchi A, Ishizaki H (1984) Further evidence for the presence of a circadian clock in the prothoracic glands of the saturniid moth, Samia cynthia ricini: Decapitated larvae can respond to light-dark changes. Develop Growth Differ 26:607–611

    Article  Google Scholar 

  • Moore-Ede MC, Sulzman FM (1981) Internal temporal order. In: Aschoff J (ed) Handbook of behavioral neurobiology, Vol 4, Biological rhythms. Plenum Press, New York, pp 215–241

    Google Scholar 

  • Mote MI, Black KR (1981) Action spectrum and threshold sensitivity of circadian running activity in the cockroach Periplaneta americana. Photochem Photobiol 34:257–265

    Google Scholar 

  • Nässel DR, Klemm N (1983) Serotonin-like immunoreactivity in the optic lobes of three insect species. Cell Tissue Res 232:129–140

    Article  PubMed  Google Scholar 

  • Page TL (1981) Neural and endocrine control of circadian rhythms in invertebrates. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol 4, Biological rhythms. Plenum Press, New York, pp 145–172

    Google Scholar 

  • Page TL (1982a) Transplantation of the cockroach circadian pacemaker. Science 216:73–75

    Article  CAS  Google Scholar 

  • Page TL (1982b) Extraretinal photoreception in entrainment and photoperiodism in invertebrates. Experientia (Basel) 38:1007–1013

    Article  Google Scholar 

  • Page TL (1983) Regeneration of the optic tracts and circadian pacemaker activity in the cockroach Leucophaea maderae. J Comp Physiol 152:231–240

    Article  Google Scholar 

  • Page TL (1985) Clocks and circadian rhythms. Comp Insect Physiol Biochem Pharmacol 6:577–652

    Google Scholar 

  • Page TL, Calderola PC, Pittendrigh CS (1977) Mutual entrainment of bilaterally distributed circadian pacemakers. Proc Natl Acad Sci (USA) 74:1277–1281

    Article  CAS  Google Scholar 

  • Pavlidis T (1976) Spatial and temporal organization of populations of interacting oscillators. In: Hastings JW, Schweiger HG (eds) On the molecular basis of circadian rhythmicity. Dahlem Konferenzen Berlin. Abakon, Berlin, pp 131–148

    Google Scholar 

  • Pittendrigh CS (1974) Circadian oscillations in cells and the circadian organization of multicellular systems. In: Schmitt TO, Warden FG (eds) The Neurosciences. Third Study Programm, MIT Press, Cambridge (Mass), pp 437–458

    Google Scholar 

  • Pittendrigh CS (1976) Circadian clocks: What are they? In: Hastings JW, Schweiger HG (eds) On the molecular basis of circadian rhythmicity. Dahlem Konferenzen Berlin. Abakon, Berlin, pp 11–48

    Google Scholar 

  • Pittendrigh CS (1981a) Circadian systems: general perspective. In: Aschoff J (ed) Handbook of behavioral neurobiology, Vol 4. Circadian rhythms, pp 57–80

    Google Scholar 

  • Pittendrigh CS (1981b) Circadian systems: entrainment In: Aschoff J (ed) Handbook of behavioral neurobiology, Vol. 4, Circadian rhythms, pp 95–124

    Google Scholar 

  • Pittendrigh CS, Bruce VG, Kaus P (1958) On the significance of transients in daily rhythms Proc Natl Acad Sci (USA) 44:965–973

    Article  CAS  Google Scholar 

  • Rao KR (1985) Pigmentary effectors. In: Bliss DE, Mantel LH (eds) The biology of crustacea, Vol 9. Academic Press, New York, pp 395–462

    Google Scholar 

  • Roberts SK (1965) Photoreception and entrainment of cockroach activity rhythms. Science 148:958–959

    Article  PubMed  CAS  Google Scholar 

  • Roberts MH, Block GD (1983) Mutual coupling between the ocular circadian pacemakers of Bulla gouldiana. Science 221:87–89

    Article  PubMed  CAS  Google Scholar 

  • Roberts MH, Block GD (1985) Analysis of mutual circadian pacemaker coupling between the two eyes of Bulla. J Biol Rhythms 1:55–75

    Article  PubMed  CAS  Google Scholar 

  • Rusak B (1981) General discussion (Mammals). In: Follett BK, Follett DE (eds) Biological clocks in seasonal reproductive cycles. Scientechnica, Bristol, pp 219–222

    Google Scholar 

  • Sanchez JA, Fuentes-Pardo B (1977) Circadian rhythm in the amplitude of the electroretinogram in the isolated eye-stalk of the crayfish. Comp Biochem Physiol 56A:601–605

    Article  Google Scholar 

  • Saunders DS (1982) Insect clocks, 2nd edition. Pergamon Press, Oxford New York

    Google Scholar 

  • Sokolove PG, Loher W (1975) Role of eyes, optic lobes, and pars intercerebralis in locomotory and stridulatory circadian rhythms of Teleogryllus commodus. J Insect Physiol 21:785–799

    Article  PubMed  CAS  Google Scholar 

  • Takahashi JS, DeCoursey PJ, Bauman L, Menaker M (1984) Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308:186–188

    Article  PubMed  CAS  Google Scholar 

  • Truman JW (1972) Physiology of insect rhythms II. The silkmoth brain as the location of the biological clock controlling eclosion. J Comp Physiol 81:99–114

    Article  Google Scholar 

  • Truman JW (1976) Extraretinal photoreception in insects. Photochem Photobiol 23:215–225

    Article  CAS  Google Scholar 

  • Truman JW (1984) The preparatory behavior rhythm of the moth Manduca sexta: An ecdysteroid-triggered circadian rhythm that is independent of the brain. J Comp Physiol [A] 155:521–528

    Article  Google Scholar 

  • Walker RJ (1984) 5-Hydroxytryptamine in invertebrates. Comp Biochem Physiol 79C:231–235

    CAS  Google Scholar 

  • Winfree AT (1980) The geometry of biological time. Biomathematics 8. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Yamashita S (1985) Photoreceptor cells in the spider eye: Spectral sensitivity and efferent control. In: Barth FG (ed) Neurobiology of Arachnids. Springer, Berlin Heidelberg New York, pp 103–117

    Chapter  Google Scholar 

  • Zimmerman WF, Goldsmith TH (1971) Photosensitivity of the circadian rhythm and of visual receptors in carotenoid-depleted Drosophila. Science 171:1167–1168

    Article  PubMed  CAS  Google Scholar 

  • Zwicky KT (1968) A light response in the tail of Urodacus, a scorpion. Life Sci 7:257–262

    Article  PubMed  CAS  Google Scholar 

  • Zwicky KT (1970) Behavioral aspects of the extraocular light sense of Urodacus, a scorpion. Experientia (Basel) 26:747–748

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fleissner, G., Stevenson, R.D., Fleissner, G. (1987). Circadian Systems in Invertebrates (Including an Evolutionary Perspective of Circadian Signal Transmission in the Visual System). In: Scharrer, B., Korf, HW., Hartwig, HG. (eds) Functional Morphology of Neuroendocrine Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72886-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72886-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72888-4

  • Online ISBN: 978-3-642-72886-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics