Advertisement

Morphofunctional Patterns of the Hypothalamic-Neurohypophyseal and Related Neuronal Systems

  • I. Assenmacher
  • G. Alonso

Abstract

It was almost six decades ago that Ernst Scharrer proposed in 1928 that his pioneer description of a new class of neurons — the hypothalamic neurosecretory neurons — might also provide the basis for anterior pituitary regulation. Today, his bold concept of neurosecretion not only emerges as the universal keystone of neuroendocrine regulatory systems, but has further developed as one of the most heuristic concepts in cellular neurobiology, whether it is oriented towards neurohormonal output or interneuronal transmission.

Keywords

Posterior Pituitary Supraoptic Nucleus Neurosecretory Granule Magnocellular Neuron Neurosecretory Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnati LF, Fuxe K, Yu ZY, Harfstrans A, Okret S, Wikstrom AC, Goldstein M, Zoli M, Vale W, Gustafsson JA (1985) Morphometrical analysis of the distribution of corticotropin releasing factor, glucocorticoid receptor and phenylethanolamine-N-methyltransferase immunoreactive structures in the paraventricular hypothalamic nucleus of the rat. Neurosci Lett 54: 147–152PubMedCrossRefGoogle Scholar
  2. Alonso G, Assenmacher I (1979) The smooth endoplasmic reticulum in neurohypophysial axons of the rat. Possible involvement in transport, storage and release of neurosecretory material. Cell Tissue Res 199: 415–429PubMedCrossRefGoogle Scholar
  3. Alonso G, Assenmacher I (1981) Radioautographic studies on the neurohypophysial projections of the supraoptic and paraventricular nuclei in the rat. Cell Tissue Res 219: 525–534PubMedCrossRefGoogle Scholar
  4. Alonso G, Assenmacher I (1983) Retrograde axoplasmic transport of neurosecretory material: an immunocytochemical and electron microscopic study of transected axons in normal and colchicine treated rats. Cell Tissue Res 233: 183–196PubMedCrossRefGoogle Scholar
  5. Alonso G, Assenmacher I (1984) Ultrastructural analysis of the noradrenergic innervation of the rat supraoptic nucleus. Neurosci Lett 49: 46–50CrossRefGoogle Scholar
  6. Alonso G, Czernichow P, Assenmacher I (1985) Reserpine inhibits release of vasopressin from the neural lobe of the pituitary in dehydrated rats. Cell Tissue Res 240: 375–380PubMedCrossRefGoogle Scholar
  7. Alonso G, Szafarczyk A, Assenmacher I (1986a) Radioautographic evidence that axons from the area of supraoptic nuclei in the rat project to extra-hypothalamic brain regions. Neurosci Lett 66: 251–256CrossRefGoogle Scholar
  8. Alonso G, Szafarczyk A, Assenmacher I (1986b) Immunoreactivity of hypothalamo-neurohypophysial neurons which secrete corticotropin-releasing hormone (CRH) and vasopressin (Vp): immunocytochemical evidence for a correlation with their functional state in colchicine treated rats. Exp Brain Res 61: 497–505CrossRefGoogle Scholar
  9. Alonso G, Szafarczyk A, Balmefrezol M, Assenmacher I (1986c) Immunocytochemical evidence for stimulatory control by the ventral noradrenergic bundle of parvocellular neurons of the paraventricular nucleus secreting corticotropin releasing hormone (CRH) and vasopressin (Vp) in rats. Brain Res 397: 297–307CrossRefGoogle Scholar
  10. Armstrong DM (1985) Cholinergic innervation of vasopressin containing neurons in the supra-optic nucleus of the rat. In: Scherer RW (ed) Vasopressin, Raven Press, New York, pp 353–360Google Scholar
  11. Armstrong WE, Dreifuss JJ (1982) Modulation of neurohypophysial function at hypothalamic and neurohypophysial levels. In: Tixier-Vidal A, Richard P (eds) Multihormonal regulations of neuroendocrine cells. INSERM, Paris, pp 145–170Google Scholar
  12. Arnaud E, Cirino M, Layton BS, Renaud LP (1983) Contrasting actions of amino acids, acetylcholine, noradrenaline and leucine-enkephalin on the excitability of supraoptic vasopressinsecreting neurons. Neuroendocrinology 36: 187–196CrossRefGoogle Scholar
  13. Bargmann W, (1949) Über die neurosekretorische Verknüpfung von Hypothalamus und Neuro-hypophyse. Z Zellforsch 34: 610–634PubMedGoogle Scholar
  14. Bugnon C, Fellmann D, Gouget A, Cardot J (1982) Corticoliberin in rat brain: immunocytochemical identification and localization of a novel neuroglandular system. Neurosci Lett 30: 25–30PubMedCrossRefGoogle Scholar
  15. Buijs RM, Geffard M, Pool CW, Hoorneman MD (1984) The dopaminergic innervation of the supraoptic and paraventricular nucleus. A light and electron microscopical study. Brain Res 323: 65–72PubMedCrossRefGoogle Scholar
  16. Cannata MA, Morris JF (1973) Change in the appearance of hypothalamo-neurohypophysial neurosecretory granules associated with their maturation. J Endocrinol 57: 531–538PubMedCrossRefGoogle Scholar
  17. Day TA, Renaud LP (1984) Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons. Brain Res 303: 233–240PubMedCrossRefGoogle Scholar
  18. Freund-Mercier MJ, Richard P (1984) Electrophysiological evidence for facilitatory control of oxytocin neurons by oxytocin during suckling in the rat. J Physiol 352: 447–466PubMedGoogle Scholar
  19. Gainer H (1981) The biology of neurosecretory neurons. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven Press, New York, pp 5–20Google Scholar
  20. Hatton GI, Tweedle LD (1982) Magnocellular neuropeptidergic neurons in hypothalamus: Increases in membrane apposition and number of specialized synapses from pregnancy to lactation. Brain Res Bull 8: 197–204PubMedCrossRefGoogle Scholar
  21. Ixart G, Conte-Devolx B, Szafarczyk A, Arancibia S, Oliver C, Assenmacher I (1984) Central mechanisms involved in the corticotropic response to ether-stress in rats. Exc Medica Internat Congr Ser 652: 742Google Scholar
  22. Ixart G, Cryssogelou H, Szafarczyk A, Malaval F, Assenmacher I (1983) Acute and delayed ef- fects of picrotoxin on the adrenocorticotropic system of rats. Neurosci Lett 43: 235–240PubMedCrossRefGoogle Scholar
  23. Ixart G, Szafarczyk A, Belugou JL, Assenmacher I (1979) Temporal relationships between the diurnal rhythm of hypothalamic CRF, pituitary ACTH and plasma corticosterone in the rat. J Endocrinol 72: 113–120CrossRefGoogle Scholar
  24. Ixart G, Szafarczyk A, Malaval F, Assenmacher I (1985) Impairement of the ether stress induced ACTH surge in rats by ablation of the suprachiasmatic nuclei or by i.p. injections of pCPA. Neuroendocrinol Lett 7: 171–174Google Scholar
  25. Lightman SL, Todd K, Everitt B (1983) Role of lateral tegmental noradrenergic neurons in the vasopressin response to hypertonic saline. Neurosci Lett 42: 55–59PubMedCrossRefGoogle Scholar
  26. Lincoln DW, Wakerley JB (1975) Factors governing the periodic activation of supraoptic and paraventricular neurosecretory cells during suckling in the rat. J Physiol (London) 25: 443–461Google Scholar
  27. Mezey E, Kiss JZ, Skiboll LR, Goldstein M, Axelrod J (1984) Increase of corticotropin-releasing factor staining in rat paraventricular nucleus neurons by depletion of hypothalamic adrenaline. Nature 310: 140–141PubMedCrossRefGoogle Scholar
  28. Moos F, Richard P (1979) Effects of dopaminergic antagonist and agonist on oxytocin release induced by various stimuli. Neuroendocrinology 28: 138–144PubMedCrossRefGoogle Scholar
  29. Moos F, Richard P (1980) Double contrôle noradrénergique de la libération d’oxytocine pendant le réflexe d’éjection du lait chez la ratte. C R Acad Sci (Paris) 290: 1261–1264Google Scholar
  30. Moos F, Freund-Mercier MJ, Richard P (1982) Contrôle aminergique et peptidergique des activations neurosécrétrices des cellules oxytocinergiques pendant la tétée. In: Tixier-Vidal A, Richard P (eds) Multihormonal regulations of neuroendocrine cells. Ed INSERM, Paris, 110: 121–114Google Scholar
  31. Poulain DA, Wakerley JB (1982) Electrophysiology of hypothalamic magnocellular neurons secreting oxytocin and vasopressin. Neuroscience 7: 773–808PubMedCrossRefGoogle Scholar
  32. Randle JCR, Bourque CW, Renaud LP (1984). a-Adrenergic activation of rat hypothalamic supraoptic neurons maintained in vitro. Brain Res 307:374–378PubMedCrossRefGoogle Scholar
  33. Sawchenko PE, Swanson LW (1983) The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat. J Comp Neurol 218: 121–144PubMedCrossRefGoogle Scholar
  34. Scharrer E (1928) Die Lichtempfindlichkeit blinder Elritzen (Untersuchungen über das Zwischenhirn der Fische). Z vergleich Physiol 7: 1–38CrossRefGoogle Scholar
  35. Selye H (1934) On the nervous control of lactation. Am J Physiol 107: 535–538Google Scholar
  36. Silvermann AJ, Olfield B, Hou-Yu A, Zimmerman EA (1984) The noradrenergic innervation of vasopressin neurons in the paraventricular nucleus of the hypothalamus: An ultrastructural study using radioautography and immunocytochemistry, Brain Res 325: 215–229CrossRefGoogle Scholar
  37. Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Ann Rev Neurosci 6: 269–324PubMedCrossRefGoogle Scholar
  38. Szafarczyk A, Alonso G, Ixart G, Malaval F, Assenmacher I (1985) Diurnal stimulated and stress induced ACTH release in rats by ventral noradrenergic bundle. Am J Physiol 249: E219–226PubMedGoogle Scholar
  39. Szafarczyk A, Alonso G, Malaval F, Gibaud R, Assenmacher I (1986) Central adrenergic and noradrenergic stimulatory control of the CRH-ACTH axis in the rat. Abstr 1st Internat Congr Neuroendocrinol, San Francisco, p 99Google Scholar
  40. Szafarczyk A, Ixart G, Alonso G, Malaval F, Nouguier-Soulé J, Assenmacher I (1983) CNS control of circadian adrenocortical rhythm. J Ster Biochem 19: 1009–1015CrossRefGoogle Scholar
  41. Tanaka J, Kaba H, Saito H, Seto K (1985) Inputs from the Al noradrenergic region to hypothalamic paraventricular neurons in the rat. Brain Res 335: 368–371PubMedCrossRefGoogle Scholar
  42. Théodosis DT (1985) Oxytocin-immunoreactive terminals synapse on oxytocin neurons in the supraoptic nucleus. Nature 313: 682–684PubMedCrossRefGoogle Scholar
  43. Théodosis DT, Chapman DB, Montagnese C, Poulain DA, Morris JF (1986a) Structural plasticity in the hypothalamic supraoptic nucleus at lactation affects oxytocin-, but not vasopressin-secreting neurons. Neuroscience 17: 661–678CrossRefGoogle Scholar
  44. Théodosis DT, Taut L, Tapaz ML (1986b) Immunocytochemical analysis of the GABAergic innervation of oxytocin and vasopressin secreting neurons in rat supraoptic nucleus. Neuroscience 19: 207–222CrossRefGoogle Scholar
  45. Tramu G, Beauvilain JC, Croix D, Pillez A, Garaud JC (1984) Arguments immunohistochimiques en faveur de la colocalisation des neuropeptides dans les systèmes de neurones hypothalamo-infundibulaires. Ann Endocrinol 45: 175–187Google Scholar
  46. Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and ß-endorphin. Science 213: 1397–1398CrossRefGoogle Scholar
  47. Vale WW, Vaughan J, Smith M, Yamamoto G, Rivier J, Rivier C (1983) Effects of synthetic ovine CRF, glucorticoids, catecholamines, neurohypophysial peptides and other substances on cultured corticotropic cells. Endocrinology 113: 1121–1131PubMedCrossRefGoogle Scholar
  48. Wakerley JB, Lincoln DW (1971) Phasic discharge of antidromically identified units in the paraventricular nucleus of the hypothalamus. Brain Res 25: 192–194CrossRefGoogle Scholar
  49. Whitnall MH, Mezey E, Gainer H (1985) Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature 317: 248–250PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • I. Assenmacher
    • 1
  • G. Alonso
    • 1
  1. 1.Laboratory of Endocrinological Neurobiology, UA 1197-CNRS, Department of PhysiologyUniversity of Montpellier IIMontpellierFrance

Personalised recommendations