Skip to main content

Morphofunctional Patterns of the Hypothalamic-Neurohypophyseal and Related Neuronal Systems

  • Chapter

Abstract

It was almost six decades ago that Ernst Scharrer proposed in 1928 that his pioneer description of a new class of neurons — the hypothalamic neurosecretory neurons — might also provide the basis for anterior pituitary regulation. Today, his bold concept of neurosecretion not only emerges as the universal keystone of neuroendocrine regulatory systems, but has further developed as one of the most heuristic concepts in cellular neurobiology, whether it is oriented towards neurohormonal output or interneuronal transmission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnati LF, Fuxe K, Yu ZY, Harfstrans A, Okret S, Wikstrom AC, Goldstein M, Zoli M, Vale W, Gustafsson JA (1985) Morphometrical analysis of the distribution of corticotropin releasing factor, glucocorticoid receptor and phenylethanolamine-N-methyltransferase immunoreactive structures in the paraventricular hypothalamic nucleus of the rat. Neurosci Lett 54: 147–152

    Article  PubMed  CAS  Google Scholar 

  • Alonso G, Assenmacher I (1979) The smooth endoplasmic reticulum in neurohypophysial axons of the rat. Possible involvement in transport, storage and release of neurosecretory material. Cell Tissue Res 199: 415–429

    Article  PubMed  CAS  Google Scholar 

  • Alonso G, Assenmacher I (1981) Radioautographic studies on the neurohypophysial projections of the supraoptic and paraventricular nuclei in the rat. Cell Tissue Res 219: 525–534

    Article  PubMed  CAS  Google Scholar 

  • Alonso G, Assenmacher I (1983) Retrograde axoplasmic transport of neurosecretory material: an immunocytochemical and electron microscopic study of transected axons in normal and colchicine treated rats. Cell Tissue Res 233: 183–196

    Article  PubMed  CAS  Google Scholar 

  • Alonso G, Assenmacher I (1984) Ultrastructural analysis of the noradrenergic innervation of the rat supraoptic nucleus. Neurosci Lett 49: 46–50

    Article  Google Scholar 

  • Alonso G, Czernichow P, Assenmacher I (1985) Reserpine inhibits release of vasopressin from the neural lobe of the pituitary in dehydrated rats. Cell Tissue Res 240: 375–380

    Article  PubMed  CAS  Google Scholar 

  • Alonso G, Szafarczyk A, Assenmacher I (1986a) Radioautographic evidence that axons from the area of supraoptic nuclei in the rat project to extra-hypothalamic brain regions. Neurosci Lett 66: 251–256

    Article  CAS  Google Scholar 

  • Alonso G, Szafarczyk A, Assenmacher I (1986b) Immunoreactivity of hypothalamo-neurohypophysial neurons which secrete corticotropin-releasing hormone (CRH) and vasopressin (Vp): immunocytochemical evidence for a correlation with their functional state in colchicine treated rats. Exp Brain Res 61: 497–505

    Article  CAS  Google Scholar 

  • Alonso G, Szafarczyk A, Balmefrezol M, Assenmacher I (1986c) Immunocytochemical evidence for stimulatory control by the ventral noradrenergic bundle of parvocellular neurons of the paraventricular nucleus secreting corticotropin releasing hormone (CRH) and vasopressin (Vp) in rats. Brain Res 397: 297–307

    Article  CAS  Google Scholar 

  • Armstrong DM (1985) Cholinergic innervation of vasopressin containing neurons in the supra-optic nucleus of the rat. In: Scherer RW (ed) Vasopressin, Raven Press, New York, pp 353–360

    Google Scholar 

  • Armstrong WE, Dreifuss JJ (1982) Modulation of neurohypophysial function at hypothalamic and neurohypophysial levels. In: Tixier-Vidal A, Richard P (eds) Multihormonal regulations of neuroendocrine cells. INSERM, Paris, pp 145–170

    Google Scholar 

  • Arnaud E, Cirino M, Layton BS, Renaud LP (1983) Contrasting actions of amino acids, acetylcholine, noradrenaline and leucine-enkephalin on the excitability of supraoptic vasopressinsecreting neurons. Neuroendocrinology 36: 187–196

    Article  Google Scholar 

  • Bargmann W, (1949) Über die neurosekretorische Verknüpfung von Hypothalamus und Neuro-hypophyse. Z Zellforsch 34: 610–634

    PubMed  CAS  Google Scholar 

  • Bugnon C, Fellmann D, Gouget A, Cardot J (1982) Corticoliberin in rat brain: immunocytochemical identification and localization of a novel neuroglandular system. Neurosci Lett 30: 25–30

    Article  PubMed  CAS  Google Scholar 

  • Buijs RM, Geffard M, Pool CW, Hoorneman MD (1984) The dopaminergic innervation of the supraoptic and paraventricular nucleus. A light and electron microscopical study. Brain Res 323: 65–72

    Article  PubMed  CAS  Google Scholar 

  • Cannata MA, Morris JF (1973) Change in the appearance of hypothalamo-neurohypophysial neurosecretory granules associated with their maturation. J Endocrinol 57: 531–538

    Article  PubMed  CAS  Google Scholar 

  • Day TA, Renaud LP (1984) Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons. Brain Res 303: 233–240

    Article  PubMed  CAS  Google Scholar 

  • Freund-Mercier MJ, Richard P (1984) Electrophysiological evidence for facilitatory control of oxytocin neurons by oxytocin during suckling in the rat. J Physiol 352: 447–466

    PubMed  CAS  Google Scholar 

  • Gainer H (1981) The biology of neurosecretory neurons. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven Press, New York, pp 5–20

    Google Scholar 

  • Hatton GI, Tweedle LD (1982) Magnocellular neuropeptidergic neurons in hypothalamus: Increases in membrane apposition and number of specialized synapses from pregnancy to lactation. Brain Res Bull 8: 197–204

    Article  PubMed  CAS  Google Scholar 

  • Ixart G, Conte-Devolx B, Szafarczyk A, Arancibia S, Oliver C, Assenmacher I (1984) Central mechanisms involved in the corticotropic response to ether-stress in rats. Exc Medica Internat Congr Ser 652: 742

    Google Scholar 

  • Ixart G, Cryssogelou H, Szafarczyk A, Malaval F, Assenmacher I (1983) Acute and delayed ef- fects of picrotoxin on the adrenocorticotropic system of rats. Neurosci Lett 43: 235–240

    Article  PubMed  CAS  Google Scholar 

  • Ixart G, Szafarczyk A, Belugou JL, Assenmacher I (1979) Temporal relationships between the diurnal rhythm of hypothalamic CRF, pituitary ACTH and plasma corticosterone in the rat. J Endocrinol 72: 113–120

    Article  Google Scholar 

  • Ixart G, Szafarczyk A, Malaval F, Assenmacher I (1985) Impairement of the ether stress induced ACTH surge in rats by ablation of the suprachiasmatic nuclei or by i.p. injections of pCPA. Neuroendocrinol Lett 7: 171–174

    CAS  Google Scholar 

  • Lightman SL, Todd K, Everitt B (1983) Role of lateral tegmental noradrenergic neurons in the vasopressin response to hypertonic saline. Neurosci Lett 42: 55–59

    Article  PubMed  CAS  Google Scholar 

  • Lincoln DW, Wakerley JB (1975) Factors governing the periodic activation of supraoptic and paraventricular neurosecretory cells during suckling in the rat. J Physiol (London) 25: 443–461

    Google Scholar 

  • Mezey E, Kiss JZ, Skiboll LR, Goldstein M, Axelrod J (1984) Increase of corticotropin-releasing factor staining in rat paraventricular nucleus neurons by depletion of hypothalamic adrenaline. Nature 310: 140–141

    Article  PubMed  CAS  Google Scholar 

  • Moos F, Richard P (1979) Effects of dopaminergic antagonist and agonist on oxytocin release induced by various stimuli. Neuroendocrinology 28: 138–144

    Article  PubMed  CAS  Google Scholar 

  • Moos F, Richard P (1980) Double contrôle noradrénergique de la libération d’oxytocine pendant le réflexe d’éjection du lait chez la ratte. C R Acad Sci (Paris) 290: 1261–1264

    CAS  Google Scholar 

  • Moos F, Freund-Mercier MJ, Richard P (1982) Contrôle aminergique et peptidergique des activations neurosécrétrices des cellules oxytocinergiques pendant la tétée. In: Tixier-Vidal A, Richard P (eds) Multihormonal regulations of neuroendocrine cells. Ed INSERM, Paris, 110: 121–114

    Google Scholar 

  • Poulain DA, Wakerley JB (1982) Electrophysiology of hypothalamic magnocellular neurons secreting oxytocin and vasopressin. Neuroscience 7: 773–808

    Article  PubMed  CAS  Google Scholar 

  • Randle JCR, Bourque CW, Renaud LP (1984). a-Adrenergic activation of rat hypothalamic supraoptic neurons maintained in vitro. Brain Res 307:374–378

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1983) The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat. J Comp Neurol 218: 121–144

    Article  PubMed  CAS  Google Scholar 

  • Scharrer E (1928) Die Lichtempfindlichkeit blinder Elritzen (Untersuchungen über das Zwischenhirn der Fische). Z vergleich Physiol 7: 1–38

    Article  Google Scholar 

  • Selye H (1934) On the nervous control of lactation. Am J Physiol 107: 535–538

    Google Scholar 

  • Silvermann AJ, Olfield B, Hou-Yu A, Zimmerman EA (1984) The noradrenergic innervation of vasopressin neurons in the paraventricular nucleus of the hypothalamus: An ultrastructural study using radioautography and immunocytochemistry, Brain Res 325: 215–229

    Article  Google Scholar 

  • Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Ann Rev Neurosci 6: 269–324

    Article  PubMed  CAS  Google Scholar 

  • Szafarczyk A, Alonso G, Ixart G, Malaval F, Assenmacher I (1985) Diurnal stimulated and stress induced ACTH release in rats by ventral noradrenergic bundle. Am J Physiol 249: E219–226

    PubMed  CAS  Google Scholar 

  • Szafarczyk A, Alonso G, Malaval F, Gibaud R, Assenmacher I (1986) Central adrenergic and noradrenergic stimulatory control of the CRH-ACTH axis in the rat. Abstr 1st Internat Congr Neuroendocrinol, San Francisco, p 99

    Google Scholar 

  • Szafarczyk A, Ixart G, Alonso G, Malaval F, Nouguier-Soulé J, Assenmacher I (1983) CNS control of circadian adrenocortical rhythm. J Ster Biochem 19: 1009–1015

    Article  CAS  Google Scholar 

  • Tanaka J, Kaba H, Saito H, Seto K (1985) Inputs from the Al noradrenergic region to hypothalamic paraventricular neurons in the rat. Brain Res 335: 368–371

    Article  PubMed  CAS  Google Scholar 

  • Théodosis DT (1985) Oxytocin-immunoreactive terminals synapse on oxytocin neurons in the supraoptic nucleus. Nature 313: 682–684

    Article  PubMed  Google Scholar 

  • Théodosis DT, Chapman DB, Montagnese C, Poulain DA, Morris JF (1986a) Structural plasticity in the hypothalamic supraoptic nucleus at lactation affects oxytocin-, but not vasopressin-secreting neurons. Neuroscience 17: 661–678

    Article  Google Scholar 

  • Théodosis DT, Taut L, Tapaz ML (1986b) Immunocytochemical analysis of the GABAergic innervation of oxytocin and vasopressin secreting neurons in rat supraoptic nucleus. Neuroscience 19: 207–222

    Article  Google Scholar 

  • Tramu G, Beauvilain JC, Croix D, Pillez A, Garaud JC (1984) Arguments immunohistochimiques en faveur de la colocalisation des neuropeptides dans les systèmes de neurones hypothalamo-infundibulaires. Ann Endocrinol 45: 175–187

    CAS  Google Scholar 

  • Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and ß-endorphin. Science 213: 1397–1398

    Article  Google Scholar 

  • Vale WW, Vaughan J, Smith M, Yamamoto G, Rivier J, Rivier C (1983) Effects of synthetic ovine CRF, glucorticoids, catecholamines, neurohypophysial peptides and other substances on cultured corticotropic cells. Endocrinology 113: 1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Wakerley JB, Lincoln DW (1971) Phasic discharge of antidromically identified units in the paraventricular nucleus of the hypothalamus. Brain Res 25: 192–194

    Article  Google Scholar 

  • Whitnall MH, Mezey E, Gainer H (1985) Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature 317: 248–250

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Assenmacher, I., Alonso, G. (1987). Morphofunctional Patterns of the Hypothalamic-Neurohypophyseal and Related Neuronal Systems. In: Scharrer, B., Korf, HW., Hartwig, HG. (eds) Functional Morphology of Neuroendocrine Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72886-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72886-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72888-4

  • Online ISBN: 978-3-642-72886-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics