Skip to main content

Mode of Action, Biotransformation and Pharmacokinetics of Antituberculosis Drugs in Animals and Man

  • Chapter
Antituberculosis Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 84))

Abstract

The biological activity of a drug determined in vitro (e.g., the minimal inhibitory concentration) is a parameter decisive in determining the effect of antituberculotics on mycobacteria in a disease focus. Knowledge of the mode of action yields further therapeutically important information, such as whether intervention of the agent in the bacterial metabolism has any serious consequences or whether the damage is reversible within limits, depending on concentration or time. In addition, the risk of the development of resistance and the incidence of certain side effects in the host organism can be assessed, though it is currently possible only to a moderate extent to derive a proposal for a useful combination therapy on the basis of the mode of action of the drugs in question (Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

SM:

streptomycin

TSC:

thiacetazone, thiosemicarbazone

PAS:

p-aminosalicylic acid

INH:

isoniazid

PZA:

pyrazinamide

CS:

d-cycloserine

TC:

tetracyclines

KM:

kanamycin

DATC:

dithiocarbanilide, thiocarlide

VM:

viomycin

ETH/PTH:

ethionamide, protionamide

EMB:

ethambutol

CM:

capreomycin

RMP:

rifampicin

ATP:

adenosine triphosphate

-(P):

-phosphate

Glu-6-(P):

glucose-6-phosphate

Glu-1-(P):

glucose-1-phosphate

Fru-6-(P):

fructose-6-phosphate

NAD:

nicotinamide-adenine dinucleotide

m-RNA:

messenger-RNA

t-RNA:

transfer-RNA

MIC:

minimal inhibitory concentration

t50% :

half-life

References

  • Abai AM, Tomchani A (1979) Rifampicin binding by the blood serum proteins. Probl Tuberk 67 issue 1: 54–59

    Google Scholar 

  • Abshagen U, Demmer F (1981) Vorteile and Probleme von Retardpräparaten. Med Klin 76: 484–490

    PubMed  CAS  Google Scholar 

  • Acocella G (1971) A metabolic and kinetic study on the association rifampicin-isoniazid. Respiration 28 Suppl: 1–6

    PubMed  Google Scholar 

  • Acocella G (1978) Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet 3: 108–127

    PubMed  CAS  Google Scholar 

  • Acocella G (1984) La farmacocinetica dei farmaci antitubercolari nell’ uomo. Minerva Med 75: 561–563

    PubMed  CAS  Google Scholar 

  • Acocella G, Conti R (1980) Interaction of rifampicin with other drugs. Tubercle 61: 171–177

    PubMed  CAS  Google Scholar 

  • Acocella G, Pagani V, Marchetti M, Baroni GC, Nicolis FB (1971) Kinetic studies on rifampicin. I. Serum concentration analysis in subjects treated with different oral doses over a period of two weeks. Chemotherapy 16: 356–370

    PubMed  CAS  Google Scholar 

  • Acocella G, Bonollo L, Garimoldi M, Mainhardi M, Tenconi LT, Nicolis FB (1972) Kinetics of rifampicin and isoniazid administered alone and in combination to normal subjects and patients with liver disease. GUT 13: 47–53

    PubMed  CAS  Google Scholar 

  • Acocella G, Hamilton-Miller JMT, Brumfitt W (1977) Can rifampicin use be safely extended? Lancet I: 740–741

    Google Scholar 

  • Acocella G, Brumfitt W, Hamilton-Miller JM (1980) Evidence that rifampicin can be used safely for nontuberculous diseases. Thorax 35: 788

    PubMed  CAS  Google Scholar 

  • Acocella G, Carlone UA, Cuffini AM, Cavallo G (1985) The penetration of rifampicin, pyrazinamide and pyrazinoic acid into mouse macrophages. Amer Rev Respir Dis 132: 1268–1273

    CAS  Google Scholar 

  • Ahmad D, Mathur P, Ahuja S, Henderson R, Carruthers G (1979) Rifampicin-quinidine interaction. Br J Dis Chest 73: 409–411

    PubMed  CAS  Google Scholar 

  • Akinosho BOO (1979) Pyrazinamide in the treatment of tuberculosis. A world review. Actes d’un Symposium tenu à Alger. Laboratoires Bracco, Milan, pp 25–29

    Google Scholar 

  • Allen BW, Ellard GA, Gammon PT (1975) The penetration of dapsone, rifampicin, isoniazid and pyrazinamide into peripheral nerves. Br J Pharmacol 55: 151–155

    PubMed  CAS  Google Scholar 

  • Altmann AE, Beeuwkes H, Brombacher PJ, Buytendijk HJ, Gijzen AHJ, Maesen FPV (1968) Serum levels of tetracycline after different administration forms. Clin Chim Acta 20: 185–188

    PubMed  CAS  Google Scholar 

  • Aoyagi T (1977) Clinical problems on the binding of protein to antituberculous drugs. Kekkaku 52: 459–468

    PubMed  CAS  Google Scholar 

  • Arima K, Izaki K (1963) Accumulation of oxytetracycline relevant to its bactericidal action in the cells of Escherichia coli. Nature 200: 192–193

    PubMed  CAS  Google Scholar 

  • Asker A, El-Nakeeb M, Motawi M, El-Gindy N (1973a) Effect of certain tablet formulation factors on the antimicrobial activity of tetracycline hydrochloride and chloramphenicol. Part 2: effect of disintegrants. Pharmazie 28: 474–476

    CAS  Google Scholar 

  • Asker A, El-Nakeeb M, Motawi M, El-Gindy N (1973b) Effect of certain tablet formulation factors on the antimicrobial activity of tetracycline hydrochloride and chloramphenicol. Part 3: effect of lubricants. Pharmazie 28: 476–478

    CAS  Google Scholar 

  • Awaness AM, Mitchison DA (1973) Cumulative effects of pulsed exposures of Mycobacterium tuberculosis to isoniazid. Tubercle 54: 153–158

    PubMed  CAS  Google Scholar 

  • Baba H, Takahashi R, Azuma Y (1971) Rifampicin in the retreatment of severe cavitary pulmonary tuberculosis. 2nd part: drug resistance, drug concentration in blood and side effects. Kekkaku 46: 481–489

    PubMed  CAS  Google Scholar 

  • Baronti A, Manfredi N (1968) Blood levels of isoniazid and of its methane sulphonate derivative in rapid and slow inactivators after oral administration. Tubercle 49: 104–109

    PubMed  CAS  Google Scholar 

  • Barr WH, Gerbracht LM, Letcher K, Plaut M, Strahl N (1972) Assessment of the biologic availability of tetracycline products in man Clin Pharmacol Ther 13: 97–108

    CAS  Google Scholar 

  • Bartmann K (1960) Langfristige Einwirkung von Isonicotinsäurehydrazid und Streptomycin auf ruhende Tuberkelbakterien in vitro. Beitr Klin Tuberk 122: 94–113

    CAS  Google Scholar 

  • Bartmann K, Freise G (1963) Mikrobiologisch bestimmte Isoniazid-Konzentrationen im Gewebe von Tier und Mensch. Beitr Klin Tuberk 127: 546–560

    CAS  Google Scholar 

  • Bartmann K, Massmann W (1960) Der Blutspiegel des INH bei Erwachsenen und Kindern. Beitr Klin Tuberk 122: 239–250

    CAS  Google Scholar 

  • Bartmann K, Radenbach KL, Zierski M (1985) Wandlungen in den Auffassungen und der Durchführung der antituberkulösen Chemotherapie. Prax Klin Pulmol 39: 397–420

    CAS  Google Scholar 

  • Baumgarten R (1983) Arzneimittelnebenwirkungen–vorhersehbare Gefahr für Leber-kranke? Z Arztl Fortbild 77: 373–375

    CAS  Google Scholar 

  • Beeuwkes H, Buytendijk HJ, Maesen FPV (1969) Der Wert des Rifampicin bei der Behandlung von Patienten mit bronchopulmonären Affektionen. Arzneimittelforsch 19: 1283–1285

    PubMed  CAS  Google Scholar 

  • Begg KJ (1967) The susceptibility of mycobacteria to rifamide and rifampicin. Addendum on serum levels. Tubercle 48: 149–150

    Google Scholar 

  • Beggs WH, Andrews FA (1973a) Uptake of ethambutol by Mycobacterium smegmatis and its relation to growth inhibition. Am Rev Respir Dis 108: 691–693

    CAS  Google Scholar 

  • Beggs WH, Andrews FA (1973b) Primary binding of ethambutol by Mycobacterium smegmatis. Am Rev Respir Dis 108: 983–984

    CAS  Google Scholar 

  • Beggs WH, Auran NE (1972) Uptake and binding of 14C-ethambutol by tubercle bacilli and the relation of binding to growth inhibition. Antimicrob Agents Chemother 2: 390–394

    PubMed  CAS  Google Scholar 

  • Beggs WH, Jenne JW (1969) Isoniazid uptake and growth inhibition of Mycobacterium tuberculosis in relation to time and concentration of pulsed drug exposures. Tubercle 50: 377–385

    PubMed  CAS  Google Scholar 

  • Benazet F, Dubost M, Jolles G, Leau O, Pascal C, Preud’homme J, Terlain B (1968) Liaisons et modifications des antibiotiques in vivo (sang et foyer infectieux). Biologie Médicale 57: 376–401

    CAS  Google Scholar 

  • Bending MR, Skacel PO (1977) Rifampicin and methadone withdrawal. Lancet I: 1211

    Google Scholar 

  • Benkert K, Blaha H, Petersen KF, Schmid PCh (1974) Tagesprofile und Profilverlaufskontrollen von Ethambutol bei Kindern. Med Klin 69: 1808–1813

    PubMed  CAS  Google Scholar 

  • Binda G, Domenichini E, Gottardi A, Orlandi B, Ortelli E, Pacini B, Foust G (1971) Rifampicin, a general review. Arzneimittelforsch 21: 1907–1977 (W, B, Ph)

    PubMed  CAS  Google Scholar 

  • Black HR, Griffith RS, Peabody AM (1966) Absorption, excretion and metabolism of capreomycin in normal and diseased states. Ann NY Acad Sci 135: 974–982

    PubMed  CAS  Google Scholar 

  • Boddingius J, Stolz E (1981) Do anti-leprosy drugs reach Mycobacterium leprae in peripheral nerves? Lancet I: 774–775

    Google Scholar 

  • Bolt HM, Kappus H, Bolt M (1974) Rifampicin and oral contraception. Lancet 1: 1280–1281

    PubMed  CAS  Google Scholar 

  • Bolt HM, Kappus H, Bolt M (1975) Effect of rifampicin treatment on the metabolism of oestradiol and 17-a-ethinyloestradiol by human liver microsomes. Eur J Clin Pharmacol 8: 301–307

    PubMed  CAS  Google Scholar 

  • Bolt HM, Kappus H, Bolt M (1976) Interaction of rifampicin with estrogen metabolism. Naunyn-Schmiedebergs Arch Pharmacol 294 Suppl: R 8

    Google Scholar 

  • Boman G (1974) Clinical and experimental studies on rifampicin: distribution, kinetics and drug interactions. Thesis, Stockholm

    Google Scholar 

  • Boman G (1975) Autoradiographic studies of the distribution of rifampicin. Scand J Respir Dis Suppl 93: 3

    Google Scholar 

  • Boman G, Ringberger V-A (1974) Binding of rifampicin by human plasma proteins. Eur J Clin Pharmacol 7: 369–373

    PubMed  CAS  Google Scholar 

  • Boman G, Borga O, Hanngren A, Malmborg A-St, Sjöqvist E (1970) Pharmakokinetische und genetische Gesichtspunkte über den Metabolismus von Isoniazid, p-Aminosalicylsäure und Rifampicin. Pneumonologie, Suppl 15–20

    Google Scholar 

  • Boman G, Hanngren A, Malmborg A-St, Borga O, Sjöqvist F (1971) Drug interaction: decreased serum concentrations of RMP when given with PAS. Lancet I: 800

    Google Scholar 

  • Boman G, Lundgren P, Stjernström G (1975) Mechanism of the inhibitory effect of PAS granules on the absorption of rifampicin: adsorption of rifampicin by an excipient, bentonite. Eur J Clin Pharmacol 8: 293–299

    PubMed  CAS  Google Scholar 

  • Bondarev IM, Bolgaya TM (1980) Effect of various isoniazid concentrations on a highly resistant variant of Mycobacterium tuberculosis. Probl Tuberk 58 issue 8: 65–69

    Google Scholar 

  • Boulahbal F, Khaled S, Bouhassen H, Larbaoui D (1979) Étude de l’absorption et de l’élimination urinaire du pyrazinamide administré seul ou en association avec l’isoniazide et la rifampicine. Actes d’un Symposium „Le Pyrazinamide 25 ans après“ tenu à Alger, Laboratoires Bracco, Milan, pp 35–42

    Google Scholar 

  • Brouet G, Modai J, Vergez P (1969) Clinical trial of rifampin alone. A study of serum concentrations. Rev Tuberc Pneumol 33: 27–42

    CAS  Google Scholar 

  • Buffington GA, Dominguez JH, Piering WF, Hebert LA, Kauffman HM, Lemann J (1976) Interaction of rifampin and glucocorticoids. JAMA 236: 1958–1960

    PubMed  CAS  Google Scholar 

  • Burkhardt KR, Nel EE (1980) Monitoring regularity of drug intake in tuberculous patients by means of simple urine tests. S Afr Med J 57: 981–985

    PubMed  CAS  Google Scholar 

  • Canetti G, Djurovic V, Le Lirzin M, Thibier R, Lepeuple A (1970) Etude comparative de l’ évolution des taux sanguins de rifampicine chez l’ homme par deux méthodes micro-biologiques différentes. Rev Tuberc Pneumol 34: 93–106

    CAS  Google Scholar 

  • Carlone NA, Acocella G, Cuffini AM, Forno-Pizzoglio MN (1985) Killing of macrophage-ingested mycobacteria by rifampicin, pyrazinamide and pyrazinoic acid alone and in combination. Am Rev Respir Dis 132: 1274–1277

    PubMed  CAS  Google Scholar 

  • Carpenter OS, Northam JI, Wagner JG (1966) Use of kinetic models in the study of antibiotic absorption, metabolism and excretion. In: Herold M, Gabriel Z (eds) Antibiotics — Advances in research, production and clinical use. Butterworths, London, Prague: Czechoslowak Medical Press, pp 165–172

    Google Scholar 

  • Cartwright RA, Rogers HJ, Barham-Hall D, Glashan RW, Ahmad RA, Higgins E, Kahn MA (1982) Role of N-acetyltransferase phenotypes in bladder carcinogenesis: a pharmacogenetic epidemiological approach to bladder cancer. Lancet I1: 842–845

    Google Scholar 

  • Chailleux E, Moigneteau Ch, Ordronneau J, Le Normand Y, Kergueris MF, Veyrac MJ, Larousse C (1980) Etude simultanée de 1’ effet inducteur de la rifampicine et du phénotype d’acetylation de l’isoniazide, chez 21 tuberculeux soumis à un traitement mixte. Rev Fr Mal Respir 8: 169–171

    Google Scholar 

  • Chojkowski W (1971) Studies on binding of ß-hydroxyethylpiperazinomethyl-tetracycline, phenoxymethylpenicillinate (PTP), phenoxymethylpenicillin (PV), cloxacillin (CL), erythromycin lactobionate (EL), lincomycin (LCM) and tetracycline (TC) by human blood albumins. Acta Pol Pharm 28: 545–549

    Google Scholar 

  • Chulski T, Johnson RH, Schlagel CA, Wagner JG (1963) Direct proportionality of urinary excretion rate and serum level of tetracycline in human subjects. Nature 198: 450–453

    PubMed  CAS  Google Scholar 

  • Cieszÿnski T (1971) Investigation of stability of therapeutics in lipophylic suppository bases. II. Determination of degradation degree of cyclovegantine, ethionamide and euphylline in suppositories. Acta Pol Pharm 28: 374–384

    Google Scholar 

  • Claunch BC, Castro V, Barnes WMT (1963) Studies on the binding of INH by serum proteins. Trans 22 Res Conf Pulm Dis VAAF: 37–42

    Google Scholar 

  • Clini V, Grassi G (1970) The action of new antituberculous drugs on intracellular tubercle bacilli. Antibiot Chemother 16: 20–26

    PubMed  CAS  Google Scholar 

  • Constans P, Saint-Paul M, Morin Y, Bonnaud G, Bariety M (1968) Rifampin: first study of plasma concentrations during prolonged treatment in pulmonary tuberculosis. Rev Tuberc Pneumol 32: 991–1005

    CAS  Google Scholar 

  • Crowle AJ, Sbarbaro JA, Judson FN, Douves GS, May MH (1984) Inhibition by streptomycin of tubercle bacilli within cultured human macrophages. Am Rev Respir Dis 130: 839–844

    PubMed  CAS  Google Scholar 

  • Crowle AJ, Sbarbaro JA, Judson FN, May MH (1985a) The effect of ethambutol on tubercle bacilli within cultured human macrophages. Am Rev Respir Dis 132: 742–745

    CAS  Google Scholar 

  • Crowle AJ, Sbarbaro JA, Judson FN, Iseman M (1985b) The antimycobacterial activity of chemotherapic agents within the human macrophage — a new test model. Am Rev Respir Dis 131 Suppl: A 232

    Google Scholar 

  • Crowle AJ, Sbarbaro JA, Iseman MD, May MH (1986) Effect of isoniazid and ceforanide against virulent tubercle bacilli in cultured human macrophages. Am Rev Respir Dis 133 issue 4, part 2: A 40

    Google Scholar 

  • Curci G, Bergamini N, Veneri FD, Ninni A, Nitti V (1972) Half-life of rifampicin after repeated administration of different doses in humans. Chemotherapy 17:373–381 Darnis F (1976) Leberstoffwechsel von Arzneimitteln. MMW 118: 805–810

    Google Scholar 

  • Decroix G, Djurovic V (1972) Taux sanguin de rifampicine chez les tuberculeux cirrhotiques. Rev Tuberc Pneumol 36: 1003–1008

    CAS  Google Scholar 

  • Dettli L (1961) Zur pharmakotherapeutischen Beeinflussung gefäßloser Bezirke im Organismus. II. Mitt. Konzentrationsverläufe im Inneren gefäßloser Bezirke. Schweiz Med Wochenschr 91: 921–927

    PubMed  CAS  Google Scholar 

  • Dettli L, Staub H (1960) Zur pharmakotherapeutischen Beeinflussung gefäßloser Bezirke im Organismus. Schweiz Med Wochenschr 90: 924–929

    PubMed  CAS  Google Scholar 

  • Devereux TR, Serabjit-Singh CJ, Slaughter SR, Wolf CR, Philpot RM, Fouts JR (1981) Identification of cytochrome P-450 isozymes in nonciliated bronchiolar epithelial (Clara) and alveolar type II cells isolated from rabbit lung. Experimental Lung Res 2: 221–230

    CAS  Google Scholar 

  • Dickinson JM, Mitchison DA (1981) Experimental models to explain the high sterilizing activity of rifampin in the chemotherapy of tuberculosis. Am Rev Respir Dis 123: 367–371

    PubMed  CAS  Google Scholar 

  • Dickinson JM, Mitchison DA (1985) Activity of the combination of fludalanine and cycloserine against mycobacteria in vitro. Tubercle 66: 109–115

    PubMed  CAS  Google Scholar 

  • Dimmling Th (1967) Bakteriologische Untersuchungen über Resorption und Excretion sowie über das Wirkungsspektrum von Alpha-6-Desoxyoxytetracyclin (Doxycyclin). Med Klin 62: 1269–1276

    PubMed  CAS  Google Scholar 

  • Dimmling Th, Wagner WH (1965) Konzentration von Tetracyclinen im Serum nach oraler und intravenöser Gabe. Arzneimittelforsch 15: 1288–1292

    PubMed  CAS  Google Scholar 

  • Doluisio JT, Dittert LW (1969) Influence of repetitive dosing of tetracyclines on biologic half-life in serum. Clin Pharmacol Ther 10: 690–701

    PubMed  CAS  Google Scholar 

  • Dost FH (1972) Absorption, Transit, Occupancy und Availments als neue Begriffe in der Biopharmazeutik. Klin Wochenschr 50: 410–412

    PubMed  CAS  Google Scholar 

  • Dost FH (1975) Definition der Begriffe Availments und Availability. Klin Wochenschr 53: 145–146

    PubMed  CAS  Google Scholar 

  • Drabkina RO, Ginzburg TS (1977) Antituberculous action and pharmacokinetics of thioacetazone. Probl Tuberk 55 issue 4: 69–71

    Google Scholar 

  • Dubinin UP (1965) Molekulargenetik. Fischer, Jena

    Google Scholar 

  • Dudchik GKh, Bilyk MA (1975) Mechanism of the excretion of the hina metabolites by the kidneys in patients with pulmonary tuberculosis. Probl Tuberk 53 issue 5: 57–61

    Google Scholar 

  • Dürckheimer W (1975) Tetracycline: Chemie, Biochemie und Struktur-Wirkungs-Bezie-hungen. Angew Chem 87: 751–784

    Google Scholar 

  • Eda T (1963a) Studies on the action of isoniazid to tubercle bacilli and the mechanism of the isoniazid-resistance in mycobacteria. I. Kekkaku 38: 37–41

    CAS  Google Scholar 

  • Eda T (1963b) Studies on the action of isoniazid to tubercle bacilli and the mechanism of the isoniazid-resistance in mycobacteria. III. Kekkaku 38: 395–398

    CAS  Google Scholar 

  • Edwards OM, Courtenay-Evans RJ, Galley JM, Hunter J, Tait AD (1974) Changes in cortisol metabolism following rifampicin therapy. Lancet 1I: 549–551

    Google Scholar 

  • Eichenwald HF (1966) Some observations on dosage and toxicity of kanamycin in premature and full-term infants. Ann NY Acad Sci 132: 984–991

    PubMed  CAS  Google Scholar 

  • Eidus L, Hodgkin MM (1975) A new isoniazid preparation designed for moderately fast and “fast” metabolizers of the drug. Arzneimittelforsch 25: 1077–1080

    PubMed  CAS  Google Scholar 

  • Ellard GA (1969) Absorption, metabolism and excretion of pyrazinamide in man. Tubercle 50: 144–158

    PubMed  CAS  Google Scholar 

  • Ellard GA (1976) A slow-release preparation of isoniazid: pharmacological aspects. Bull Int Union Tuberc 51: 143–154

    Google Scholar 

  • Ellard GA, Gammon PT, Lakshminarayan S, Fox W, Aber VR, Mitchison DA, Citron KM, Tall R (1972) Pharmacology of some slow-release preparations of isoniazid of potential use in intermittent treatment of tuberculosis. Lancet I: 340–343

    Google Scholar 

  • Ellard GA, Jenner PJ, Downs PA (1980) An evaluation of the potential use of isoniazid, acetylisoniazid and isonicotinic acid for monitoring the self-administration of drugs. Br J Clin Pharmacol 10: 369–381

    PubMed  CAS  Google Scholar 

  • Ellard GA, Gammon PT, Polansky F, Viznerova A, Havlik I, Fox W (1973) Further studies on the pharmacology of a slow-release matrix preparation of isoniazid (Smith & Nephew HS82) of potential use in the intermittent treatment of tuberculosis. Tubercle 54: 57–66

    PubMed  CAS  Google Scholar 

  • Emerson PA, Nicholson JP (1965) The absorption of 4,4-diisoamyloxythiocarbanilide (Isoxyl) using radioactive material (S35 tagged). Trans 241h Res Conf Pulm Dis VAAF: 44–45

    Google Scholar 

  • Eule H, Iwainsky H (1981) Zum Einfluß therapeutischer und biologischer Parameter auf das Auftreten von Nebenwirkungen und Beschwerden bei intermittierender Chemotherapie der Lungentuberkulose. Prax Pneumol 35: 347–353

    CAS  Google Scholar 

  • Eule H, Werner E (1966) Thiocarlide (4’4-diisoamyloxythiocarbanilide) blood levels in patients suffering from tuberculosis. Tubercle 47: 214–220

    PubMed  CAS  Google Scholar 

  • Eule H, Werner E (1970) Ethambutol-Serumspiegel bei unterschiedlicher Dosierung: Vergleich von vier verschiedenen Bestimmungsmethoden. Z Erkr Atmungsorgane 133: 443–448

    CAS  Google Scholar 

  • Eule H, Krebs A, Iwainsky H (1973) Therapie der Tuberkulose. Übersicht über den erreichten Wissensstand, Entwicklungstendenzen und noch offene Probleme. Z Erkr Atmungsorgane 138: 78–100

    CAS  Google Scholar 

  • Eule H, Werner E, Winsel K, Iwainsky H (1974a) Intermittent chemotherapy of pulmonary tuberculosis using rifampicin and isoniazid for primary treatment: the influence of various factors on the frequency of side-effects. Tubercle 55: 81–89

    Google Scholar 

  • Eule H, Iwainsky H, Kärnbach E, Kaluza P, Werner E (1974b) Möglichkeiten einer weiteren Optimierung der Tuberkulosetherapie-Ergebnisse einer kontrollierten klinischen Studie. Z Erkr Atmungsorgane 141: 233–249

    Google Scholar 

  • Eule H, Werner E, Winsel K, Iwainsky H (1985) Zur Pharmakokinetik des RMP bei intermittierender Behandlung von Patienten mit Lungentuberkulose. 2. Mitt. Zum Einfluß des RMP auf die Entwicklung der Therapie von Mykobakteriosen und nichttuberkulösen Infektionskrankheiten. Pharmazie 40: 276–277

    PubMed  CAS  Google Scholar 

  • Fabre J, Pitton JS, Kunz JP (1966) Distribution and excretion of doxycycline in man. Chemotherapia 11: 73–85

    CAS  Google Scholar 

  • Fabre J, Pitton JS, Vivieux C, Laurencet FL, Bernhardt JP, Godel JC (1967) Absorption, distribution et excrétion d’un nouvel antibiotique à large spectre chez l’homme. Schweiz Med Wochenschr 97: 915–924

    PubMed  CAS  Google Scholar 

  • Fabre J, Blanchard P, Rudhardt M (1977) Über die Pharmakokinetik von Ampicillin, Cephalotin und Doxycyclin in den Geweben der Ratte. Med Klin Sondernummer: 17–24

    Google Scholar 

  • Fedorko J, Katz S, Alinoch H (1968) In vitro activity of minocycline, a new tetracycline. Am J Med Sci 255: 252–258

    PubMed  CAS  Google Scholar 

  • Federspil P (1979) Antibiotikaschäden des Ohres, dargestellt am Beispiel des Gentamycins. Hals-, Nasen-und Ohrenheilkunde, Bd 28. Barth, Leipzig

    Google Scholar 

  • Felder E, Pitré D, Tiepolo U (1964) Hydrolyse und Bildung von Morpholinomethylpyrazinamid. 2. Mitt. Ober latente Formen chemotherapeutischer Wirkungsprinzipien. Arzneimittelforsch 14: 1227–1230

    PubMed  CAS  Google Scholar 

  • Finland M (1966) Summary of the conference on kanamycin: appraisal after eigth years of clinical application. Ann NY Acad Sci 132: 1045–1090

    Google Scholar 

  • Forgan-Smith R, Ellard GA, Newton D, Mitchison DA (1973) Pyrazinamide and other drugs in tuberculous meningitis. Lancet 11: 374

    Google Scholar 

  • Fourtillan J-B, Saux M-Cl (1978) Intérêt des tétracyclines de deuxième génération. Cornpartement pharmacocinétique. Sem Hôp Paris 54: 224–230

    PubMed  CAS  Google Scholar 

  • Franz H, Urbanczik R, Stoll K, Müller U (1974) Prothionamid-Blutspiegel nach oraler Verabreichung von Prothionamid allein oder kombiniert mit Isoniazid und/oder mit Diamino-Difenylsulfon. Prax Pneumol 28: 605–612

    PubMed  CAS  Google Scholar 

  • Frostadt S (1961) Continued studies in concentrations of para-amino-salicylic acid (PAS) in the blood. Acta Tuberc Scand 41: 68–82

    Google Scholar 

  • Füsgen I, Summa J-D, Weih H (1977) Verhalten der Serumspiegel von Oxytetracyclin und Doxycyclin unter der forcierten Diurese bei schweren Schlafmittelvergiftungen. Med Klin 72: 1645–1648

    PubMed  Google Scholar 

  • Fujii R (1966) Postcript to the panel discussion: proper dosage of kanamycin for premature babies. Ann NY Acad Sci 132: 1031–1036

    Google Scholar 

  • Furesz S, Scotti R, Pallanza R, Mapelli E (1967) Rifampicin: A new rifamycin. III. Absorption, distribution and elimination in man. Arzneimittelforsch 17: 534–537

    PubMed  CAS  Google Scholar 

  • Gaidov N (1971) Terisidon — A new synthetic tuberculosis-suppressing antibiotic. Probl Tuberk 49 issue 12: 19–22

    PubMed  CAS  Google Scholar 

  • Gajewska E (1967) Comparative determinations of concentration of ethionamide in the blood and urine. Gruzlica 35: 573–576

    PubMed  CAS  Google Scholar 

  • Gassen HG (1982) Das bakterielle Ribosom: ein programmierbares Enzym. Angew Chem 94: 15–27

    CAS  Google Scholar 

  • Gelber R, Jacobsen P, Levy L (1969) A study of the availability of six commercial formulations of isoniazid. Clin Pharmacol Ther 10: 841–848

    PubMed  CAS  Google Scholar 

  • Gibaldi M (1967) Pharmacokinetics of absorption and elimination of doxycycline in man. Chemotherapia 12: 265–271

    CAS  Google Scholar 

  • Gill GV (1976) Rifampicin and breakfast. Lancet II: 11–35

    Google Scholar 

  • Girling DJ (1984) The role of pyrazinamide in primary chemotherapy for pulmonary tuberculosis Tubercle 65: 1–4

    PubMed  CAS  Google Scholar 

  • Goldberg IH (1965) Mode of action of antibiotics. Am J Med 39: 722–752

    PubMed  CAS  Google Scholar 

  • Goldshtein VD, Ioffe RA, Kryukov VL (1977) On the rifampicin pharmacokinetics in patients with pulmonary tuberculosis. Probl Tuberk 55 issue 4: 61–66

    Google Scholar 

  • Gothoni G, Pentikäinen P, Vapaatalo HI, Hackman R, Björksten K (1972) Absorption of antibiotics: influence of metoclopramide and atropine on serum levels of pivampicillin and tetracycline. Ann Clin Res 4: 228–232

    PubMed  CAS  Google Scholar 

  • Grassi GG (1971) Aspetti dell’ attività antimicobatterica della rifampicina. Giorn Ital Mal Tor 25: 77–88

    Google Scholar 

  • Green VA (1963) Effect of neostigmine on the tissue concentration of antibiotic in streptomycin treated rats.

    Google Scholar 

  • Greenberg L, Eidus L (1962) Antituberculous drugs (Th 1314 and INH) in the host organism. Br J Dis Chest 56: 124–130

    PubMed  CAS  Google Scholar 

  • Gregoriadis G (1981) Targeting of drugs: implications in medicine. Lancet II:241–247

    Google Scholar 

  • Grönroos JA, Toivanen A (1964) Blood ethionamide levels after administration of enteric-coated and uncoated tablets. Curr Ther Res 6: 105–114

    Google Scholar 

  • Gros L, Ringsdorf H, Schupp H (1981) Polymere Antitumormittel auf molekularer und zellulärer Basis? Angew Chemie 93: 311–332

    CAS  Google Scholar 

  • Grosset J (1978) The sterilizing value of rifampicin and pyrazinamide in experimental short course chemotherapy. Tubercle 59: 287–297

    Google Scholar 

  • Grosset J (1981) Studies in short-course chemotherapy for tuberculosis. Chest 80: 719–720

    PubMed  CAS  Google Scholar 

  • Grunert M (1969) Untersuchungen zum Verhalten des a-Äthylisonicotinsäurethioamides und seines Sulfoxydes in vitro und in vivo. Dissertation, Sektion Chemie der Humboldt-Universität Berlin

    Google Scholar 

  • Grunert M, Iwainsky H (1967) Zum Stoffwechsel des Äthionamids und seines Sulfoxydes im Makroorganismus. Arzneimittelforsch 17: 411–415

    PubMed  CAS  Google Scholar 

  • Grunert M, Werner E, Iwainsky H, Eule H (1968) Veränderungen des Äthionamides und seines Sulfoxydes in vitro. Beitr Klin Tuberk 138: 68–82

    CAS  Google Scholar 

  • Gubler HU, Favez G, Bergier N, Maillard J-M, Friedrich T (1966) Beitrag zur Resorption von Thiocarlid beim Menschen. Beitr Klin Tuberk 133: 126–139

    CAS  Google Scholar 

  • Haapanen J, Gill R, Russell WF, Kass I (1960) Re-treatment of pulmonary tuberculosis. Experiences with various combinations of pyrazinamide, cycloserine and kanamycin in patients excreting tubercle bacilli resistant to both streptomycin and isoniazid Am Rev Respir Dis 82: 843–852

    CAS  Google Scholar 

  • Haar F von der, Gabius H-J, Cramer F (1981) Aminoacyl-tRNA-Synthetasen als Zielenzyme für eine rationale Arzneimittelentwicklung. Angew Chem 93: 250–256

    Google Scholar 

  • Haegi V (1961) Zur Behandlung der Lungentuberkulose mit Ethionamid (Trécator). Schweiz Z Tuberk 18: 218–226

    PubMed  CAS  Google Scholar 

  • Haegi V, Müller G (1967) Zur Tuberkulosebehandlung mit Rifamycin. Schweiz Med Wochenschr 97: 1011–1014

    PubMed  CAS  Google Scholar 

  • Hagelund C-HH, Wâhlén P, Eidsaunet W (1977) Absorption of rifampicin in gastrectomized patients. Effect of meals. Scand J Respir Dis 58: 241–246

    PubMed  CAS  Google Scholar 

  • Hakim J, Feldmann G, Boucherot J, Boivin P, Guibout P, Kreis B (1971) Effect of rifampicin, isoniazid and streptomycin on the human liver: a problem of enzyme induction. GUT 12: 761

    Google Scholar 

  • Hamacher H (1981) Möglichkeiten und Probleme organselektiver Wirkstoffe und Arzneiformen. Pharmazie 36: 391–399

    PubMed  CAS  Google Scholar 

  • Hand WL, Sorwin RW, Steinberg Th H, Grossmann GD (1984) Uptake of antibiotics by human alveolar macrophages. Am Rev Respir Dis 129: 933–937

    PubMed  CAS  Google Scholar 

  • Hanngren Ä, André T (1964) Distribution of 3H-dihydrostreptomycin in tuberculous guinea-pigs. Acta Tuberc Scand 35: 14–20

    Google Scholar 

  • Hartmann G, Behr W, Beissner K-A, Honikel K, Sippel A (1968) Antibiotica als Hemmstoffe der Nukleinsäure-und Proteinsynthese. Angew Chem 80: 710–718

    Google Scholar 

  • Held H (1979) Interaktion von Rifampicin mit Phenprocoumon. Dtsch Med Wochenschr 104: 1311–1314

    PubMed  CAS  Google Scholar 

  • Held H (1980) Verordnung von Arzneimitteln bei Leberkrankheiten. Internist (Berlin) 21: 724–734

    CAS  Google Scholar 

  • Held H, Fried F (1977) Elimination of para-aminosalicylic acid in patients with liver disease and renal insufficiency. Chemotherapy 23: 405–415

    PubMed  CAS  Google Scholar 

  • Hendrickse W, McKiernan J, Pickup M, Lowe J (1979) Rifampicin — induced non respon-siveness to corticosteroid treatment in nephrotic syndroms. Brit Med J I: 306

    Google Scholar 

  • Herken H, Gross R (1982) Praktisch wichtige Grundbegriffe der Pharmakokinetik. Internist (Berlin) 23: 593–600

    CAS  Google Scholar 

  • Hirsch HA, Finland M (1960) Comparative activity of four tetracycline analogues against pathogenic bacteria in vitro. Am J Med Sci 239: 288–294

    PubMed  CAS  Google Scholar 

  • Höffler D (1976) Antibiotikatherapie bei Niereninsuffizienz. Dtsch Med Wochenschr 101: 829–834

    PubMed  Google Scholar 

  • Höffler D (1981) Die Dosierung wichtiger Antibiotika und Tuberkulostatika bei Niereninsuffizienz. Internist (Berlin) 22: 601–606

    Google Scholar 

  • Holdiness MR (1984) Clinical pharmacokinetics of the antituberculosis drugs. Clin Pharmacokinet 9: 511–544

    PubMed  CAS  Google Scholar 

  • Honikel K, Sippel A, Hartmann G (1968) Mode of action of antibiotics on DNA-directed polymerase reactions. Hoppe-Seylers Z Physiol Chem 349: 957

    PubMed  CAS  Google Scholar 

  • Hornung St, Nikodemowicz E, Owsínski J, Rapf T (1967) Investigation into the metabolism of para-aminosalicyclic acid in the body. Gruzlica 35: 657–664

    PubMed  CAS  Google Scholar 

  • Hurwitz Ch, Rosano CL (1962) Accumulation of label from 14C-streptomycin by Escherichia coli. J Bacteriol 83: 1193–1201

    PubMed  CAS  Google Scholar 

  • Hurwitz A, Schlozman DL (1974) Effects of antacids on gastrointestinal absorption of isoniazid in rat and man. Am Rev Respir Dis 109: 41–47

    PubMed  CAS  Google Scholar 

  • Hussels H-J (1969) Zur Methodik der Serum-Konzentrationsbestimmungen des neuen Antibiotikums Rifampicin. Med-Lab 22: 195–203

    CAS  Google Scholar 

  • Hussels H-J, Otto HS (1971) Ethambutol-Serumkonzentrationen im Kindesalter. Pneumonologie 145: 392–396

    PubMed  CAS  Google Scholar 

  • Hussels H-J, Kroening U, Magdorf K (1973) Ethambutol and rifampicin serum levels in children: second report on the combined administration of ethambutol and rifampicin. Pneumonologie 149: 31–38

    PubMed  CAS  Google Scholar 

  • Ioffe RA (1973) Rifampicin passage with urine during treatment of tuberculous patients. Probl Tuberk 51 issue 12: 43–46

    PubMed  CAS  Google Scholar 

  • Iseman MD, Heifets L, Gangadharam PRJ (1986) Combination drug effects in the chemotherapy of M. avium-intracellulare: in vitro and in vivo observations. Am Rev Respir Dis 133 issue 4, part 2: A 41

    Google Scholar 

  • Iwainsky H (1970) Der Ansatzpunkt der verschiedenen Therapeutica im Stoffwechsel des Tuberkelbakteriums. Pneumonologie, Suppl 1–14 (M)

    Google Scholar 

  • Iwainsky H, Siegel D (1961) Über den Einfluß qualitativer Ernährungsfaktoren auf den INH-Stoffwechsel im Makroorganismus. Beitr Klin Tuberk 123: 166–170

    CAS  Google Scholar 

  • Iwainsky H, Käppler W (1974) Mykobakterien, Biochemie und biochemische Differenzierung, Bibliothek für das Gesamtgebiet der Lungenkrankheiten, Band 103. Barth, Leipzig

    Google Scholar 

  • Iwainsky H, Winsel K (1981) Schadstoffe im Tabak und Tabakrauch. Z Erkr Atmungsorgane 157: 90–102

    PubMed  CAS  Google Scholar 

  • Iwainsky H, Rogowski J, Grunert M (1963) Zur intravenösen Verabreichung von Ätina. Mschr Tbk-Bekpfg 6: 146–153

    Google Scholar 

  • Iwainsky H, Sehrt I, Grunert M (1964) Zum Stoffwechsel der Äthionamids. Naturwissenschaften 51: 316

    CAS  Google Scholar 

  • Iwainsky H, Sehrt I, Grunert M (1965) Zum Stoffwechsel des Äthionamids nach intravenöser Verabreichung. Arzneimittelforsch 15: 193–197

    PubMed  CAS  Google Scholar 

  • Iwainsky H, Winsel K, Werner E, Eule H (1974) On the pharmacokinetics of rifampicin I: Influence of dosage and duration of treatment with intermittent administration. Scand J Respir Dis 55: 229–236

    PubMed  CAS  Google Scholar 

  • Iwainsky H, Eule H, Werner E, Käppler W (1975) Messung der Antituberkulotikakonzentration in Körperflüssigkeiten und Organen mittels Mykobakterien. In: Meissner G, Schmiedel A (t), Nelles A (f) (Hrsg) Infektionskrankheiten und ihre Erreger, Bd 4, Teil III. Fischer, Jena, pp 159–181

    Google Scholar 

  • Iwainsky H, Winsel K, Werner E, Eule H (1976) On the pharmacokinetics of rifampicin (RMP) during treatment with intermittent administration II. Influence of age and sex of the patients. Scand J Respir Dis 57: 5–11

    PubMed  CAS  Google Scholar 

  • Iwainsky H, Eule H, Fischer P, Werner E, Winsel K, Franke H (1977) Die unterschiedliche INH-Inaktivierung bei intermittierender Chemotherapie. Z Erkr Atmungsorgane 147: 41–50

    PubMed  CAS  Google Scholar 

  • Izaki K, Arima K (1965) Effect of various conditions on accumulation of oxytetracycline in Escherichia coli. J Bacteriol 89: 1335–1339

    PubMed  CAS  Google Scholar 

  • Jalsenja I, Nixon JR, Senjkovic R, Stivic I (1980) Sustained-release dosage forms of micro-encapsulated isoniazid. J Pharm Pharmacol 32: 678–680

    Google Scholar 

  • Jeanes CWL, Schaefer O, Eidus L (1973) Comparative blood levels and metabolism of INH and an INH-matrix preparation in fast and slow inactivators. Can Med Assoc J 109: 483–487

    PubMed  CAS  Google Scholar 

  • Jenne JW (1960) Studies of human patterns of isoniazid metabolism using an intravenous fall-off technique with a chemical method. Am Rev Respir Dis 81: 1–9

    PubMed  CAS  Google Scholar 

  • Jenne JW (1964) Pharmacokinetics and the dose of isoniazid and para-aminosalicyclic acid in the treatment of tuberculosis. Antibiot Chemother 12: 407–432

    PubMed  CAS  Google Scholar 

  • Jenne JW, Beggs WH (1973) Correlation of in vitro and in vivo kinetics with clinical use of isoniazid, ethambutol and rifampin. Am Rev Respir Dis 107: 1013–1021

    PubMed  CAS  Google Scholar 

  • Jenner PJ, Ellard GA, Allan WGL, Singh D, Girling DJ, Nunn AJ (1981) Serum uric acid concentrations and arthralgia among patients treated with pyrazinamide-containing regimens in Hong Kong and Singapore. Tubercle 62: 175–179

    PubMed  CAS  Google Scholar 

  • Jezequel AM, Orlandi F, Tenconi LT (1971) Changes of the smooth endoplasmic reticulum induced by rifampicin in human and guinea-pig hepatocytes. GUT 12: 984–987

    PubMed  CAS  Google Scholar 

  • Johnson W, Mankiewicz E, Jasmin R, Corte G (1961) The effect of 5-bromsalicylhydroxamic acid on the acetalytion of isoniazid and its concentration in the blood. Am Rev Respir Dis 84: 872–875

    PubMed  CAS  Google Scholar 

  • Jones WD Jr, David HL (1971) Inhibition by rifampin of mycobacteriophage D29 replication in its drug-resistant host, Mycobacterium smegmatis ATCC 607. Am Rev Respir Dis 103: 618–624

    PubMed  CAS  Google Scholar 

  • Jungbluth H (1971) Isoniazid-Dosierung bei Niereninsuffizienz. Pneumonologie 145: 383–384

    Google Scholar 

  • Jungbluth H (1973) Tuberkulose-Chemotherapie bei Kranken mit vorgeschädigter Niere. Prax Pneumol 27: 175–182

    PubMed  CAS  Google Scholar 

  • Jungbluth H, Urbanczik R (1974) Ethambutol-Serumspiegel nach oraler und intravenöser Verabreichung. Prax Pneumol 28: 499–504

    PubMed  CAS  Google Scholar 

  • Käppler W (1986) Persönliche Mitteilung

    Google Scholar 

  • Kalabukha AV (1971) Protionamide concentration in the blood of tuberculous patients. Probl Tuberk 49 issue 12: 26–29

    PubMed  CAS  Google Scholar 

  • Kaminskaya GO, Karachunsky MA (1975) Changes in the function of the liver and elimination of antituberculous drugs producing side-effects in patients with tuberculosis of the lungs. Probl Tuberk 53 issue 6: 47–51

    Google Scholar 

  • Karlson P (1984) Kurzes Lehrbuch der Biochemie für Mediziner und Naturwissenschaftler. 12. Aufl. Thieme, Stuttgart

    Google Scholar 

  • Kass I (1966) Kanamycin in the therapy of pulmonary tuberculosis in the United States. Ann N J Acad Sci 132: 892–900

    CAS  Google Scholar 

  • Khalil SA, Daabis NA, Naggar VF, Wafik M (1977) Effect of magnesium trisilicate and citric acid on the bioavailability of tetracycline in man. Pharmazie 32: 519–522

    PubMed  CAS  Google Scholar 

  • Kheifets LB, Kozlova NE (1975) The effect of cycloserine and Terisidone on the intracellular multiplication of mycobacteria. Probl Tuberk 53 issue 1: 71–73

    Google Scholar 

  • Kheiny I, Zagorska T, Yanik M, Melikher I (1977) Rifampicin concentration in the tissues of the locomotor system. Probl Tuberk 55 issue 4: 67–69

    Google Scholar 

  • Kilburn JO, Beam RE, David HL, Sanchez E, Corpe RF, Dunn W (1972) Reagent-impregnated paper strip for detection of metabolic products of isoniazid in urine. Am Rev Respir Dis 106: 923–924

    PubMed  CAS  Google Scholar 

  • Kislitsyna NA, Kotova NI (1977) Concentration of some antituberculous agents in the blood and resected sectors of the lungs in tuberculous patients. Probi Tuberk 55 issue 8: 72–75

    Google Scholar 

  • Kislitsina NA, Kotova NI (1980) Rifampicin and isoniazid levels in blood and resected lungs of tuberculous patients treated with drug combinations. Probi Tuberk 58 issue 8: 63–65

    Google Scholar 

  • Kivman GY, Geitman I Y (1971) Comparative studies on antibiotic levels in human blood and serum with the use of the agar-diffusion method. Antibiotiki 16: 929–933

    PubMed  CAS  Google Scholar 

  • Kivman GY, Geitman IY (1972) Interaction of antibiotics with individual blood sera of humans and animals. Antibiotiki 17: 467–471

    PubMed  CAS  Google Scholar 

  • Klastersky J, Daneau D (1972) Bacteriological evaluation of minocycline. A new tetracycline. Chemotherapy 17: 51–58

    CAS  Google Scholar 

  • Kleber FX (1979) Zur Resorption von Antituberkulotika bei magenresezierten, tuberkulosekranken Patienten. Prax Pneumol 33: 38–44

    CAS  Google Scholar 

  • Kleeberg H, Gärtig D, Glatthaar E, Nel E, Stander M (1975) Isoniazid metabolism in black patients. S Afr Med J 49: 1503

    Google Scholar 

  • Knothe H (1963) Neue Tetracyclinderivate. Antibiot Chemother (Basel) 11: 97–117

    CAS  Google Scholar 

  • Kob D (1967) Über die Resorption von D-Cycloserin und Isonikotinsäurehydrazid (INH) nach peroraler Verabreichung bei Magenresezierten und Normalpersonen, Dissertation, Friedrich-Schiller-Universität Jena

    Google Scholar 

  • Kochanova NK, Mazaev MB, Tverdokhlebova NG (1981) Isoniazid levels in blood, urine and kidney tissue of rabbits with cavernous tuberculosis of single kidney. Probl Tuberk 58 issue 2: 64–67

    Google Scholar 

  • Köhler H, Winsel K (1982) Klinische und experimentelle Untersuchungen zur Optimierung der Chemotherapie der Lungen-und Nierentuberkulose. Promotion B-Arbeit, Friedrich-Schiller-Universität, Jena

    Google Scholar 

  • König H (1980) Pharmachemie im Wandel — Probleme und Chancen. Angew Chem 92: 802–815

    Google Scholar 

  • Kolachevskaya EN, Guryan IE (1981) Isoniazid levels in tissues of female patients with genital tuberculosis. Probl Tuberk 59 issue 9: 59–61

    Google Scholar 

  • Konno K, Oizumi K, Hayashi I, Oka S (1970) Experimental and clinical studies of rifampicin in tuberculosis. Sci Rep Res Inst Tohoku Univ (Med). S 17: 110–120

    CAS  Google Scholar 

  • Korner I, Voigt R, Keipert S, Kapich R (1978) Wechselwirkungen zwischen makromolekularen Hilfsstoffen und Arzneistoffen. 11. Mitt. Einfluß von Makromolekülen auf die mikrobiologische Aktivität von Tetracyclinantibiotika. Pharmazie 33: 72–73

    PubMed  CAS  Google Scholar 

  • Korotaev GA, Tatarinova NV (1972) Content of cycloserine in the blood serum and its discharge with the urine in patients with tuberculosis. Therap Arch 44: 81–84

    CAS  Google Scholar 

  • Kroening U (1974) Die Konzentrationsbestimmung von Ethambutol im Vollblut und ihre Bedeutung für den Nachweis der Kumulation des Medikamentes. Pneumonologie 151: 135–146

    PubMed  CAS  Google Scholar 

  • Kroker R, Hegner D (1980) Interaction of rifamycin SV with hepatobiliary transport of taurocholic acid. Naunyn-Schmiedebergs Arch Pharmacol 313:Suppl R 63, Nr. 250

    Google Scholar 

  • Krüger-Thiemer E, Bünger P (1965/66) The role of the therapeutic regimen in dosage design. Part I. Chemotherapia 10:61–73

    Google Scholar 

  • Krüger-Thiemer E †, Kröger H, Nestler HJ, Seydel JK (1975) Wirkungsmodi antituberkulöser Chemotherapeutika: Pyridincarbonsäurethioamide, Thiocarbanilide und Thiosemicarbazone — Isoniazid — Inositanaloga — Tetracycline. In: Meissner G, Schmiedel A †, Nelles A † (Hrsg) Infektionskrankheiten und ihre Erreger, Band 4, Teil III, Fischer Jena pp 289–298,257–288,337–352,353–357

    Google Scholar 

  • Kuchler E (1976) Chemische Methoden zur Untersuchung der Ribosomenstruktur. Angew Chem 88: 555–564

    Google Scholar 

  • Kunin CM (1966) Absorption, distribution, excretion and fate of kanamycin. Ann NY Acad Sci 132: 811–818

    PubMed  CAS  Google Scholar 

  • Kunin CM (1967) A guide to use of antibiotics in patients with renal disease. Ann Intern Med 67: 151–158

    PubMed  CAS  Google Scholar 

  • Kunin CM, Finland M (1961) Clinical pharmacology of the tetracycline antibiotics. Clin Pharmacol Ther 2: 51–69

    PubMed  CAS  Google Scholar 

  • Kuntz E (1962) Kanamycin-Konzentrationen im Blut, Liquor and Pleuraexsudat. Klin Wochenschr 40: 1107–1111

    PubMed  CAS  Google Scholar 

  • Kuntz E (1966) Untersuchungen über die Blutspiegelwerte and die Ausscheidung von pAminosalicylsäure (PAS-Natrium) bei i.v. Infusionsbehandlung. Beitr Klin Tuberk 133: 12–24

    CAS  Google Scholar 

  • Lampe J, Lampe H, Butschak G (1981) Klinische Aspekte der Enzyminduktion. Dtsch Gesundh-Wesen 36: 1081–1086

    Google Scholar 

  • Landsdown FS, Radzin I (1963a) Effect of aluminium hydroxide gel on blood concentrations of para-aminosalicyclic acid. Am Rev Respir Dis 88: 721–724

    Google Scholar 

  • Landsdown FS, Radzin I (1963b) Effect of aluminium hydroxide gel on blood level of para-aminosalicyclic acid. Trans 22 ’ Res Conf Pulm Dis VAAF: 33–37

    Google Scholar 

  • Larkin JC Jr (1960) Results of therapy with thiocarbanidin used with isoniazid or streptomycin. Am Rev Respir Dis 81: 235–240

    PubMed  Google Scholar 

  • Lee CS, Brater DC, Gambertoglio JG, Benet LZ (1980) Disposition kinetics of ethambutol in man. J Pharmacokinet Biopharm 8: 335–346

    PubMed  CAS  Google Scholar 

  • Lehmann J (1961) Chemische and experimentelle Grundlagen der PAS-Therapie. Wien Med Wochenschr 111: 803–805

    PubMed  CAS  Google Scholar 

  • Lehmann J (1969) The role of the metabolism of p-aminosalicylic acid (PAS) in the treatment of tuberculosis. Scand J Respir Dis 50: 169–185

    PubMed  CAS  Google Scholar 

  • Leroy A, Humbert G, Oksenhendler G, Fillastre JP (1978) Pharmacokinetics of amino-glycosides in subjects with normal and impaired renal function. Antibiot Chemother 25: 163–180

    PubMed  CAS  Google Scholar 

  • Levi AJ, Sherlock S, Walker D (1968) Phenylbutazone and isoniazid metabolism in patients with liver disease in relation to previous drug therapy. Lancet I: 1275–1279

    CAS  Google Scholar 

  • Levy D, Russell WF Jr, Middlebrook G (1960) Dosages of isoniazid and streptomycin for routine chemotherapy of tuberculosis. Tubercle 41: 23–31

    PubMed  CAS  Google Scholar 

  • Levy D, Russell WF Jr, Ninio S, Middlebrook G (1961) Effect of increasing dosage of streptomycinsulfate on serum levels of antimicrobially active drug. Dis Chest 39: 161–164

    Google Scholar 

  • Lichey J, Charissis G, Braunsdorf M, Franke J, Hahn W (1979) Accumulation of 99mTCtetracycline in lung infarction area. Respiration 37: 220–223

    PubMed  CAS  Google Scholar 

  • Liss RH, Letourneau RJ, Schepis JP (1981) Distribution of ethambutol in primate tissues and cells. Am Rev Respir Dis 123: 529–532

    PubMed  CAS  Google Scholar 

  • Llorens-Terol J, Martinez-Roig A, Busquets RM (1981) Rifampin for brucellosis treatment in children. In: Periti P, Grassi GG (eds) Current chemotherapy and immunotherapy. 12th International Congress of Chemotherapy (1981, Florence, Italy) Vol II. American Society for Microbiology, Washington, pp 975–977

    Google Scholar 

  • Loos U, Musch E, Jensen JC, Mikus G, Schwabe HK, Eichelbaum M (1985) Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin Wochenschr 63: 1205–1211

    PubMed  CAS  Google Scholar 

  • Lukjan Z, Rogowski F, Olenski J (1969) The level of isoniazid labeled with C14 in the tissues of animals infected with tuberculosis and given insulin. Gruzlica 37: 893–899

    PubMed  CAS  Google Scholar 

  • Madsen L, Goble M, Iseman M (1986) Ansamycin (LM 427) in the retreatment of drugresistant tuberculosis. Am Rev Respir Dis 133: Issue 4, part 2, A 206

    Google Scholar 

  • Maher JR, Hansen JD (1960) Paper electrophoresis separation and elution of some anti-tuberculous drugs and their metabolites. Am Rev Respir Dis 81: 373–381

    PubMed  CAS  Google Scholar 

  • Mannhart M, Dettli L, Spring P (1971) Die Elimination des Doxyzyklins and ihre Beeinflussung durch die Hämodialyse bei anurischen Patienten. Schweiz Med Wochenschr 101: 123–127

    PubMed  CAS  Google Scholar 

  • Marwyck C Van, Gängel G (1961) Blutspiegelerhöhung durch Kombination von Tetracy- clin and Chlortetracyclin nach oraler Verabreichung. Arzneimittelforsch 11: 769–771

    PubMed  Google Scholar 

  • Matsuzaki Y, Saito C (1961) Studies on the blood concentrations of biologically active isoniazid and its derivatives and on the metabolic patterns of isoniazid. Kekkaku 36: 61–62

    Google Scholar 

  • Mattila MJ, Tiitinen H (1967) The rate of isoniazid inactivation in Finnish diabetic and non-diabetic patients. Ann Med Exp Fenn 45: 423–427

    PubMed  CAS  Google Scholar 

  • Mattila MJ, Ronkanen A, Widnäs M (1967) Comparison of the serum concentrations of ethionamide and prothionamide. Scand J Clin Lab Invest 19 Suppl 95: 62

    Google Scholar 

  • Mattila MJ, Takki S, Holsti LR (1968a) Transfer of water and drugs by the isolated intestine of the X-irradiated rat. Arzneimittelforsch 18: 889–890

    CAS  Google Scholar 

  • Mattila MJ, Koskinen R, Takki S (1968b) Absorption of ethionamide and prothionamide in vitro and in vivo. Ann Med Int Fenn 57: 75–79

    CAS  Google Scholar 

  • Mattila MJ, Nieminen E, Tiitinen H (1969) Serum levels, urinary excretion, and side-effects of cycloserine in the presence of isoniazid and p-aminosalicyclic acid. Scand J Resp Dis 50: 291–300

    CAS  Google Scholar 

  • McAllister WAC, Thompson PJ, Al-Habet SM, Rogers HJ (1983) Rifampicin reduces effectiveness and bioavailability of prednisolone. Br Med J 286: 923–925

    CAS  Google Scholar 

  • McCarthy CM (1981) Variation in isoniazid susceptibility of Mycobacterium avium during the cell cycle. Am Rev Respir Dis 123: 450–453

    PubMed  CAS  Google Scholar 

  • Meissner J (1965) Verteilungsstudien mit radioaktiv markiertem Isoxyl. Beitr Klin Tuberk 132: 322–324

    CAS  Google Scholar 

  • Melander A, Danielson K, Hanson A, Jansson L, Rerup C, Schersten B, Thulin T, Wahlin E (1976) Reduction of isoniazid bioavailability in normal men by concomitant intake of food. Acta Med Scand 200: 93–97

    PubMed  CAS  Google Scholar 

  • Mikhailova ES, Samtsov VS, Kartashov GV, Kanevskaya SS (1974) Treatment of patients with pulmonary tuberculosis and peptic ulcer through rectal introduction of tuberculostatics. Probl Tuberk 52 issue 12: 30–34

    Google Scholar 

  • Miller ME (1982) Acetylator phenotype in bladder cancer. Lancet I1: 1348

    Google Scholar 

  • Mixon P, Trnka L (1973) Zum Wirkungsmechanismus von Rifampicin. Mschr Lungenkrkh Tbk-Bekpf 16: 259–264

    Google Scholar 

  • Mitchell JR, Thorgeirsson PU, Black M, Timbrell JA, Snodgrass WR, Potter WZ, Joliow DJ, Keiser HR (1975) Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydrazine metabolites. Clin Pharmacol Ther 18: 70–79

    PubMed  CAS  Google Scholar 

  • Mitchison DA (1972) Current problems in the chemotherapy of tuberculosis: laboratory aspects. Trans 31`b Pulm Dis Res Conf VAAF: 23–29

    Google Scholar 

  • Mitchison DA (1979) Basic mechanisms of chemotherapy. Chest 76 Suppl: 771–781 Miyazaki S, Inoue H, Nadai T (1981) Effect of antacids on the dissolution of minocycline and demethylchlortetracycline from capsules. Pharmazie 36: 482–484

    Google Scholar 

  • Modr Z, Dvoracek K (1976) Pharmakokinetik der Antibiotika. Dtsch Gesundh-Wesen 31: 145–154

    CAS  Google Scholar 

  • Mommsen S, Sell A, Barfod U (1982) N-Acetyltransferase phenotypes of bladder cancer patients in a low-risk population. Lancet II: 1228

    Google Scholar 

  • Moodie AS, Aquinas M, Foord RD (1964) Controlled clinical trial of 4,4’-diisoamyloxycarbanilide in the treatment of pulmonary tuberculosis. Tubercle 45: 192–200

    PubMed  CAS  Google Scholar 

  • Mydlak G, Volkmann W (1965) Die Bedeutung der INH-Stoffwechselanalyse für die Therapie. Z Tuberk 124: 44–48

    PubMed  CAS  Google Scholar 

  • Nakagawa H, Sunahara S (1973) Metabolism of rifampicin in the human body. 1“ report. Kekkaku 48: 167–176

    PubMed  CAS  Google Scholar 

  • Nakagawa H, Umene Z, Sunahara S (1981) Increased desacetylation of rifampicin and an adverse reaction. Kekkaku 56: 577–586

    PubMed  CAS  Google Scholar 

  • Nikodemowicz E, Owsinski J, Kaminska M, Ostrowska A, Rapf T (1971) Investigation into the metabolism of para-aminosalicylic acid in the body. Gruzlica 34: 1113–1121

    Google Scholar 

  • Nilsson BS, Boman G (1981) Intravenous use of rifampicin. Eur J Respir Dis 62: 212–214

    PubMed  CAS  Google Scholar 

  • Nitti V (1972) Antituberculosis activity of rifampin. Chest 61: 589–598

    PubMed  CAS  Google Scholar 

  • Nitti V, Marmo E, Virgilio R, Delli Veneri F, Giordano L, Valentino B (1981) Pharmacokinetics of rifampin after single and repeated intravenous administration in patients with normal or impaired liver function. In: Periti P, Grassi GG (eds) Current chemotherapy and immunotherapy. 12th International Congress of Chemotherapy (1981, Florence, Italy) Vol II. American Society for Microbiology, Washington, pp 980–982

    Google Scholar 

  • Nocke-Finck L, Breuer H, Reimers D (1973) Wirkung von Rifampicin auf den Menstruationszyklus und die Östrogenausscheidung bei Einnahme oraler Kontrazeptiva. Dtsch Med Wochenschr 98: 1521–1523

    PubMed  CAS  Google Scholar 

  • Nodzu R, Watanabe H (1961) Die Beziehungen zwischen den physikalisch-chemischen Eigenschaften von Alkyl-Verbindungen und ihren bakteriostatischen Wirkungen gegen das Mycobacterium tuberculosis. Arzneimittelforsch 11: 538–544

    PubMed  CAS  Google Scholar 

  • Oberti J, Najar I, Caravano R, Roux J (1981) In vitro concentration of tetracycline and rifampin in macrophages of normal mice and mice infected by brucella: influence on intracellular multiplication of bacteria. In: Periti P, Grassi GG (eds) Current chemotherapy and immunotherapy. 12th International Congress of Chemotherapy (1981, Florence, Italy) Vol II. American Society for Microbiology, Washington, pp 971–973

    Google Scholar 

  • O’Brien RJ, Snider DE (1985) Tuberculosis drugs — old and new. Am Rev Respir Dis 131: 309–311

    PubMed  Google Scholar 

  • Ochs HR, Verburg-Ochs B (1983) Einfluß von Alter, Gewicht, Geschlecht und Rauchge-wohnheiten auf die Medikamentendosierung. Internist (Berlin) 24: 167–181

    CAS  Google Scholar 

  • Ocklitz HW (1981) Chemoprophylaxe bei Auftreten einer Meningokokken-Meningitis. Dtsch Gesundheitswes 36: 2016–2018

    Google Scholar 

  • Okolicsanyi L, Lirussi F, Nassuato G, Orlando R, Bussolon R, Dal Brun G (1980) Influence of rifamycin SV on bile acid metabolism in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 313: 171–174

    CAS  Google Scholar 

  • Olon LP, Holvey DN (1968) Evaluation of tetracycline phosphate complex, demethylchlortetracycline-HC1, and methacycline-HC1. Clin Med 75: 33–44

    Google Scholar 

  • Omer LMO (1978) Tagesprofile und Profilverlaufskontrollen von Ethambutol bei älteren Tuberkulosekranken. Prax Pneumol 32: 252–256

    CAS  Google Scholar 

  • O’Neill S, Lesperance E, Klass DJ (1984) Rat lung lavage surfactant enhances bacterial phagocytosis and intracellular killing by alveolar macrophages. Am Rev Respir Dis 130: 225–230

    PubMed  Google Scholar 

  • Orlowski E-H (1965) Blutspiegelbestimmung bei oraler und intravenöser Therapie mit Aethionamid (Iridocin). Beitr Klin Tuberk 132: 314–318

    CAS  Google Scholar 

  • Otani G, Remmer H (1975) Participation of microsomal NADPH-cytochrome C reductase in the metabolism of rifampicin. Naunyn-Schmiedeberg’s Arch Pharmacol 287: R76

    Google Scholar 

  • Pallanza R, Arioli V, Furesz S, Bolzoni G (1967) Rifampicin: a new rifamycin. II. Laboratory studies on the antituberculous activity and preliminary clinical observations. Arzneimittelforsch 17: 529–534

    PubMed  CAS  Google Scholar 

  • Paul K (1960) Beitrag zum heutigen Stand der Chemotherapie der Lungentuberkulose. II. Mitt. PAS-Blutspiegel bei verschiedener Applikation. Acta Tuberc Scand 38: 82–90

    PubMed  CAS  Google Scholar 

  • Paumgartner G (1980) Der Einfluß von Lebererkrankungen auf Bioverfügbarkeit und Clearance von Medikamenten. Internist (Berlin) 21: 718–723

    CAS  Google Scholar 

  • Pavlov EP, Tushov EG, Kotlyarov LM (1974) The action of rifampicin on the extra-and intracellularly located myco. tuberculosis. Probl Tuberk 52 issue 12: 64–67

    CAS  Google Scholar 

  • Pawlowska I, Pniewski T (1975) Studies on rifampicin (RMP) metabolism in patients with pulmonary tuberculosis. Gruzlica 43: 977–986

    PubMed  CAS  Google Scholar 

  • Peets EA, Buyske DA (1962) Studies of the metabolism in the dog of ethambutol C14, a drug having antituberculosis activity. Pharmacologist 4: 171

    Google Scholar 

  • Pentikainen P, Wan SH, Azarnoff DL (1973) Bioavailability studies on p-aminosalicylic and its various salts in man. Am Rev Respir Dis 108: 1340–1347

    PubMed  CAS  Google Scholar 

  • Perenyi T, Biro L, Arr M, Novak EK, Szöke S, Feuer L (1971) Untersuchung der Albuminbindung der Tetracyclinderivate. I. Die Bedeutung der Bindung. Zusammenhänge zwischen der Struktur der Derivate und dem Ausmaß der Albuminbindung. Acta Pharm Hung 41: 247–258

    PubMed  CAS  Google Scholar 

  • Perry W, Jenkins MV, Brown J, Erooga MA, Setchell KDR, Stamp TCB (1981) Metabolic consequences of rifampin-mediated enzyme induction during treatment for tuberculosis. In: Periti P, Grassi GG (eds) Current chemotherapy and immunotherapy. 12th International Congress of Chemotherapy (1981, Florence, Italy) Vol II. American Society for Microbiology, Washington, pp 987–990

    Google Scholar 

  • Perumal VK, Gangadharam PRJ, Heifets LB, Iseman MD (1985) Dynamic aspects of the in vitrochemotherapeutic activity of ansamycin (rifabutine) on M. intracellulare. Am Rev Respir Dis 132: 1278–1280

    PubMed  CAS  Google Scholar 

  • Peters U, Hausamen T-U, Grosse Brockhoff F (1974) Einfluß von Tuberkulostatika auf die Pharmakokinetik des Digitoxins. Dtsch Med Wochenschr 99: 2381–2386

    PubMed  CAS  Google Scholar 

  • Pfeifer S, Borchert H-H (1978) Arzneimittel und Organismus — Einführung in Pharmakokinetik und Biotransformation. Pharmazie 33: 128–174

    PubMed  CAS  Google Scholar 

  • Pfeil D, Friedrich J, Lampe J, Ruckpaul K (1983) Die Bedeutung der Aryl-HydrocarbonHydroxylase-Aktivität bei der prospektiven Untersuchung schadstoffexponierter Personen. Dtsch Gesundh-Wesen 38: 281–285

    CAS  Google Scholar 

  • Piafsky KM, Sitar DS, Ragno RE, Ogilvie RI (1975) Disposition of theophylline in chronic liver disease. Clin Pharmacol Ther 17: 241

    Google Scholar 

  • Pindell MH (1966) The pharmacology of kanamycin — a review and new developments. Ann NY Acad Sci 132: 805–810

    PubMed  CAS  Google Scholar 

  • Pissiotis CA, Nichols RL, Condon RE (1972) Absorption and excretion of intraperitoneally administered kanamycin sulfate. Surg Gynecol Obstet 134: 995–998

    PubMed  CAS  Google Scholar 

  • Pitton JS, Roch P (1966) Serum levels of methacycline. Chemotherapia 11: 331–337

    CAS  Google Scholar 

  • Place VA, Thomas JP (1963) Clinical pharmacology of ethambutol. Am Rev Respir Dis 87: 901–904

    PubMed  CAS  Google Scholar 

  • Place VA, Peets EA, Buyske DA (1966) Metabolic and special studies of ethambutol in normal volunteers and tuberculosis patients. Ann NY Acad Sci 135: 775–795

    PubMed  CAS  Google Scholar 

  • Pöch G (1981) Potenzierung von Arzneimittel-Kombinationen. Med Klin 76: 222–225

    PubMed  Google Scholar 

  • Poiger H, Schlatter Ch (1976) Fluorimetric determination of tetracyclines in biological materials. EXPEAM 32: 781

    Google Scholar 

  • Poiger H, Schlatter Ch (1979) Interaction of cations and chelators with the intestinal absorption of tetracycline. Naunyn-Schmiedeberg’s Arch Pharmacol 306: 89–92

    CAS  Google Scholar 

  • Porven G, Canetti G (1968) Les taux de rifampicine dans le sérum de l’homme. Rev Tuberc 32: 707–716

    CAS  Google Scholar 

  • Powell-Jackson PR, Gray BJ, Heaton RW, Costello JF, Williams R, English J (1982) Adverse effect of rifampicin administration on steroid-dependent asthma. Am Rev Respir Dis 128: 307–310

    Google Scholar 

  • Putter J (1961) Chemische Bestimmung des 2-Äthyl-isothionicotinsäureamids im Blut. Arzneimittelforsch 11: 808–809

    Google Scholar 

  • Putter J (1964) Photometrische Bestimmung des 2-Äthyl-isothio-nicotinylamid in Organen und Körperflüssigkeiten. Arzneimittelforsch 14: 1198–1203

    Google Scholar 

  • Pujet J-C, Pujet C (1972) Dosages sanguine et humoraux de l’éthambutol administré par perfusion intraveineuse. Bordeaux Méd: 1215–1222

    Google Scholar 

  • Quinn EL, McHenry MC, Truant JP, Cox F (1966) The use of kanamycin in selected patients with serious infections caused by gram-negative bacilli: serum concentration and inhibition studies in patients with azotemia given reduced doses. Ann NY Acad Sci 132: 850–853

    PubMed  CAS  Google Scholar 

  • Radu D, Huljic P, Hewel Th, Knetseh E (1977) Gewebespiegel nach intravenöser Anwendung von Tetracyclinen. Med Klin Sondernummer: 25–28

    Google Scholar 

  • Rameis H, Hitzenberger G, Jaschek I, Graninger W (1980) Ist die endogene KreatininClearance eine geeignete Basis für die Berechnung von Eliminationshalbwertszeiten des Gentamicins? Dtsch Med Wochenschr 105: 1650–1654

    PubMed  CAS  Google Scholar 

  • Rapoport SM (1985) Medizinische Biochemie. 8. Auflage. Volk und Gesundheit, Berlin

    Google Scholar 

  • Ratledge C (1977) The Mycobacteria. In: Cook JG (ed) Pattern of Progress. Meadowfield Press Ltd, Durham, England

    Google Scholar 

  • De Rautlin de la Roy Y, Patte F, Morichau-Beauchant G (1971) Taux sériques de rifampicine avec des posologies réduites (300 mg/jour). Rev Tuberc Pneumol 35: 342–350

    CAS  Google Scholar 

  • Regosz A, Zuk G (1980) Studies on spectrophotometric determination of tetracycline and its degradation products. Pharmazie 35: 24–26

    PubMed  CAS  Google Scholar 

  • Reichert D (1981) Giftung körperfremder Stoffe durch Konjugationsreaktionen. Angew Chem 93: 135–142

    CAS  Google Scholar 

  • Reidenberg MM, Shear L, Cohen RV (1973) Elimination of isoniazid in patients with impaired renal function. Am Rev Respir Dis 108: 1426–1428

    PubMed  CAS  Google Scholar 

  • Reutgen H (1975) Wirkungsmodi antituberkulöser Chemotherapeutika: p-Aminosalizyl-säure (PAS) — Ethambutol. In: Meissner G, Schmiedel A †, Nelles A † (Hrsg) Infekti-onskrankheiten und ihre Erreger, Band 4, Teil III. Fischer, Jena, pp 319–336; 299–318

    Google Scholar 

  • Richardson JP (1975) Biosynthese der Ribonucleinsäuren. Angew Chem 87: 497–504

    CAS  Google Scholar 

  • Richter E, Gallenkamp H, Hensler H, Zilly W, Breimer DD (1979) Plasmaclearance von Methohexital bei akuter Hepatitis. Med Klin 74: 1584–1588

    PubMed  CAS  Google Scholar 

  • Robinson OPW, Hunter PA (1966) Absorption and excretion studies with thiocarlide (4,4’diisoamyloxythiocarbanilide) in man. Tubercle 47: 207–213

    PubMed  CAS  Google Scholar 

  • Robson JM, Sullivan FM (1963) Antituberculosis drugs. Pharmacol Rev 15: 169–223 (B, Ph)

    PubMed  CAS  Google Scholar 

  • Rocker I (1977) Rifampicin in early pregnancy. Lancet II: 48

    Google Scholar 

  • Roncoroni AJ Jr, Huchon GJ, Manuel C (1981) Pharmacokinetics of streptomycin (SM) in patients with pulmonary tuberculosis. Amer Rev Respir Dis 123 No 4, part 2: p 254

    Google Scholar 

  • Roots I (1982) Genetische Ursachen für die Variabilität der Wirkungen und Nebenwirkungen von Arzneimitteln. Internist 23: 601–609

    PubMed  CAS  Google Scholar 

  • Roots I (1986) Wann ist die Bestimmung von Arzneimittel-Konzentrationen im Plasma nützlich oder notwendig?–Gründe der Variabilität von Arzneimitteln. Internist 27: 40–52

    PubMed  CAS  Google Scholar 

  • Rottach H (1979) Das Verhalten von sogenannten Leberparametern im Rahmen der medikamentösen Tuberkulosebehandlung. Prax Pneumol 33: 603–608

    Google Scholar 

  • Rozewska M, Gajewska E, Graczyk J (1969) Effect of cycloserin on the human body. Gruzlica 37: 523–526

    PubMed  CAS  Google Scholar 

  • Rüger W (1972) Die Transkription der genetischen Information und ihre Regulation durch Proteinfaktoren. Angew Chem 84: 961–972

    Google Scholar 

  • Sarma GR, Kailasam S, Nair NGK, Narayana ASL, Tripathy SP (1980) Effect of prednisolone and rifampin on isoniazid metabolism in slow and rapid inactivators of isoniazid. Antimicrob Agents Chemother 18: 661–666

    PubMed  CAS  Google Scholar 

  • Saueressig G (1972) Untersuchungen zur Harnausscheidung von INH bei intravenöser NaGluronazid-Therapie. Inaugural-Dissertation, Med Fakultät der Rheinischen Friedrich-Wilhelms-Universität zu Bonn

    Google Scholar 

  • Savula MM (1973) Blood concentration and excretion of para-amino-salicylic acid and its metabolites following administration of the BEPAS preparation. Probl Tuberk 51 issue 10: 44–47

    PubMed  CAS  Google Scholar 

  • Schach von Wittenau M, Chiaini J (1968) A pharmacokinetic analysis of the absorption and elimination of doxycycline in man. Chemotherapy 13: 249–251

    PubMed  CAS  Google Scholar 

  • Schach von Wittenau M, Delahunt CS (1966) The distribution of tetracyclines in tissues of dogs after repeated oral administration. J Pharmacol Exp Ther 152: 164–169

    PubMed  CAS  Google Scholar 

  • Schach von Wittenau M, Twomey TM (1971) The disposition of doxycycline by man and dog. Chemotherapy 16: 217–228

    PubMed  CAS  Google Scholar 

  • Schach von Wittenau M, Beereboom JJ, Blackwood RK, Stephens CR (1962) 6-Deoxytetracyclines. II. Stereochemistry at C 6. J Am Chem Soc 84:2645–2647

    Google Scholar 

  • Schach von Wittenau M, Twomey TM, Swindell AC (1972) The disposition of doxycycline by the rat. Chemotherapy 17: 26–39

    PubMed  CAS  Google Scholar 

  • Schanker LS (1961) Mechanisms of drug absorption and distribution. Annu Rev Pharmacol 1: 29–44

    CAS  Google Scholar 

  • Schiatti P, Maffei G (1967) Studies on distribution of dimethylhydrazone of 3-formyl rifamycin SV, a new antibiotic substance. Chemotherapia 12: 234–246

    CAS  Google Scholar 

  • Schiatti P, Dezultan VM, Serralunga MG, Maffei G (1967) Distribution, excretion and toxicity of rifazine, a new semisynthetic rifamycin. Chemotherapia 12: 247–260

    CAS  Google Scholar 

  • Schmidt LH (1966) Studies on the antituberculous activity of ethambutol in monkeys. Ann NY Acad Sci 135: 747–758

    PubMed  CAS  Google Scholar 

  • Schoene B, Fleischmann RA, Remmer H, v. Oldershausen HF (1972) Induction of drug-metabolizing enzymes in human liver. Naunyn-Schmiedebergs Arch Pharmacol 274 Suppl: R101

    Google Scholar 

  • Scholtan W (1964) Bestimmungsmethoden und Gesetzmäßigkeiten der Eiweißbindung von Sulfonamiden und Penicillinen. Antibiot Chemother 12: 103–134

    PubMed  CAS  Google Scholar 

  • Scholtan W (1968) Die hydrophobe Bindung der Pharmaka an Humanalbumin und Ribonucleinsäure. Arzneimittelforsch 18: 505–517

    PubMed  CAS  Google Scholar 

  • Schwabe HK (1971) Intravenöse Gluronazidgaben in Kombination mit kontinuierlicher Ethambutolmedikation per os. Pneumonologie 145: 385–388

    PubMed  CAS  Google Scholar 

  • Schwabe HK, Thiesen GJ, Rausch R (1973) Myambutol-Serumspiegel bei kontinuierlicher Medikation. Prax Pneumol 27: 44–46

    PubMed  CAS  Google Scholar 

  • Self TH (1980) Interaction of rifampin and chlorpropamide. Chest 77: 800–801

    PubMed  CAS  Google Scholar 

  • Self TH, Mann RB (1975) Interaction of rifampin and warfarin. Chest 67: 490–491

    PubMed  CAS  Google Scholar 

  • Selroos O (1961) Absorption and tolerance of large single doses of Kabipastin, a para-aminosalicyclic acid ion exchange resin combination. Acta Tuberc Scand 40: 222–236

    PubMed  CAS  Google Scholar 

  • Seneca H (1971) Biological basis of chemotherapy of infections and infestations. Davis Company, Philadelphia (Ph )

    Google Scholar 

  • Serabjit-Singh CJ, Wolf CR, Philpot RM, Plopper CG (1980) Cytochrome P-450: localization in rabbit lung. Science 207: 1469–1470

    PubMed  CAS  Google Scholar 

  • Short EI (1962) Studies on the inactivation of isonicotinyl acid hydrazide in normal subjects and tuberculous patients. Tubercle 43: 33–42

    PubMed  CAS  Google Scholar 

  • Siegenthaler W, Siegenthaler G, Beck D, Weidmann P (1968) Neue Antibiotica mit Ausnahme von Penicillinen, Streptomycin, Tetracyclinen und Chloramphenicol. Antibiot Chemother 14: 253–280

    PubMed  CAS  Google Scholar 

  • Siegler DI, Bryant M, Burley DM, Citron KM, Standen SM (1974) Effect of meals on rifampicin absorption. Lancet II: 197–198

    Google Scholar 

  • Silvola H, Ottelin J (1977) Doxycyclin-Konzentrationen in Serum und Lungengewebe. Med Klin Sondernummer 29–32

    Google Scholar 

  • Simâne Z, Kraus P (1962) Ethionamide ( 1314 Th) serum levels and its urinary excretion. Rozhl Tbk Praha 22: 289–293

    Google Scholar 

  • Simâne Z, Kraus P (1963) Variation in ethionamide serum levels after its administration in both tablet form and in solution. Rozhl Tbk Praha 23: 262–264

    Google Scholar 

  • Simâne Z, Kraus P, Spousta J (1964) Pharmacodynamics of cycloserine and pyrazinamide after rectal application. Rozhl Tbk Praha 24: 483–485

    Google Scholar 

  • Simon K (1975) Rifampicinbehandlung der Tuberkulose im Kindesalter. Med Klin 70: 1095–1097

    PubMed  CAS  Google Scholar 

  • Simon HJ, Axline SG (1966) Clinical pharmacology of kanamycin in premature infants. Ann NY Acad Sci 132: 1020–1025

    PubMed  CAS  Google Scholar 

  • Simon C, Sommerwerck D, Friehoff J (1978) Der Wert von Doxycyclin bei Atemwegsinfektionen (Serum-, Speichel-, Sputum-, Lungen-und Pleuraexsudatspiegel). Prax Pneumol 32: 266–270

    CAS  Google Scholar 

  • Smirnov GA (1972) Criteria and methods of determining inactivation of the hina preparations. Probi Tuberk 50 issue 4: 54–61

    CAS  Google Scholar 

  • Serenen AWS, Szabo L, Pedersen A, Scharff A (1967) Correlation between renal function and serum half-life of kanamycin and its application to dosage adjustement. Postgrad Med J Suppl: 37–43

    Google Scholar 

  • Soloviev VN, Firsov AA, Dolgova GV, Berezhinskaya VV, Fishman VM (1977) Relationship between the neuromuscular blocking effect of gentamycin and streptomycin and their concentration in blood. Acta Biol Med Germ 36: 1307–1314

    PubMed  CAS  Google Scholar 

  • Soloviev VN, Firsov AA, Berezhinskaya VV (1978) Relationship between the blood concentration of the drug and its cumulative effect: a pharmacokinetic analysis of the nephrotoxic action of gentamycin and streptomycin. Pharmazie 33: 113–116

    PubMed  CAS  Google Scholar 

  • Stark JE, Ellard GA, Gammon PT, Fox W (1975) The use of isoniazid as a marker to monitor the self-administration of medicaments. Br J Clin Pharmacol 2: 355–358

    PubMed  CAS  Google Scholar 

  • Steffen J (1971) Ist Isoxyl in den bisher angegebenen Dosierungen als Tuberkuloseheilmittel zu verwenden? Prax Pneumol 25: 263–277

    PubMed  CAS  Google Scholar 

  • Stein W, Schoog M, Franz HE (1969) Doxycyclin-Serumspiegel bei niereninsuffizienten Patienten. Arzneimittelforsch 19: 827–828

    PubMed  CAS  Google Scholar 

  • Stoltz M (1981) Short term induction by rifampicin and rifampicin quinone in mice. Naunyn-Schmiedebergs Arch Pharmacol 316 Suppl: R6 (No 23 )

    Google Scholar 

  • Stottmeier KD, Beam RE, Kubica GP (1968) The absorption and excretion of pyrazinamide (PZA) in rabbits and tuberculous patients. Trans 27`1 Pulm Res Conf VAAF: 16

    Google Scholar 

  • Strauss I, Erhardt F (1970) Ethambutol absorption, excretion and dosage in patients with renal tuberculosis. Chemotherapy 15: 148–157

    PubMed  CAS  Google Scholar 

  • Strominger JL, Tipper DJ (1965) Bacterial cell wall synthesis and structure in relation to the mechanism of action of penicillins and other antibacterial agents. Am J Med 39: 708–721

    PubMed  CAS  Google Scholar 

  • Sunahara S, Nakagawa H (1972) Metabolic study and controlled clinical trials of rifampin. Chest 61: 526–532

    PubMed  CAS  Google Scholar 

  • Sunahara S, Mukoyama H, Ogawa M, Kawai K (1963) Urinary excretion of metabolites of INH and inactivation of sulfonamide in rapid, intermediate and slow inactivators of INH. Kekkaku 38: 1–7

    PubMed  CAS  Google Scholar 

  • Sureau B (1963) Variations des taux sanguins dépendant d’introduction et du véhicule. Rev Fr Etudes Clin Biot 8: 292–302

    CAS  Google Scholar 

  • Syvälathti EKG, Pihlajamäki KK, Iisalo EI (1974) Half-life of tolbutamide in patients receiving tuberculostatic agents. Abstracts of the XXVII Nordic Congress of Pneumonology. Scand J Respir Dis Suppl 88: 17

    Google Scholar 

  • Szabo I, Kisfaludy L (1973) Ein neues, wirksames Antituberkulotikum. Tuberkulózis 24: 140–142

    Google Scholar 

  • Tacquet A, Macquet V, Gernez-Rieux C (1961) Sur un nouveau procédé d’administration de l’éthionamide. Rev Tuberc 25: 339–353

    CAS  Google Scholar 

  • Tacquet A, Guillaume J, Macquet V (1963) Étude expérimentale du métabolisme de la 4,4’diisoamyl-oxythiocarbanilide marquée au soufre radioactif. Acta Tuberc Belg 54: 59–65

    PubMed  CAS  Google Scholar 

  • Tatarinova NV, Chukanov VI (1978) Blood serum ethambutol concentration in tubercu- lous patients with different patterns of treatment. Probl Tuberk 56 issue 12: 62–65

    Google Scholar 

  • Tatarinova NV, Kozulitsina GI, Korotaev GA (1974) Analysis of ethambutol concentration in the blood of tuberculous patients. Probl Tuberk 52 issue 10: 39–43

    Google Scholar 

  • Tatarinova NV, Zhuk NA, Chukanov VI (1979) Qualitative reaction for determination of urine rifampicin with a purpose of control of the drug intake by patients. Probl Tuberk 57 issue 8: 62–65

    Google Scholar 

  • Teunissen MWE, Bakker W (1984) Influence of rifampicin treatment on antipyrine clearance and metabolite formation in patients with tuberculosis. Br J Clin Pharmacol 18: 701–706

    PubMed  CAS  Google Scholar 

  • Thoma K (1981) Biopharmazeutische Aspekte der pharmazeutischen Technologie. Pharmazie 36: 185–193

    PubMed  CAS  Google Scholar 

  • Titarenko OT, Vakhmistrova TI, Perova TL (1983) Rifampicin excretion with urine in patients with renal insufficiency treated with rifampicin alone or in combination with isoniazid. Antibiotiki 28: 698–702

    PubMed  CAS  Google Scholar 

  • Tomassini L, Naplatanova D (1973) Einfluß einiger Faktoren auf die in-vitro-Abgabege-schwindigkeit der Wirkstoffe aus Depottabletten. Pharmazie 28: 447–449

    PubMed  CAS  Google Scholar 

  • Tomcsânyi A, Juhâsz P (1973) Rifampicin-Blutspiegelbestimmung unter Verwendung von B. Subtilis Test-Organismus. Tuberkulózis 24: 118–121

    Google Scholar 

  • Toyohara M, Shigematsu A (1969) A study on the distribution of 14C-labelled I’NH in whole body section of frozen mice by use of autoradiography and film scintillation counter. Kekkaku 44: 357–360

    PubMed  CAS  Google Scholar 

  • Tripathy SP (1976) A slow-release preparation of isoniazid: therapeutic efficacy and adverse side-effects. Bull Int Union Tuberc 51: 133–141

    PubMed  CAS  Google Scholar 

  • Truffot-Pernot Ch, Grosset J, Bismuth R, Lecoeur H (1983) Activité de la rifampicine administrée de manière intermittente et de la cyclopentyl rifamycine (ou DL 473) sur la tuberculose expérimentale de la souris. Rev Fr Mal Resp 11: 875–882

    CAS  Google Scholar 

  • Tsukamura M (1985a) In vitro antituberculosis activity of a new antibacterial substance ofloxacin (DL 8280). Am Rev Respir Dis 131:348–351

    CAS  Google Scholar 

  • Tsukamura M (1985b) Antituberculosis activity of ofloxacin (DL 8280) on experimental tuberculosis in mice. Am Rev Respir Dis 132: 915

    CAS  Google Scholar 

  • Tsukamura M, Tsukamura S, Nakano E (1963) The uptake of isoniazid by mycobacteria and its relation to isoniazid susceptibility. Am Rev Respir Dis 87: 269–275

    PubMed  CAS  Google Scholar 

  • Tsukamura M, Yokouchi J, Miwa T, Koike K (1972) Comparison of blood concentration of rifampicin between administration before and after breakfast. Kekkaku 47: 69–73

    PubMed  CAS  Google Scholar 

  • Tsukamura M, Nakamura E, Yoshil S, Amano H (1985) Therapeutic effect of a new antibacterial substance ofloxacin (DL 8280) on pulmonary tuberculosis. Am Rev Respir Dis 131: 352–356

    PubMed  CAS  Google Scholar 

  • Tsukamura M, Yoshil S, Yasuda Y, Saito H (1986) Antituberculosis chemotherapy including ofloxacin in patients with pulmonary tuberculosis not treated previously. Kekkaku 61: 15–17

    PubMed  CAS  Google Scholar 

  • Tytor YN (1976) Liver function and metabolism of isoniazid and PAS in adolescents with intrathoracic tuberculosis. Probl Tuberk 54 issue 7: 29–32

    Google Scholar 

  • Udou T, Mizuguchi Y, Yamada T (1986) Presence of beta-lactamase and aminoglycosideacetyltransferase and possible participation of altered drug transport on the resistance mechanism. Am Rev Respir Dis 133: 653–657

    PubMed  CAS  Google Scholar 

  • Ungheri D, Della Torre P, Della Bruna C (1986) Activity of rifabutine (LM 427) against Mycobacterium fortuitum in mice. Am Rev Respir Dis 133 issue 4, part 2: A 41

    Google Scholar 

  • Urbanczik R, Petersen KF (1985) Überlegungen zur Entwicklung der Bakteriologie und der experimentellen Chemotherapie von Mycobakteriosen. Prax Klin Pneumol 39: 421–430

    PubMed  CAS  Google Scholar 

  • Venho VMK, Koskinen R (1971) The effect of pyrazinamide, rifampicin and cycloserine on the blood levels and urinary excretion of isoniazid. Ann Clin Res 3: 277–280

    PubMed  CAS  Google Scholar 

  • Verbist L (1971) Pharmacological study of rifampicin after repeated high dosage during intermittent combined therapy. I. Variation of the rifampicin serum levels (947 determinations). Respiration 28 Suppl: 7–16

    PubMed  Google Scholar 

  • Verbist L, Dutoit M (1966) Ethionamide blood levels after administration of the drug under various pharmaceutical forms. Arzneimittelforsch 16: 773–778

    PubMed  CAS  Google Scholar 

  • Verbist L, Gyselen A (1968) Antituberculous activity of rifampin in vitro and in vivo and the concentrations attained in human blood. Am Rev Respir Dis 98: 923–932

    PubMed  CAS  Google Scholar 

  • Verbist L, Mbete S, Van Landuyt H, Darras Th, Gyselen A (1972) Intermittent therapy with rifampin once a week in advanced pulmonary tuberculosis. Chest 61: 555–563

    PubMed  CAS  Google Scholar 

  • Vesell ES (1972) Introduction: genetic and environmental factors affecting drug response in man. Fed Proc 31: 1253–1269

    PubMed  CAS  Google Scholar 

  • Vesell ES (1981) Der Einfluß von Wirtsfaktoren auf die Wirkung von Medikamenten. II. Alter. Internist (Berlin) 22: 99–105

    CAS  Google Scholar 

  • Videau D (1968) Pénétration, site et mode d’ action des antibiotiques chez la bactérie. Biol Méd 57: 449–470

    CAS  Google Scholar 

  • Virsik K, Bajan A, Havelka C, Badalik L, Schwartz E, Molnar L (1971) Serum levels of streptomycin, isoniazid and thiacetazone correlated to side-effects produced in patients with active pulmonary tuberculosis. Stud Pneumol Phtiseol Cechoslov 31: 390–395

    Google Scholar 

  • Vivien JN, Thibier R, Lepeuple A (1972) Recent studies on isoniazid. Adv Tuberc Res 18: 148–230

    Google Scholar 

  • Vladimirsky MA, Streltsov VP, Stepanov VM, Braude VI (1980) Liposomes as carriers of antituberculous drugs: a new approach to experimental chemotherapy of tuberculosis. Probl Tuberk 58 issue 7: 53–56

    Google Scholar 

  • Wagner JG, Nelson E (1963) Per cent absorbed time plots derived from blood level and/or urinary excretion data. J Pharmac Sci 52: 610–611

    CAS  Google Scholar 

  • Wagner JG, Holmes PD, Wilkinson PK, Blair DC, Stoll RG (1973) Importance of the type of dosage form and saturable acetylation in determining the bioactivity of p-aminosalicylic acid. Am Rev Respir Dis 108: 536–546

    PubMed  CAS  Google Scholar 

  • Wagner WH, Chou JTY, Ilberg v. C, Ritter R, Vosteen KH (1971) Untersuchungen zur Pharmakokinetik von Streptomycin. Arzneimittelforsch 21: 2006–2016

    PubMed  CAS  Google Scholar 

  • Walter AM, Heilmeyer L (1969) Antibiotika-Fibel. 3. Auflage. Heilmeyer L, Otten H, Plempel M ( Hrsg) Thieme Verlag, Stuttgart

    Google Scholar 

  • Wareska W, Siekierzynska A (1967) Studies of the blood serum level and urinary excretion of Tebamine. Gruzlica 35: 1265–1269

    PubMed  CAS  Google Scholar 

  • Wareska W, Klott M, Izdebska-Makosa (1963) Cycloserine excretion in cases of renal diseases. Gruzlica 31: 664–668

    PubMed  CAS  Google Scholar 

  • Wattel F, Voisin C, Martin G, Courcol R, Durocher A, Duquesne B, Babry M (1981) Use of parenteral rifampin in patients with severe tuberculosis and severe nontubercular infections. In: Periti P, Grassi GP (eds) Current chemotherapy and immunotherapy. 12th International Congress of Chemotherapy (1981, Florence, Italy.) Vol II American Society for Microbiology, Washington, pp 982–984

    Google Scholar 

  • Weidel W (1964) Ein neuer Typ von Makromolekülen. Angew Chem 76: 801–807

    CAS  Google Scholar 

  • Welles JS, Harris PU, Small RM, Worth HM, Anderson RC (1966) The toxicity of capreomycin in laboratory animals. Ann NY Acad Sci 135: 960–973

    PubMed  CAS  Google Scholar 

  • Whelton A (1974) Antibacterial chemotherapy in renal insufficiency. Antibiot Chemother 18: 1–48

    PubMed  CAS  Google Scholar 

  • White RJ (1975) Wirkungsmodi antituberkulöser Chemotherapeutika: Rifampicin. In: Meissner G, Schmiedel A † Nelles A † (Hrsg) Infektionskrankheiten und ihre Erreger, Band 4, Teil III. Fischer, Jena, pp 365–381

    Google Scholar 

  • White RJ, Lancini GC, Silvestri LG (1971) Mechanism of action of rifampin on Mycobacterium smegmatis. J Bacteriol 108: 737–741

    PubMed  CAS  Google Scholar 

  • Winder FG (1982) Mode of action of the antimycobacterial agents. In: Ratledge C, Stanford J (eds) The Biology of Mycobacteria Vol 1. Academic Press, London New York Paris San Diago San Francisco Sao Paulo Sydney Tokyo Toronto, pp 354–422

    Google Scholar 

  • Winkler E, Weih H (1967) Doxycyclin. Ergebnisse von Basisuntersuchungen. Med Klin 62: 1257–1262

    PubMed  CAS  Google Scholar 

  • Winsel K, Iwainsky H, Werner E, Eule H (1976) Trennung, Bestimmung und Pharmakokinetik von Rifampicin und seinen Biotransformationsprodukten. Pharmazie 31: 95–99

    PubMed  CAS  Google Scholar 

  • Winsel K, Eule H, Werner E, Iwainsky H (1985) Zur Pharmakokinetik des Rifainpicins (RMP) bei intermittierender Behandlung von Patienten mit Lungentuberkulose. Pharmazie 40: 253–256

    PubMed  CAS  Google Scholar 

  • Wisniewsky K (1972) The effect of trypsin on the absorption and distribution of isonicotinic acid hydrazide (INH) in tissues. Acta Physiol Pol 23: 167–173

    Google Scholar 

  • Youatt J (1969) A review of the action of isoniazid. Am Rev Respir Dis 99: 729–749 (M)

    Google Scholar 

  • Youatt J, Tham SH (1969a) An enzyme system of Mycobacterium tuberculosisthat reacts specifically with isoniazid. II. Correlation of this reaction with the binding and metabolism of isoniazid. Am Rev Respir Dis 100: 31–37

    CAS  Google Scholar 

  • Youatt J, Tham SH (1969b) Radioactive content of Mycobacterium tuberculosisafter exposure to 14C-isoniazid. Am Rev Respir Dis 100: 77–78

    CAS  Google Scholar 

  • Zähner H (1977) Einige Aspekte der Antibiotica-Forschung. Angew Chem 89: 696–703

    Google Scholar 

  • Zathureckÿ L (1972) Beeinflussung der Arzneimittelwirkung durch die Arzneiform. Pharmazie 27: 686–693

    PubMed  Google Scholar 

  • Zeeuw RA de (1981) Potentials of chromatographic methods in assessing the bioavailability and the pharmacokinetics of drugs. Pharmazie 36: 178–184

    PubMed  Google Scholar 

  • Zeller F, Róka L (1973) Ethambutolausscheidung bei Tuberkulosepatienten mit mäßig eingeschränkter Nierenfunktion. Prax Pneumol 27: 36–43

    PubMed  CAS  Google Scholar 

  • Zeyer J, Hurni H, Fischer R, Lauber E, Schönholzer G, Aebi H (1960) Versuche mit verschieden 14C-markierter Benzoyl-p-aminosalicylsäure (B-PAS) in Kulturen von Mycobacterium tuberculosis. Z Naturforschung 15 b: 694–701

    Google Scholar 

  • Zierski M (1981) Pharmakologie, Toxikologie und klinische Anwendung von Pyrazinamid. Prax Klin Pneumol 35: 1075–1105

    PubMed  CAS  Google Scholar 

  • Zilly W (1979) Arzneimitteltherapie bei Lebererkrankungen. Med Klin 74: 1575–1580

    PubMed  CAS  Google Scholar 

  • Zilly W, Breimer DD, Richter E (1977) Stimulation of drug metabolism by rifampicin in patients with cirrhosis or cholestasis measured by increased hexobarbital and tolbutamide clearance. Eur J Clin Pharmacol 11: 287–293

    PubMed  CAS  Google Scholar 

  • Zilly W, Bopp E, Bürkl B, Richter E (1974) Der Einfluß von Rifampicin auf die Pharma-kokinetik von Tolbutamid bei Gesunden. Verh Dtsch Ges Inn Med 80: 1538–1540

    PubMed  CAS  Google Scholar 

  • Zitkova L, Tousek J (1973) Resorption and elimination of terizidone (Bracco) compared with cycloserine (Spofa). Stud Pneumol Phtiseol Cechoslov 33: 37–43

    Google Scholar 

  • Zitkova L, Tousek J (1978) Pharmacokinetics of cycloserine and ethambutol. Probt Tuberk 56 issue 3: 23–25

    Google Scholar 

  • Zitkova L, Tousek J, Stastna J (1976) Pharmacokinetics of ethambutol after different single doses. Stud Pneumol Phtiseol Cechoslov 36: 297–304

    Google Scholar 

  • Zitkova L, Janko I, Tousek J (1983) Pharmacokinetics of antituberculosis drugs after oral isolated and simultaneous administration in triple combination. Czech Med 6: 202–217

    PubMed  CAS  Google Scholar 

  • Zwolska-Kwiek Z (1974) Variability in rifampicin concentrations in the serum of patients with tuberculosis. Gruzlica 42: 65–73

    CAS  Google Scholar 

  • Zwolska-Kwiek Z, Lawicka E, Wasowska H (1975) Comparison of rifampicin serum levels after the administration before breakfast and 3 hours after breakfast. Gruzlica 43: 151–156

    PubMed  CAS  Google Scholar 

  • Zysset T, Bircher J (1983) Dosisanpassung von Medikamenten für Leberpatienten mit Hilfe einer einfachen Risiko-Klassifikation. Internist (Berlin) 24: 151–161

    CAS  Google Scholar 

  • Abraham EP (1965) The chemistry of new antibiotics. Am J Med 39: 692–707

    PubMed  CAS  Google Scholar 

  • Bang HO, Kramer Jacobsen L, Strandgaard E, Yde H (1962) Metabolism of isoniazid and para-amino-salicylic acid (PAS) in the organism and its therapeutic significance. Acta Tuberc Scand 41: 237–251

    CAS  Google Scholar 

  • Brown KA, Ratledge C (1975a) The effect of p-aminosalicylic acid on iron transport and assimilation in mycobacteria. Biochim Biophys Acta 385: 207–220

    CAS  Google Scholar 

  • Brown KA, Ratledge C (1975b) Iron transport in Mycobacterium smegmatis: ferrimycobactin reductase (NAD(P)H: mycobactin oxidoreductase), the enzyme releasing iron from its carrier. Febs Letters 53: 262–266

    CAS  Google Scholar 

  • Frostadt S (1962) Continued studies in concentrations of para-amino-salicylic acid (PAS) in the blood. Acta Tuberc Scand 41: 68–82

    Google Scholar 

  • Hedgecock LW (1965) Comparative study of the mode of action of para-aminosalicylic acid on Mycobacterium kansasiiand Mycobacterium tuberculosis. Am Rev Respir Dis 91: 719–727

    PubMed  CAS  Google Scholar 

  • Huang KC, Moore KB, Campbell PC Jr (1960) Renal excretion of para-aminosalicylic acid: a two-way transport system in the dog. Am J Physiol 199: 5–8

    PubMed  CAS  Google Scholar 

  • Jenne JW (1964) Pharmacokinetics and the dose of isoniazid and para-aminosalicylic acid in the treatment of tuberculosis. Antibiot Chemother 12: 407–432

    PubMed  CAS  Google Scholar 

  • Jenne JW, MacDonald FM, Mendoza E (1961) A study of the renal clearance, metabolic inactivation rates, and serum fall-off interaction of isoniazid and para-aminosalicylic acid in man. Am Rev Respir Dis 84: 371–378

    PubMed  CAS  Google Scholar 

  • Jeunet F, Lauber E, Aebi H (1961) Verteilung und Umsatz von 14C-Benzoyl-p-Aminosalicylsäure bei der Maus. Naunyn-Schmiedebergs Arch Pharmacol 242: 353–369

    CAS  Google Scholar 

  • Jeunet F, Lauber E, Aebi H (1962) Bildung von Metaboliten der Benzoyl-para-amino-salicylsäure (C14-B-PAS) in der Rattenleber und deren Ausscheidung in Ham und Galle. Naunyn-Schmiedebergs Arch Pharmacol 242: 564–575

    CAS  Google Scholar 

  • Krüger-Thiemer E (1965) Wirkungsweise der Sulfanilamide und der p-Aminosalicylséure. In: Küppler W, Iwainsky H, Grunert M, Sehrt I, Reutgen H (Hrsg) Bericht —ber das II. Internationale Symposium — Bakteriologie und Biochemie der Mykobakterien“. 20.-24.10.1963 Berlin-Buch, pp 386–414

    Google Scholar 

  • Kuntz E (1966) Untersuchungen über die Blutspiegelwerte und die Ausscheidung von pAminosalicylsäure (PAS-Natrium) bei i.v. Infusionsbehandlung. Beitr Klin Tuberk 133: 12–24

    CAS  Google Scholar 

  • Lehmann J (1961) Chemische und experimentelle Grundlagen der PAS-Therapie. Wien Med Wochenschr 111: 803–805

    PubMed  CAS  Google Scholar 

  • Lehmann J (1969) The role of the metabolism of p-aminosalicylic acid (PAS) in the treatment of tuberculosis. Scand J Respir Dis 50: 169–185

    PubMed  CAS  Google Scholar 

  • Macham LP, Ratledge C (1975) A new group of water-soluble iron-binding compounds from mycobacteria: The exochelins. J Gen Microbiol 89: 379–382

    PubMed  CAS  Google Scholar 

  • Macham LP, Ratledge C, Nocton JC (1975) Extracellular iron acquisition by mycobacteria: role of the exocholins and evidence against the participation of mycobactin. Infect Immun 12: 1242–1251

    PubMed  CAS  Google Scholar 

  • Mordasini ER, Eulenberger J (1971) Tuberkulostatika, Teil 2, Spezifische Chemotherapeutika. Int J Clin Pharmacol Ther Toxicol 5: 70–95

    CAS  Google Scholar 

  • Nikodemowicz E, Owsinski J, Kaminska M, Ostrowska A, Rapf T (1971) Investigation into the metabolism of para-aminosalicylic acid in the body. Gruzlica 39: 1113–1121

    PubMed  CAS  Google Scholar 

  • Pentikainen P, Wan SH, Azarnoff DL (1973) Bioavailability studies on p-aminosalicylic acid and its various salts in man. Am Rev Respir Dis 108: 1340–1347

    PubMed  CAS  Google Scholar 

  • Portwich F (1964) Untersuchung des Mechanismus der Nierenausscheidung von Arzneimitteln. Antibiot Chemother 12: 41–52

    PubMed  CAS  Google Scholar 

  • Ratledge C (1961) Transport of iron by mycobactin in Mycobacterium smegmatis. Biochem Biophys Res Commun 45: 856–862

    Google Scholar 

  • Ratledge C, Brown KA (1972) Inhibition of mycobactin formation in Mycobacterium smegmatisby p-aminosalicylate. A new proposal for the mode of action of p-aminosalicylate. Am Rev Respir Dis 106: 774–776

    PubMed  CAS  Google Scholar 

  • Ratledge C, Macham LP, Brown KA, Marshall BJ (1974) Iron transport in Mycobacterium smegmatis; A restricted role for salicylic acid in the extracellular environment. Biochim Biophys Acta 372: 39–51

    PubMed  CAS  Google Scholar 

  • Reutgen H (1975) Zum Wirkungsmechanismus der p-Aminosalicylsäure. In: Meissner G, Schmiedel AI-, Nelles A (Hrsg) Infektionskrankheiten und ihre Erreger, Band 4, Teil III. Fischer, Jena, pp 319–336

    Google Scholar 

  • Schmiedel A (1955) Zur Frage der biologischen Wertigkeit chemisch nachgewiesener pAminosalicylsäure in Körperflüssigkeiten. Zentralbl Bakteriol Mikrobiol Hyg (A) 164: 576–587

    CAS  Google Scholar 

  • Shenderova RI, Terteryan EA (1973) Inactivation of PAS and Hina in tuberculous children. Probl Tuberk 51 issue 5: 67–71

    PubMed  CAS  Google Scholar 

  • Wagner J, Fajkogovâ D, Simâne Z (1960) A comparative study on acetylation of para-aminosalicylic acid (PAS after oral and intravenous administration). Acta Tuberc Scand 38: 339–346

    Google Scholar 

  • Zeyer J, Hurni H, Fischer R, Lauber E, Schönholzer G, Aebi H (1960) Versuche mit verschieden 14C-markierter Benzoyl-p-aminosalicylsäure (B-PAS) in Kulturen von Mycobacterium tuberculosis. Z Naturforschung 15 b: 694–701

    Google Scholar 

  • Arosenius KD, Björk VO, Laurell G (1961) The streptomycin-concentration in tuberculosis cavities. Thorax 16: 361–363

    PubMed  CAS  Google Scholar 

  • Beggs WH, Williams NE (1971) Streptomycin uptake by Mycobacterium tuberculosis. Appl Microbiol 21: 751–753

    PubMed  CAS  Google Scholar 

  • Cada K (1971) The ototoxic action mechanism of streptomycin and kanamycin. Stud Pneu-mol Phtiseol Cechoslov 31: 405–410

    CAS  Google Scholar 

  • Cox EC, White JR, Flaks JG (1964) Streptomycin action and the ribosome. Proc NY Acad Sci 51: 703–709

    CAS  Google Scholar 

  • Davies JE (1964) Studies on the ribosomes of streptomycin-sensitive and resistant strains of Escherichia coli. Proc NY Acad Sci 51: 659–664

    CAS  Google Scholar 

  • Davies J, Gilbert W, Gorini L (1964) Streptomycin, suppression and the code. Proc NY Acad Sci 51: 883–890

    CAS  Google Scholar 

  • Davies J, Jones DS, Khorana HG (1966) A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J Mol Biol 18: 48–57

    PubMed  CAS  Google Scholar 

  • Federspil P (1979) Antibiotikaschäden des Ohres, dargestellt am Beispiel des Gentamycins. Hals-, Nasen-und Ohrenheilkunde, Band 28. Barth, Leipzig

    Google Scholar 

  • Felgenhauer F, Lagler F (1970) Experimental animal investigations with rifampicin on the question of its influence on the vestibular system and its period of retention in the peri-lymph of the inner ear. Antibiotics Chemother 16: 361–368

    CAS  Google Scholar 

  • Fernandez C (1967) Biochemistry of labyrinthine fluids. Inorganic substances. Arch Otolaryng 86: 116–127

    Google Scholar 

  • Ganguin G (1971) Auswirkungen einer antituberkulösen Chemotherapie bei tuberkulösen Schwangeren auf die Frucht. Z Erkr Atmungsorgane 134: 95–103

    CAS  Google Scholar 

  • Gauze GG, Fatkullina LG, Dolgilevich SM (1971) Effect of antibiotics with different mechanisms of action on incorporation of labeled desoxynucleoside triphosphates to DNA of isolated rat liver mitochondria. Antibiotiki 17: 296–301

    Google Scholar 

  • Gerhardt H-J, Scheibe F, Berndt H (1973) Biochemische Aspekte und Möglichkeiten in der Lärmschadenforschung des Innenohres. Z Gesamte Hyg 19: 21–24

    PubMed  CAS  Google Scholar 

  • Goldberg IH (1965) Mode of action of antibiotics. Am J Med 39: 722–752

    PubMed  CAS  Google Scholar 

  • Hahn FE (1971) Streptomycin. Antibiot Chemother 17: 29–51 (M)

    CAS  Google Scholar 

  • Hansson E, Hanngren Ä, Ullberg S (1966) Autoradiographic distribution studies with labelled penicillin, streptomycin, tetracycline and cycloserine. In: Herold M, Gabriel Z (eds) Antibiotics — Advances in research, production and clinical use. London: Butter-worths, Prague: Czechoslovak Medical Press, pp 156–164

    Google Scholar 

  • Hevér E, Riskó T (1960) Studies on streptomycin levels of blood and abscess. Acta Tuberc Scand 38: 40–50

    PubMed  Google Scholar 

  • Höffler D (1981) Die Dosierung wichtiger Antibiotika und Tuberkulostatika bei Niereninsuffizienz. Internist (Berlin) 22: 601–606

    Google Scholar 

  • Hurwitz C, Rosano CL (1962) Accumulation of label from 14C-streptomycin by Escherichia coli. J Bacteriol 83: 1193–1201

    PubMed  CAS  Google Scholar 

  • Hurwitz C, Rosano CL (1966) Further evidence for a streptomycin permease. In: Herold M, Gabriel Z (eds) Antibiotics — Advances in research, production and clinical use. London: Butterworths, Prague: Czechoslovak Medical Press, pp 668–671

    Google Scholar 

  • Kellerhals B (1973) Zur Ototoxizität der Aminoglykosid-Antibiotika. MMW 115: 1667–1672

    CAS  Google Scholar 

  • Kibirige MS, Jones PM, Williams F, Burn JL (1986) Serum streptomycin levels in tuberculosis meningitis in an infant. Lancet I: 806–807

    Google Scholar 

  • Klein D, Pramer D (1961) Bacterial dissimilation of streptomycin. J Bacteriol 82: 505–510

    PubMed  CAS  Google Scholar 

  • Klein D, Pramer D (1962) Some products of the bacterial dissimilation of streptomycin. J Bacteriol 83: 309–313

    PubMed  CAS  Google Scholar 

  • Kogut M, Harris M (1969) Effects of streptomycin in bacterial cultures growing at different rates; interaction with bacterial ribosomes in vivo. Eur J Biochem 9: 42–49

    PubMed  CAS  Google Scholar 

  • Kogut M, Lightbown JW (1966) The mode of action of streptomycin: effects of the intracellular antibiotic on the growth of Escherichia coli. In: Herold M, Gabriel Z (eds) Antibiotics — Advances in research, production and clinical use. London: Butterworths, Prague: Czechoslovak Medical Press, pp 32–37

    Google Scholar 

  • Krüger-Thiemer E j’, Kröger H, Nestler HJ, Seydel JK (1975) Wirkungsmodi antituberkulöser Chemotherapeutika: Inositanaloga. In: Meissner G, Schmiedel A t, Nelles A t (Hrsg) Infektionskrankheiten und ihre Erreger, Band 4, Teil III. Fischer, Jena, pp 337–352

    Google Scholar 

  • Kunin CM (1967) A guide to use of antibiotics in patients with renal disease. Ann Intern Med 67: 151–158

    PubMed  CAS  Google Scholar 

  • Levy D, Russell WF Jr, Middlebrook G (1960) Dosages of isoniazid and streptomycin for routine chemotherapy of tuberculosis. Tubercle 41: 23–31

    PubMed  CAS  Google Scholar 

  • Levy D, Russell WF Jr, Ninio S, Middlebrook G (1961) Effect of increasing dosage of streptomycinsulfate on serum levels of antimicrobially active drug. Dis Chest 39: 161–164

    Google Scholar 

  • Masukawa H, Tanaka N (1968) Miscoding activity of amino-sugars. J Antibiotics 21: 70–72

    CAS  Google Scholar 

  • Mendelsohn M, Katzenberg I (1972) The effect of kanamycin on the cation content of the endolymph. Laryngoscope 82: 397–403

    PubMed  CAS  Google Scholar 

  • Michel-Briand Y (1978) Mécanismes d’action des antibiotiques, à propos de quelques exemples. CR Soc Biol 172: 609–627

    CAS  Google Scholar 

  • Moravek J, Trnka L (1973) Enzymatic inactivation of streptomycin in mycobacteria. Stud Pneumol Phtiseol Cechoslov 33: 346–351

    Google Scholar 

  • Mordasini ER, Eulenberger J (1971) Tuberkulostatika, Teil 1. Int J Clin Pharmacol Ther Toxicol 4: 467–486

    CAS  Google Scholar 

  • Pestka S (1966) Studies on the formation of transfer ribonucleic acid-ribosome complexes. I. The effect of streptomycin and ribosomal dissoziation on 14C-aminoacyl transfer ribonucleic acid binding to ribosomes. J Biol Chem 241: 367–372

    PubMed  CAS  Google Scholar 

  • Pinkett MO, Brownstein BL (1974) Streptomycin-induced synthesis of abnormal protein in an Escherichia coli mutant. J Bacteriol 119: 345–350

    PubMed  CAS  Google Scholar 

  • Podvinec S, Mihaljevic B, Marcetic A, Simonovic M (1966) Experimental investigations into the passage of streptomycin through the placenta in white rats. In: Herold M, Gabriel Z (eds) Antibiotics — Advances in research, production and clinical use. London: Butterworths, Prague: Czechoslovak Medical Press pp 198–202

    Google Scholar 

  • Quesnel LB, York P, Skinner VM (1971) Drug dependence and phenotypic masking in streptomycin dependent and paromomycin dependent mutants of Escherichia coli. Microbios 4: 97–107

    PubMed  CAS  Google Scholar 

  • Rasmussen F (1969) The oto-toxic effect of streptomycin and dihydrostreptomycin on the foetus. Scand J Resp Dis 50: 61–67

    CAS  Google Scholar 

  • Stupp H, Rauch S (1966) Anreicherungsvorgänge im Innenohr — ihre klinische und physiologische Bedeutung. Arch Ohrenheilkunde 187: 636–642

    CAS  Google Scholar 

  • Stupp H, Rauch S, Sous H, Brun JP, Lagler F (1967) Kanamycin dosage and levels in ear and other organs. Arch Otolaryng 86: 515–521

    PubMed  CAS  Google Scholar 

  • Tanaka N, Masukawa H, Umezawa H (1967) Structural basis of kanamycin for miscoding activity. Biochem Biophys Res Commun 26: 544–549

    PubMed  CAS  Google Scholar 

  • Toyohara M (1974) The experimental study on the transmission of the antituberculous drugs to fetuses. Kekkaku 49: 97–99

    CAS  Google Scholar 

  • Varpela E (1964) On the effect exerted by first-line tuberculosis medicines on the foetus. Acta Tubercul Scand 35: 53–69

    Google Scholar 

  • Voldfich L (1965) The kinetics of streptomycin, kanamycin and neomycin in the inner ear. Acta Oto-Laryng 60: 243–248

    Google Scholar 

  • Virsik K, Bajan A, Havelka C, Schwartz E, Molnar L (1971) Serum levels of streptomycin, isoniazid and thiacetazone correlated to side-effects in patients with active pulmonary tuberculosis. Stud Pneumol Phtiseol Cechoslov 31: 3–8

    Google Scholar 

  • Vrabec DP, Cody DTR, Ulrich JA (1965) A study of the relative concentrations of antibiotics in the blood, spinal fluid, and perilymph in animals. Ann Otol Rhinol Laryngol 74: 688–705

    Google Scholar 

  • Wagner WH (1971) The pharmacokinetics of streptomycin. Stud Pneumol Phtiseol Cechoslov 31: 276–279

    Google Scholar 

  • Wagner WH, Chou JTY, Ilberg C v, Ritter R, Vosteen KH (1971) Untersuchungen zur Pharmakokinetik von Streptomycin. Arzneimittelforsch 21: 2006–2016

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Nakajina R, Oda R, Uno M, Naito T (1971) Experimental study on the transfer of kanamycin to the inner ear fluids. Med J Osaka Univ 21: 257–263

    PubMed  CAS  Google Scholar 

  • Drabkina RO, Ginzburg TS (1977) Antituberculous action and pharmacokinetics of thioacetazone. Probl Tuberk 55 issue 4: 69–71

    Google Scholar 

  • Kakimoto S, Seydel J, Wempe E (1961) Struktur und Wirkung von Carbothionamiden. Jber Borstel 5: 240–281

    CAS  Google Scholar 

  • Kakimoto S, Seydel J, Wempe E (1962) Zusammenhänge zwischen Struktur und Wirkung bei Carbothionamiden. Arzneimittelforsch 12: 127–133

    PubMed  CAS  Google Scholar 

  • Krüger-Thiemer E †, Kröger H, Nestler HJ, Seydel JK (1975) Wirkungsmodi antituberkulöser Chemotherapeutika: Pyridincarbonsäureethioamide, Thiocarbanilide und Thiosemicarbazone. In: Meissner G, Schmiedel A f, Nelles A f (Hrsg) Infektionskrankheiten und ihre Erreger, Band 4, Teil III. Fischer, Jena, pp 289–298

    Google Scholar 

  • Mordasini ER, Eulenberger J (1971) Tuberkulostatika, Teil 2, Spezifische Chemotherapeutika. Int J Clin Pharmacol Ther Toxicol 5: 70–95

    CAS  Google Scholar 

  • Reutgen H, Iwainsky H (1968) Untersuchungen zum endogenen Stoffwechsel von Mykobakterien. 4. Mitt. Über den Einfluß von Athionamid auf den endogenen Stoffwechsel von Myc. smegm. Z Naturforschung 23b: 976–982

    Google Scholar 

  • Schmiedel A, Lawonn H, Gerloff W (1964) Über die Wirkungsweise des a-Äthyl-thioisonicotinsäureamid (Ethionamid) auf Tuberkulosebakterien in der Agar-Hohe-SchichtKultur. Beitr Klin Tuberk 129: 317–325

    CAS  Google Scholar 

  • Seydel J (1965) Struktur und Wirkung von Pyridincarbonséurethioamiden und Pyridincarbonséurehydraziden. In: Küppler W, Iwainsky H, Grunert M, Sehrt I, Reutgen H (Hrsg) Bericht über das II. Internationale Symposium — Bakteriologie und Biochemie der Mykobakterien“ 20.-24. 10. 1963. Berlin-Buch, pp 414–427

    Google Scholar 

  • Svinchuk VS, Kramarenko VF, Orlinsky MM (1978) Determination of thioacetazone in the urine. Probl Tuberk 56 issue 7: 74–76

    Google Scholar 

  • Trnka L, Havel A, Urbanczik R (1966) Neueste Tuberkulostatika, ihre Bedeutung und Möglichkeiten der Wertbestimmung im Reagenzglas. Chemotherapia 11: 121–134

    CAS  Google Scholar 

  • Tsukamura M, Tsukamura S, Mizuno S, Nakano E (1964) The mechanism of action of ethionamide. Am Rev Respir Dis 89: 933–935

    PubMed  CAS  Google Scholar 

  • Brander E (1972) A simple way of detecting pyrazinamide resistance. Tubercle 53: 128–131

    PubMed  CAS  Google Scholar 

  • Ellard GA (1969) Absorption, metabolism and excretion of pyrazinamide in man. Tubercle 50: 144–158

    PubMed  CAS  Google Scholar 

  • Gialdroni-Grassi G (1979) Caractéristiques pharmacologiques et métabolisme du pyrazinamide chez l’homme. Actes d’ un Symposium „Le pyrazinamide 25 ans après“, tenu à Alger. 1.-2.4. 1979, Laboratoires Bracco, Milan, pp 31–34

    Google Scholar 

  • Grassi C (1979) Considérations sur l’activité antimycobactérienne du pyrazinamide dans les conditions expérimentales différentes. Actes d’ un Symposium „Le pyrazinamide 25 ans après“, tenu à Alger. 1.-2.4. 1979, Laboratoires Bracco, Milan, pp 45–47

    Google Scholar 

  • Gurumurthy P, Krishnamurthy PV, Sarma GR (1981) Pyrazinamide deamidase activity in tuberculous disease. Am Rev Respir Dis 124: 97

    PubMed  CAS  Google Scholar 

  • Konno K, Feldmann FM, McDermott W (1967) Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 95: 461–469

    PubMed  CAS  Google Scholar 

  • Larbaoui D (1979) Le pyrazinamide, 25 ans après. Actes d’ un Symposium tenu à Alger, 1.2.4. 1979. Laboratoires Bracco, Milan pp 15–23

    Google Scholar 

  • Stottmeier KD, Beam RE, Kubica GP (1968) The absorption and excretion of pyrazinamide. I. Preliminary study in laboratory animals and in man. Am Rev Respir Dis 98: 70–74

    PubMed  CAS  Google Scholar 

  • Subbammal S, Krishnamurthy DV, Tripathy SP, Venkataraman P (1968) Concentrations of pyrazinamide attained in serum with different doses of the drug. Bull WHO 39: 771–774

    PubMed  CAS  Google Scholar 

  • Toida I (1973) Metabolism of pyrazinamide Pyrazinamide deamidase of animal tissues. Am Rev Respir Dis 107: 630–638

    PubMed  CAS  Google Scholar 

  • Zierski M (1981) Pharmakologie, Toxikologie und klinische Anwendung von Pyrazinamid. Prax Pneumol 35: 1075–1105

    CAS  Google Scholar 

  • Ackermann E (1973) Der Arzneimittelmetabolismus beim Menschen und seine Bedeutung für die Pharmakotherapie und ihre Nebenwirkungen. Dtsch Ges Wesen 28: 721–725

    CAS  Google Scholar 

  • Advenier C, Saint-Aubin A, Scheinmann P, Paupe J (1981) Pharmacocinétique de l’isoniazide chez l’enfant. Rev Fr Mal Resp 9: 365–374

    CAS  Google Scholar 

  • Albengres E, Houin G, Breau J-L, Hirsch A (1977) Modification, en cours de traitement, de la vitesse d’ acétylation de l’isoniazide sans atteinte hépatique decelable. Nouv Presse Méd 6: 2869–2871

    PubMed  CAS  Google Scholar 

  • Armstrong AR, Peart HE (1960) A comparison between the behavior of Eskimos and non-Eskimos to the administration of isoniazid. Am Rev Respir Dis 81: 588–594

    PubMed  CAS  Google Scholar 

  • Baggot JD (1978) Comparative pharmacokinetics of kanamycin. Abstracts of the 7th Int. Congress of Pharmacology, Pergamon Press, Paris, p. 787 Nr 2451

    Google Scholar 

  • Bang HO, Kramer Jacobsen L, Strandgaard E, Yde H (1962) Metabolism of isoniazid and para-amino-salicylic acid (PAS) in the organism and its therapeutic significance. Acta Tuberc Scand 41: 237–251

    CAS  Google Scholar 

  • Baronti A, Manfredi N (1968) Blood levels of isoniazid and of its methane sulphonate derivative in rapid and slow inactivators after oral administration. Tubercle 49: 104–109

    PubMed  CAS  Google Scholar 

  • Bartmann K (1977) Die Ermittlung von Nebenwirkungen bei chronischer Arzneitherapie am Beispiel der hepatotoxischen Wirkung von Isoniazid und Rifampicin. Verh Dtsch Ges Inn Med 83: 1518–1529

    PubMed  CAS  Google Scholar 

  • Bartmann K, Massmann W (1960a) Über die mikrobiologische INH-Bestimmung nach Schmiedel. Beitr Klin Tuberk 122: 192–197

    CAS  Google Scholar 

  • Bartmann K, Massmann W (1960b) Der Blutspiegel des INH bei Erwachsenen und Kin-dem. Beitr Klin Tuberk 122: 239–250

    CAS  Google Scholar 

  • Bartmann K, Massmann W (1961) Experimentelle Untersuchungen zur Dosierung von INH. Beitr Klin Tuberk 124: 310–319

    CAS  Google Scholar 

  • Bartmann K, Freise G (1963) Mikrobiologisch bestimmte Isoniazid-Konzentrationen im Gewebe von Tier und Mensch. Beitr Klin Tuberk 127: 546–560

    CAS  Google Scholar 

  • Beggs WH, Jenne JW (1969) Isoniazid uptake and growth inhibition of Mycobacterium tuberculosisin relation to time and concentration of pulsed drug exposures. Tubercle 50: 377–385

    PubMed  CAS  Google Scholar 

  • Beggs WH, Jenne JW (1970) Capacity of tubercle bacilli for isoniazid accumulation. Am Rev Respir Dis 102: 94–96

    Google Scholar 

  • Beggs WH, Jenne JW, Hall WH (1968) Isoniazid uptake in relation to growth inhibition of Mycobacterium tuberculosis. J Bacteriol 36: 293–297

    Google Scholar 

  • Beiguelman D, Pinto W Jr, El-Gusindy MM, Krieger H (1974) Factors influencing the level of dapsone in blood. Bull WHO 51: 467–471

    PubMed  CAS  Google Scholar 

  • Bekierkunst A, Bricker A (1967) Studies on the mode of action of isoniazid on mycobacteria. Arch Biochem Biophys 122: 385–392

    PubMed  CAS  Google Scholar 

  • Bergogne-Berezin E, Modai J (1975) Comparison of isoniazid inactivation in African Negroes and in Europeans. Rev Fr Mal Resp 3: 397–412

    Google Scholar 

  • Bergogne-Berezin E, Nouhouayi A, Modai J, Vivien JN (1976) Pharmacokinetic study of isoniazid in black African subjects. Rev Fr Mal Resp 4: 399–408

    Google Scholar 

  • Bernard E, Israël L, Pariente D, Sausy J (1961) Taux d’ INH libre résiduel et résultats théra-peutiques chez 104 tuberculeux pulmonaires „neufs“. Rev Tub Pneumol 25: 319–338

    Google Scholar 

  • Bernstein RE (1981) The hepatotoxicity of isoniazid among the three acetylator phenotypes. Am Rev Respir Dis 123: 568–570

    Google Scholar 

  • Bönicke R, Lisboa BP (1957) Über die Erbbedingtheit der intraindividuellen Konstanz der Isoniazidausscheidung beim Menschen (Untersuchungen an eineiigen und zweieiigen Zwillingen). Naturwissenschaften 44: 314

    Google Scholar 

  • Boman G, Borga O, Hanngren A, Malmborg A-ST, Sjöqvist E (1970) Pharmakokinetische und genetische Gesichtspunkte über den Metabolismus von Isoniazid, p-Aminosalicylsäure und Rifampicin. Pneumonologie, Supp1: 15–20

    Google Scholar 

  • Bouayad Z, Chevalier B, Maurin R, Bartal M (1982) Phénotype d’acétylation de l’isoniazide au Maroc. Rev Fr Mal Resp 10: 401–407

    CAS  Google Scholar 

  • Brennan PJ, Rooney SA, Winder FG (1970) The lipids of Mycobacterium tuberculosisBCG: Fractionation, composition, turnover and the effects of isoniazid Ir J Med Sci 3: 371–390

    CAS  Google Scholar 

  • Chailleux E, Moigneteau Ch, Ordronneau J, Le Normand Y, Kergueris MF, Veyrac MJ, Larousse C (1980) Étude simultanée de l’effet inducteur de la rifampicine et du phénotype d’acétylation de l’isoniazide, chez 21 tuberculeux soumis a un traitement mixte. Rev Fr Mal Resp 8: 169–171

    Google Scholar 

  • Courty G, Tessier R, Neuzil E (1981) Le test d’Eidus dans la mesure du facteur d’acétylation de l’isoniazide, applications thérapeutiques. Bordeaux Méd 14: 903–911

    CAS  Google Scholar 

  • Cuthbertson WFJ, Ireland DM, Wolff W (1953) Detection and identification of some metabolites of isonicotinic acid hydrazide (isoniazid) in human urine. Biochem 55: 669–671

    CAS  Google Scholar 

  • Des Prez R, Boone IU (1961) Metabolism of C14-isoniazid in humans. Am Rev Resp Dis 84: 42–51

    Google Scholar 

  • Dickinson JM, Ellard GA, Mitchison DA (1968) Suitability of isoniazid and ethambutol for intermittent administration in the treatment of tuberculosis. Tubercle 49: 351–366

    PubMed  CAS  Google Scholar 

  • Dudchik GKh, Bilyk MA (1975) Mechanism of the excretion of the bina metabolites by the kidneys in patients with pulmonary tuberculosis. Probl Tuberk 53 issue 5: 57–61

    Google Scholar 

  • Dufour AP, Knight RA, Harris HW (1964) Genetics of isoniazid metabolism in Caucasian, Negro and Japanese populations. Science 145: 391

    PubMed  CAS  Google Scholar 

  • Eda T (1963a) Studies on the action of isoniazid to tubercle bacilli and the mechanism of the isoniazid-resistance in mycobacteria. I Kekkaku 38: 37–41

    CAS  Google Scholar 

  • Eda T (1963b) Studies on the action of isoniazid to tubercle bacilli and the mechanism of the isoniazid-resistance in mycobacteria. II Kekkaku 38: 107–110

    Google Scholar 

  • Eda T (1963c) Studies on the action of isoniazid to tubercle bacilli and the mechanism of the isoniazid-resistance in mycobacteria. III Kekkaku 38: 395–398

    CAS  Google Scholar 

  • Eidus L, Hamilton EJ (1964) A new method for the determination of N-acetyl-isoniazid in urine of ambulatory patients. Am Rev Respir Dis 89: 587–588

    PubMed  CAS  Google Scholar 

  • Eidus L, Hodgkin MM (1975) A new isoniazid preparation designed for moderately fast and “fast” metabolizers of the drug. Arzneimittelforsch 25: 1077–1080

    PubMed  CAS  Google Scholar 

  • Eidus L, Varughese P, Hodgkin MM, Hsu AHE, McRae KB (1973) Simplification of isoniazid phenotyping procedure to promote its application in the chemotherapy of tuberculosis. Bull WHO 49: 507–516

    PubMed  CAS  Google Scholar 

  • Eidus L, Hodgkin MM, Hsu AHE, Schaefer O (1974a) Pharmacokinetic studies with an isoniazid slow-releasing matrix preparation. Am Rev Respir Dis 110: 34–42

    CAS  Google Scholar 

  • Eidus L, Hodgkin MM, Schaefer O, Jessamine AG (1974b) Distribution of isoniazid inactivators determined in Eskimos and Canadian college students. Rev Can Biol 33: 117–123

    CAS  Google Scholar 

  • Ellard GA (1976) A slow-release preparation of isoniazid: pharmacological aspects. Bull Int Union Tuberc 51: 143–154

    Google Scholar 

  • Ellard GA (1984) The potential clinical significance of the isoniazid acetylator phenotype in the treatment of pulmonary tuberculosis. Tubercle 65:211–217; Rev Mal Resp 1: 207–219

    CAS  Google Scholar 

  • Ellard GA, Gammon PT (1978) Acetylator phenotyping is important in TB patients. Curr Ther 19: 130

    Google Scholar 

  • Ellard GA, Gammon PT, Lakshminarayan S, Fox W, Aber VR, Mitchison DA, Citron KM, Tall R (1972) Pharmacology of some slow-release preparations of isoniazid of potential use in intermittent treatment of tuberculosis. Lancet I: 340–343

    Google Scholar 

  • Ellard GA, Gammon PT, Polansky F, Viznerova A, Havlik I, Fox W (1973) Further studies on the pharmacology of a slow-release matrix preparation of isoniazid (Smith and Nephew HS82) of potential use in the intermittent treatment of tuberculosis. Tubercle 54: 57–66

    PubMed  CAS  Google Scholar 

  • Ellard GA, Girling DJ, Nunn AJ (1981) The hepatotoxicity of isoniazid among the three acetylator phenotypes. Am Rev Respir Dis 123: 568

    PubMed  CAS  Google Scholar 

  • Eule H, Werner E (1965) Simultane INH- and Äthioniamid-Konzentrationsbestimmung in der Lunge. Z Tuberk 123: 335–338

    PubMed  CAS  Google Scholar 

  • Evans DAP (1968) Genetic variations in the acetylation of isoniazid and other drugs. Ann NY Acad Sci 151: 723–733

    PubMed  CAS  Google Scholar 

  • Evans DAP (1969) An improved and simplified method of detecting the acetylator phenotype. J Med Genet 6: 405–407

    PubMed  CAS  Google Scholar 

  • Evans DAP, White TA (1964) Human acetylation polymorphism. J Lab Clin Med 63: 394–403

    PubMed  CAS  Google Scholar 

  • Evans DAP, Storey PB, Wittstadt FB, Manley KA (1960) The determination of the isoniazid inactivator phenotype. Am Rev Respir Dis 82: 853–861

    PubMed  CAS  Google Scholar 

  • Eze LC, Evans DAP (1972) The use of the auto-analyzer to determine the acetylator phenotype. J Med Genetics 9: 57

    CAS  Google Scholar 

  • Farah F, Taylor W, Rawlins MD, James O (1977) Hepatic drug acetylation and oxidation: effects of aging in man. Br Med J 2: 155–156

    PubMed  CAS  Google Scholar 

  • Farhat S, Jordanoglou J, Pallikaris G, Lyberatos K, Hadjiidannou J, Gardikas C (1973) Slow and rapid inactivators of isoniazid among Greek patients. Am Rev Respir Dis 108: 1242–1243

    PubMed  CAS  Google Scholar 

  • Finkel JM, Pittillo RF, Mellett LB (1971) Fluorometric and microbiological assays for rifampicin and the determination of serum levels in the dog. Chemotherapy 16: 380–388

    PubMed  CAS  Google Scholar 

  • Fishbain D, Ling G, Kushner DJ (1972) Isoniazid metabolism and binding by sensitive and resistant strains of Mycobacterium smegmatis. Can J Microbiol 18: 783–792

    PubMed  CAS  Google Scholar 

  • Franz H, Urbanczik R, Stoll K, Müller U (1974) Prothionamid-Blutspiegel nach oraler Verabreichung von Prothionamid allein oder kombiniert mit Isoniazid und/oder mit Diamino-Difenylsulfon. Prax Pneumol 28: 605–612

    PubMed  CAS  Google Scholar 

  • Frater-Schröder M, Zbinden G (1976) A gaschromatographic assay for the determination of isoniazid N-acetylation; observation in rats with induced constant urine flow. EXPEAM 32: 767

    Google Scholar 

  • Frymoyer JW, Jacox RF (1963a) Investigation of the genetic control of sulfadiazine and isoniazid metabolism in the rabbit. J Lab Clin Med 62: 891–904

    CAS  Google Scholar 

  • Frymoyer JW, Jacox RF (1963b) Studies of genetically controlled sulfadiazine acetylation in rabbit livers: possible identification of the heterozygous trait. J Lab Clin Med 62: 905–909

    CAS  Google Scholar 

  • Fuxa E (1967) Das Verhalten der Elimination von Isonikotinsäurehydrazid bei Patienten mit Hepatitis infectiosa. Dissertation, Med Akademie Erfurt

    Google Scholar 

  • Gangadharam PRJ, Bathia AL, Radhakrishna S, Selkon JB (1961) Rate of inactivation of isoniazid in South Indian patients with pulmonary tuberculosis. 1.: Microbiological assay of isoniazid in serum following a standard intramuscular dose. Bull WHO 25: 765–777

    PubMed  CAS  Google Scholar 

  • Glatthaar E, Gärtig D, Stander MF, Kleeberg HH (1977) Isoniazid levels in black patients dosed with a matrix preparation (Tebesium). Prax Pneumol 31: 885–889

    CAS  Google Scholar 

  • Gobert C, Saint-Aubin A, Houin G (1980) Metabolisme de l’isoniazide chez le vieillard. Consequences pratiques. Rev Geriat 5 /5: 211–216

    Google Scholar 

  • Goedde HW (1974) Pharmakogenetik: Variabilität von Arzneimittelwirkung und Stoffwechselreaktionen. Internist (Berlin) 15: 27–39

    CAS  Google Scholar 

  • Goedde HW, Schopf E (1964) Pharmakogenetik (klinische Probleme und biochemisch-genetische Grundlagen). Med Klin 59: 1849–1860

    CAS  Google Scholar 

  • Goedde HW, Löhr GW, Waller HD (1965) Ergebnisse und Probleme der Pharmakogenetik. Arzneimittelforsch 15: 1460–1468

    PubMed  CAS  Google Scholar 

  • Goedde HW, Schloot W, Valesky A (1966) Enzymatische Umsetzung von Isonicotinsäu-rehydrazid — ein pharmakogenetisches Problem. Arzneimittelforsch 16: 1030–1034

    PubMed  CAS  Google Scholar 

  • Gow JG, Evans DAP (1964) A study of the influence of the isoniazid inactivation phenotype on reversion in genito-urinary tuberculosis. Tubercle 45: 136–143

    PubMed  CAS  Google Scholar 

  • Grech Belanger O, Belanger PM, Lachance J (1983) Inhibitory effect of isoniazid on antipyrine clearance in man. J Clin Pharmacol 23: 540–544

    Google Scholar 

  • Greenberg L, Eidus L (1962) Antituberculous drugs (Th 1314 and INH) in the host organism. Br J Dis Chest 56: 124–130

    PubMed  CAS  Google Scholar 

  • Grönhagen-Riska C, Hellstrom P-E, Fröseth B (1978) Predisposing factors in hepatitis induced by isoniazid-rifampin treatment of tuberculosis. Am Rev Respir Dis 118: 461–466

    PubMed  Google Scholar 

  • Gross D, Feige A, Zureck A, Schötte H-R (1967) 3-Hydroxymethylpyridin, ein nues Stoffwechselprodukt der Mykobakterien. Z Naturforschung 22 b:835–838

    Google Scholar 

  • Gross D, Feige A, Zureck A, Schütte H-R (1968) Die Biosynthese von 3-Hydroxymethylpyridin bei Mycobacterium bovis Stamm BCG. Eur J Biochem 4: 28–30

    PubMed  CAS  Google Scholar 

  • Grosset J, Canetti G (1960) Donnés complémentaires sur le dosage de l’isoniazide actif du sérum sanguin par la méthode de diffusion verticale. Dosage en présence de PAS. Rev Tub Pneumol 24: 633–647

    CAS  Google Scholar 

  • Grumbach F, Grosset J, Canetti G (1960) L’inactivation de l’isoniazide chez le rat. Son incidence sur les résultats de la chimiothérapie de la tuberculose dans cette espèce. Ann Inst Pasteur 98: 642–656

    CAS  Google Scholar 

  • Gupta RC, Nair CR, Jindal SK, Malik SK (1984) Incidence of isoniazid acetylation phenotypes in North Indians. Int J Clin Pharmacol Ther Toxicol 22: 259–264

    PubMed  CAS  Google Scholar 

  • Gurumurthy P, Krishnamurthy MS, Nazareth O, Parthasarathy R, Sarma GR, Somasundaram PR, Tripathy SP, Ellard GA (1984) Lack of relationship between hepatic toxicity and acetylator phenotype in three thousand South Indian patients during treatment with isoniazid for tuberculosis. Am Rev Respir Dis 129: 58–61

    PubMed  CAS  Google Scholar 

  • Hanson A, Melander A, Wählin-Boll E (1981) Acetylator phenotyping: a comparison of the isoniazid and dapsone tests. Eur J Clin Pharmacol 20: 233–234

    PubMed  CAS  Google Scholar 

  • Hashem N, Khalifa S, Nour A (1969) The frequency of isoniazid acetylase enzyme deficiency among Egyptians. Am J Phys Anthrop 31: 97–102

    PubMed  CAS  Google Scholar 

  • Hearse DJ, Weber WW (1970) Evidence for genetic and enzymatic heterogeneity in the “slow” isoniazid acetylator. Fed Proc 29:803 Abs

    Google Scholar 

  • Heller A, Kasik JE, Clark L, Roth LJ (1961) Ion exchange method for determination of 1-isonicotinyl-2-acetylhydrazide (acetylated isoniazid) in biological fluids. Analytic Chem 33: 1755–1757

    Google Scholar 

  • Hodgkin MM, Hsu AHE, Varughese P, Eidus L (1973) Evaluation of a new method for phenotyping of slow and rapid acetylators. Int J Clin Pharmacol 7: 355–362

    PubMed  CAS  Google Scholar 

  • Hodgkin MM, Eidus L, Hamilton EJ (1974) Screening of isoniazid inactivators by dilution test. Bull WHO 51: 428–430

    PubMed  CAS  Google Scholar 

  • Höffler D (1976) Antibiotikatherapie bei Niereninsuffizienz. Dtsch Med Wochenschr 101: 829–834

    PubMed  Google Scholar 

  • Höffler D (1981) Die Dosierung wichtiger Antibiotika und Tuberkulostatika bei Niereninsuffizienz. Internist (Berlin) 22: 601–606

    Google Scholar 

  • Houin G, Tillement JP (1980) Conséquences thérapeutiques de la mesure de l’indice d’inac- tivation de l’isoniazide au cours du traitement antituberculeux. Thérapie 35: 597–605

    PubMed  CAS  Google Scholar 

  • Hornung S, Malowicz F, Broda Z, Neciuk-Szczerbinski Z, Paryski E, Polonczyk M, Rapf T (1957) Results of a team research on the effect of brom-salicyl-hydroxamic acid T40 on the drugresistance in tuberculosis. Gruzlica 25: 701–708

    CAS  Google Scholar 

  • Hughes HB (1953) On the metabolic fate of isoniazid. J Pharmacol Exper Ther 109: 444–452

    CAS  Google Scholar 

  • Iwainsky H (1970) Der Ansatzpunkt der verschiedenen Therapeutica im Stoffwechsel des Tuberkelbakteriums. Pneumonologic 143 (Suppl 1970 ): 1–14 (M)

    Google Scholar 

  • Iwainsky H, Siegel D (1961) Über den Einfluß qualitativer Ernährungsfaktoren auf den INH-Stoffwechsel im Makroorganismus. Beitr Klin Tuberk 123: 166–170

    CAS  Google Scholar 

  • Iwainsky H, Reutgen H (1968) Untersuchungen zum endogenen Stoffwechsel von Mykobakterien. 3. Mitt. Über den Einfluß von Isonikotinsäurehydrazid auf den endogenen Stoffwechsel von Mykobakterien. Z Naturforschung 23 b: 982–989

    Google Scholar 

  • Iwainsky H, Käppler W (1974) Mykobakterien, Biochemie und biochemische Differenzierung. Bibliothek für das Gesamtgebiet der Lungenkrankheiten, Band 103. Barth, Leipzig

    Google Scholar 

  • Iwainsky H, Winsel K (1977) Die Bedeutung der unterschiedlichen Azetylierung für Wirkung und Nebenwirkung des Isoniazids. Zentralbl Pharm 116: 507–515

    Google Scholar 

  • Iwainsky H, Gerloff W, Schmiedel A (1961) Die Differenzierung zwischen INH-Inaktivierern und normal abbauenden Patienten mit Hilfe eines einfachen Testes. Beitr Klin Tuberk 124: 384–389

    CAS  Google Scholar 

  • Iwainsky H, Schmiedel A, Kauffmann G-W (1965) Der unterschiedliche INH-Abbau und seine Bedeutung für den Verlauf der Lungentuberkulose. In: Steinbrück P (Hrsg) Die Therapie der Lungentuberkulose. Volk und Gesundheit, Jena, pp 159–175

    Google Scholar 

  • Iwainsky H, Kauffmann G-W, Siegel D, Gerischer C (1960) Über den Einfluß des INHStoffwechsels auf die Behandlung der Lungentuberkulose. Beitr Klin Tuberk 122: 324–332

    CAS  Google Scholar 

  • Iwainsky H, Reutgen H, Sehrt I, Grunert M (1967) Über das Schicksal von Tuberkulostatika im Makro-und Mikroorganismus. Z Tuberk 126: 106–130

    PubMed  CAS  Google Scholar 

  • Jackett PS, Aber VR, Mitchison DA (1977) The relationship between nicotinamide adenine dinucleotide concentration and antibacterial activity of isoniazid in Mycobacterium tuberculosis. Am Rev Respir Dis 115: 601–607

    PubMed  CAS  Google Scholar 

  • Jeanes CWL, Schaefer O, Eidus L (1972) Inactivation of isoniazid by Canadian Eskimos and Indians. Can Med Assoc J 106: 331–335

    PubMed  CAS  Google Scholar 

  • Jeanes CWL, Schaefer O, Eidus L (1973) Comparative blood levels and metabolism of INH and an INH-matrix preparation in fast and slow inactivators. Can Med Assoc J 109: 483–487

    PubMed  CAS  Google Scholar 

  • Jenne JW (1960) Studies of human patterns of isoniazid metabolism using an intravenous fall-off technique with a chemical method. Am Rev Respir Dis 81: 1–9

    PubMed  CAS  Google Scholar 

  • Jenne JW (1964) Pharmacokinetics and the dose of isoniazid and para-aminosalicylic acid in the treatment of tuberculosis. Antibiot Chemother 12: 407–432

    PubMed  CAS  Google Scholar 

  • Jenne JW (1965) Partial purification and properties of the isoniazid transacetylase in human liver. Its relationship to the acetylation of para-aminosalicylic acid. J Clin Invest 44: 1991–2002

    Google Scholar 

  • Jenne JW, Beggs WH (1973) Correlation of in vitro and in vivo kinetics with clinical use of isoniazid, ethambutol and rifampin. Am Rev Respir Dis 107: 1013–1021

    PubMed  CAS  Google Scholar 

  • Jenne JW, Boyer PD (1962) Kinetic characteristics of the acetylation of isoniazid and paraaminosalicylic acid by a liver-enzyme-preparation. Biochim Biophys Acta 65: 121–127

    CAS  Google Scholar 

  • Jenne JW, MacDonald FM, Mendoza E (1961) A study of the renal clearance, metabolic inactivation rates, and serum fall-off interaction of isoniazid and para-aminosalicylic acid in man. Am Rev Respir Dis 84: 371–378

    PubMed  CAS  Google Scholar 

  • Jenne JW, White TA, Evans DAP (1969) Substrate affinities of the rapid and slow N-ace-tyltransferase from human liver. Trans 28`b Pulm Dis Res Conf VAAF: 47–49

    Google Scholar 

  • Jessamine AG, Hodgkin MM, Eidus L (1974) Urine tests for phenotyping slow and fast acetylators. Can J Publ Hlth 65: 119–123

    CAS  Google Scholar 

  • Johnson W, Mankiewicz E, Jasmin R, Corte G (1961) The effect of 5-bromsalicylhydroxamic acid on the acetalytion of isoniazid and its concentration in the blood. Am Rev Respir Dis 84: 872–875

    PubMed  CAS  Google Scholar 

  • Jungbluth H (1971) Isoniazid-Dosierung bei Niereninsuffizienz. Pneumonologie 145: 383–384

    Google Scholar 

  • Jungbluth H (1973) Tuberkulose-Chemotherapie bei Kranken mit vorgeschädigter Niere. Prax Pneumol 27: 175–182

    PubMed  CAS  Google Scholar 

  • Kagamiyama M, Majima M (1961) Studies on the plasma concentration of INH (isoniazid) by Peters’ fluorometric procedure. Kekkaku 36: 770–775

    PubMed  CAS  Google Scholar 

  • Kandt D, Flach W (1965) Blut-und Harnspiegelmessungen bei intrakavitärer INH-Applikation. Ein Beitrag zur Prüfung der Resorptionsverhältnisse der Kavernenwand. Beitr Klin Tuberk 130: 94–100

    CAS  Google Scholar 

  • Kasenov KU, Stambekow AS (1981) Study on relation between isoniazid inactivation and genetic marker of blood (ABO). Probl Tuberk 59 issue 10: 50–52

    Google Scholar 

  • Kelly JM, Poet RB, Chesner LM (1952) Observations on the metabolic fate of nydrazid (isonicotinic acid hydrazide). Amer Chem Soc Abstr 122nd meeting, p 3C

    Google Scholar 

  • Kergueris MF, Larousse C, Le Normand Y, Bourin M (1983) Acetylation character of isoniazid in the rabbit and in man Eur J Drug Metab Pharmacokinet 8: 133–136

    CAS  Google Scholar 

  • Kleeberg H, Gärtig D, Glatthaar E, Nel E, Stander M (1975) Isoniazid metabolism in black patients. S Afr Med J 49: 1503

    Google Scholar 

  • Klinger W (1981) Alkohol und Arzneimittelbiotransformation. Z Gesamte Inn Med 36: 543–547

    PubMed  CAS  Google Scholar 

  • Koizumi K, Okamoto R (1962) A study on the distribution of the plasma concentration of active INH in pulmonary tuberculous patients. Kekkaku 37: 18–22

    PubMed  CAS  Google Scholar 

  • Kraus P, Urbana R, gimâné Z, Reil I (1961) A contribution to the problem of the antiisoniazid factor. Am Rev Respir Dis 84: 684–689

    PubMed  CAS  Google Scholar 

  • Kreukniet J, Blom van Assendelft PM, Mouton RP, Tasman A, Bangma PJ (1967) The influence of para-aminosalicylic acid on isonicotinic acid hydrazide blood levels after oral and intravenous administration. Scand J Respir Dis 47: 236–243

    Google Scholar 

  • Krüger-Thiemer E (1957) Biochemie des Isoniazids. I. Isoniazidmetabolismus. Jber Borstel 4: 299–509 (M, B)

    Google Scholar 

  • Krüger-Thiemer E f, Kröger H, Nestler HJ, Seydel JK (1975) Wirkungsmodi antituberkulèser Chemotherapeutika. Isoniazid. In: Meissner G, Schmiedel A t, Nelles A † (Hrsg) Infektionskrankheiten und ihre Erreger, Band 4, Teil III. Fischer Jena, pp 257–288

    Google Scholar 

  • Krulik R, Kohout M (1962) Élimination des acides alpha cétoniques après l’ administration de la pyrazinamide, de 1314 Th et de l’ isoniazide. Acta Tuber Scand 41: 298–303

    Google Scholar 

  • La Du BN (1972) Isoniazid and pseudocholinesterase polymorphismus. Fed Proc 31: 1276–1283

    Google Scholar 

  • Lamedica G, Penco G, Spandonari MM, Jannuzzi C (1983) Clinical pharmacology of iso- niazid in children. Usefulness of monitoring therapy. Chemiotherapia 2: 410–416

    CAS  Google Scholar 

  • Lauterburg BH, Smith CV, Mitchell JR (1981) Determination of isoniazid and its hydrazino metabolites, acetylisoniazid, acetylhydrazine, and diacetylhydrazine in human plasma by gas chromatography-mass spectrometry. J Chromatogr 224: 431–438

    CAS  Google Scholar 

  • Lauterburg BH, Smith CV, Todd EL, Mitchell JR (1985) Oxidation of hydrazine metabolites formed from isoniazid. Clin Pharmacol Ther 38: 566–571

    PubMed  CAS  Google Scholar 

  • Levi AJ, Sherlock S, Walker D (1968) Phenylbutazone and isoniazid metabolism in patients with liver disease in relation to previous drug therapy. Lancet I: 1275–1279

    CAS  Google Scholar 

  • Levy D, Russel WP Jr, Middlebrook G (1960) Dosages of isoniazid and streptomycin for routine chemotherapy of tuberculosis. Tubercle 41: 23–31

    PubMed  CAS  Google Scholar 

  • Mason E, Russell DW (1971) Isoniazid acetylation rates (phenotypes) of patients being treated for tuberculosis. Bull WHO 45: 617–624

    PubMed  CAS  Google Scholar 

  • Matsuzaki Y, Saito C (1961) Studies on the blood concentrations of biologically active isoniazid and its derivatives and on the metabolic patterns of isoniazid. Kekkaku 36: 61–62

    Google Scholar 

  • Mattila MJ, Tiitinen H (1967) The rate of isoniazid inactivation in Finnish diabetic and non-diabetic patients. Ann Med Exp Fenn 45: 423–427

    PubMed  CAS  Google Scholar 

  • McClatchy JK (1971) Mechanism of action of isoniazid on Mycobacterium bovis strain BCG. Infect Immun 3: 530–534

    PubMed  CAS  Google Scholar 

  • McClatchy JK, Smith JA (1968) Inhibition of DNA synthesis in Mycobacterium tuberculosisBCG by isoniazid. Trans 27th Pulm Dis Res Conf, VAAF: 15

    Google Scholar 

  • Meurice JC, Castets AM, Ranger S, Fourtillan JB, Besson J, Boita F, Patte F (1984) Etude comparative de 2 méthodes de dosage de l’isoniazide sérique chez 413 patients: méthode microbiologique, chromatographie liquide à haute performance. Rev Pneumol Clin 40: 233–236

    PubMed  CAS  Google Scholar 

  • Meyer UA, Meier PJ (1982) Klinisch bedeutsame vererbte Unterschiede in der Arzneimittelwirkung. Schweiz Med Wochenschr 112: 666–669

    PubMed  CAS  Google Scholar 

  • Miller RR, Porter J, Greenblatt DJ (1979) Clinical importance of the interaction of phenytoin and isoniazid Chest 75: 356–358

    CAS  Google Scholar 

  • Mitchell JR, Thorgeirsson PU, Black M, Timbrell JA, Snodgrass WR, Potter WZ, Joliow DJ, Keiser HR (1975) Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydrazine metabolites. Clin Pharm Ther 18: 70–79

    CAS  Google Scholar 

  • Mukoyama H, Sunahara M, Ogawa M, Kawai K (1963) Urinary excretion of metabolites of isoniazid and inactivation of sulfonamide in rapid, intermediate and slow inactiva-tors of isoniazid. Kekkaku 38: 1–7

    PubMed  Google Scholar 

  • Musch E, Wang JK, Dengler HJ (1981) Alterations of drug metabolism during tuberculostatic therapy. Naunyn-Schmiedebergs Arch Pharmacol 316 Suppl: R 79, No 313

    Google Scholar 

  • Mydlak G, Volkmann W (1965) Die Bedeutung der INH-Stoffwechselanalyse für die Therapie. Z Tuberk 124: 44–48

    PubMed  CAS  Google Scholar 

  • Nakagawa H, Sunahara Sh (1967) Studies on metabolism of isoniazid by a new chemical determination of isoniazid (2“ report). Trimodal distribution of blood levels, inactivation in intestine and combination of isoniazid with serum protein. Kekkaku 42: 203–212

    PubMed  CAS  Google Scholar 

  • Nielsch W, Giefer L (1959) Photometrische Bestimmung von Isonikotinsäurehydrazid (INH), INH-Derivaten und ihren Metaboliten in biologischen Proben. Arzneimittel-Forsch 9:636–641; 700–707

    Google Scholar 

  • Nitti V (1972) Antituberculosis activity of rifampin. Chest 61: 589–598

    PubMed  CAS  Google Scholar 

  • Notter D, Roland E (1978) Localisation des N-acétyltransférases dans les cellules sinusoidales hépatiques. Influence du zymosan sur l’ acétylation de la sulfaméthazine et de l’isoniazide chez le rat et dans le foie isolé perfusé. CR Soc Biol 172: 531–533

    CAS  Google Scholar 

  • Okinaka S, Yoshida S, Mikami R, Kira S (1961) A study on the plasma concentration of active isoniazid in twins. Kekkaku 36: 27–60

    PubMed  CAS  Google Scholar 

  • Parrot R, Boval C, Grosset J, Gaillard JP (1983) Adapter ou ne pas adapter la posologie de l’isoniazide? Rev Fr Mal Respir 11: 705–712

    PubMed  CAS  Google Scholar 

  • Peters JH (1960a) Studies on the metabolism of isoniazid. I. Development and application of a fluorometric procedure for measuring isoniazid in blood plasma. Am Rev Respir Dis 81: 485–497

    CAS  Google Scholar 

  • Peters JH (1960b) Studies on the metabolism of isoniazid. II. The influence of para-aminosalicylic acid on the metabolism of isoniazid by man. Am Rev Respir Dis 82: 153–163

    CAS  Google Scholar 

  • Peters JH, Miller KS, Brown P (1964) Acetylation as the genetic determinant of the metabolism of isoniazid by man. Fed Proc 23: 280

    Google Scholar 

  • Peters JH, Gordon GR, Brown P (1965a) The relationship between the capacities of human subjects to acetylate isoniazid, sulfanilamide and sulfamethazine. Life Sci 4: 99–107

    CAS  Google Scholar 

  • Peters JH, Miller KS, Brown P (1965b) The determination of isoniazid and its metabolites in human urine. Anal Biochem 12: 379–394

    CAS  Google Scholar 

  • Peters JH, Miller KS, Brown P (1965c) Studies on the metabolic basis for the genetically determined capacities for isoniazid inactivation in man. J Pharmacol Exp Ther 150: 298–304

    CAS  Google Scholar 

  • Pfaffenberg R, Iwainsky H, Jähler H, Siegel D (1960) Über den Stoffwechsel des Isonicotinsäurehydrazid (INH) und der a-Ketosäuren bei tuberkulösen Diabetikern. Beitr Klin Tuberk 123: 63–71

    CAS  Google Scholar 

  • Pfaffenberg R, Iwainsky H, Jähler H (1963) INH-Stoffwechsel und Tuberkuloseverlauf bei Diabetikern. Tuberk-Arzt 17: 299–313

    CAS  Google Scholar 

  • Pikora T, Hejnÿ J, Melicher J (1980) Serum levels of isoniazid after single doses of isoniazid of 14 mg/kg b.w. Stud Pneumol Phtiseol Cechoslov 40: 398–403

    Google Scholar 

  • Pikora T, Hejnÿ J, Melicher J, Strmen J (1982) Serum INH levels in patients after doses of 5 mg/kg and 14 mg/kg of body weight. Stud Pneumol Phtiseol Cechoslov 42: 156–161

    Google Scholar 

  • Pilheu J, Fernandez JG, Mingolla L, Terren A, Barberis S, Altclas J, Montiel G, Kaler G (1985) Plasma concentration of isoniazid in the elderly. Am Rev Respir Dis 131 Suppl: A 229

    Google Scholar 

  • Place VA, Thomas JP (1963) Clinical pharmacology of ethambutol. Am Rev Respir Dis 87: 901–904

    PubMed  CAS  Google Scholar 

  • Rajtar-Leontiew Z (1969) The effect of isoniazid on the metabolism of pyridoxine in experimental tuberculosis in rats. Gruzlica 37: 109–113

    PubMed  CAS  Google Scholar 

  • Ramakrishnan T, Suryanarayana Murthy P, Gopinathan KP (1972) Intermediary metabolism of mycobacteria. Bacteriol Rev 36: 65–108

    PubMed  CAS  Google Scholar 

  • Rao KVN, Mitchison DA, Nair NGG, Prema K, Tripathy SP (1970) Sulphadimidine acetylation test for classification of patients as slow or rapid inactivators of isoniazid. Br Med J 3: 495–497

    PubMed  CAS  Google Scholar 

  • Reidenberg MM, Shear L, Cohen RV (1973) Elimination of isoniazid in patients with impaired renal function. Am Rev Resp Dis 108: 1426–1428

    PubMed  CAS  Google Scholar 

  • Ritter W (1973) Neue Ergebnisse über Biotransformation und Pharmakokinetik von Antituberkulotika. Prax Pneumol 27: 139–145 (B, Ph)

    PubMed  CAS  Google Scholar 

  • Robson JM, Sullivan FM (1963) Antituberculosis drugs. Pharmacol Rev 15: 169–223 (B, Ph)

    PubMed  CAS  Google Scholar 

  • Rosental AR, Self TH, Baker ED, Linden RA (1977) Interaction of isoniazid and warfarin. JAMA 238: 2177

    Google Scholar 

  • Rózniecki J (1968) Percentage ratio of free isoniazid and acetyl-isoniazid in the urine as a method of determination of the isoniazid inactivation pattern. Gruzlica 36: 971–973

    PubMed  Google Scholar 

  • Russell DW (1972) Simplified isoniazid acetylator phenotyping. Can Med Assoc J 106: 1155–1156

    PubMed  CAS  Google Scholar 

  • Salako LA, Fadeke Aderounmu A (1977) Determination of the isoniazid acetylator phenotype in a West African population. Tubercle 58: 109–112

    PubMed  CAS  Google Scholar 

  • Sassen W v, Castro-Parva M (1981) HPLC-determination of isoniazid and isoniazid metabolites in biological fluids. Naunyn Schmiedebergs Arch Pharmacol 316 Suppl: R 78, No 312

    Google Scholar 

  • Sassen W v., Musch E, Castro-Parva M, Eichelbaum M (1982) Pharmacokinetics and metabolism of isoniazid in relation to hepatotoxic side effects during antituberculous therapy. Naunyn Schmiedebergs Arch Pharmacol 319 Suppl: R 88, No 349

    Google Scholar 

  • Saueressig G (1972) Untersuchungen zur Harnausscheidung von INH bei intravenöser NaGluronazid-Therapie. Inaugural-Dissertation, Med Fakultät der Rheinischen Friedrich-Wilhelms-Universität zu Bonn

    Google Scholar 

  • Schloot W, Blume K-G, Goedde HW, Flatz G, Bhaibulaya M (1967) Studies on isoniazid conversion in Thailand. Humangenetik 4: 274–279

    PubMed  CAS  Google Scholar 

  • Schmiedel A (1960) Weitere Untersuchungen über das Wesen und die klinische Bedeutung der hochgradigen Isoniazidinaktivierung im Körper. Beitr Klin Tuberk 122: 232–238

    CAS  Google Scholar 

  • Schmiedel A (1961) The problem of rapid isoniazid inactivation. Bull Int Union Tuberc 31: 508–512

    Google Scholar 

  • Schmiedel A, Ermisch U, Doerfel G (1960) Zur Chemotherapie der Lungentuberkulose mit Ultraschall-Aerosolen. Dtsch Ges Wesen 15: 2430–2434

    CAS  Google Scholar 

  • Schröder H (1972) Simplified method for determining acetylator phenotype. Br Med J 3: 506–507

    PubMed  Google Scholar 

  • Scott EM, Wright RC (1967) Fluorometric determination of isonicotinic acid hydrazide in serum. J Lab Clin Med 70: 355–360

    PubMed  CAS  Google Scholar 

  • Scott EM, Wright RC, Weaver DD (1969) The discrimination of phenotypes for rate of disappearance of isonicotinoyl hydrazide from serum. J Clin Invest 48: 1173–1176

    PubMed  CAS  Google Scholar 

  • Sehm G, Urbanczik R (1974) Die Bedeutung der INH-Schnell-und Langsaminaktivierer für die Transaminasenanstiege bei der kombinierten INH-RMP-Therapie. Prax Pneu-mol 28: 613–615

    CAS  Google Scholar 

  • Sen PK, Saha JR, Chatterjee R (1972) Isoniazid inactivation in tuberculous patients. Indian J Med Res 60: 19–27

    PubMed  CAS  Google Scholar 

  • Seydel JK, Tono-Oka S, Schaper K-J, Bock L, Wienke M (1976) Mode of action of isoniazid (INH). Arzneimittelforsch 26: 477–478

    PubMed  CAS  Google Scholar 

  • Shenderova RI, Terteryan EA (1973) Inactivation of PAS and hina in tuberculous children. Probl Tuberk 51 issue 5: 67–71

    PubMed  CAS  Google Scholar 

  • Short EI (1962a) A comparative study of the metabolism and toxicity of isoniazid and isoniazone calcium pyruvate. Tubercle 43: 22–32

    CAS  Google Scholar 

  • Short EI (1962b) Studies on the inactivation of isonicotinyl acid hydrazide in normal subjects and tuberculous patients. Tubercle 43:33–42

    CAS  Google Scholar 

  • Smirnov GA (1972) Criteria and methods of determining inactivation of the hina preparations. Probl Tuberk 50 issue 4: 54–61

    PubMed  CAS  Google Scholar 

  • Smirnov GA (1977) Decomposition of the hina and cycloserine preparations in the organism of patients with tuberculosis of the lungs. Probi Tuberk 55 issue 8: 63–66

    Google Scholar 

  • Smith J, Tyrrell WF, Gow A, Allan GW, Lees AW (1972) Hepatotoxicity in rifampin-iso-niazid treated patients related to their rate of isoniazid inactivation. Chest 61: 587–588

    PubMed  CAS  Google Scholar 

  • Sokolowa GB, Vilenskaya RN, Ivleva AY, Galenko NN, Ziya AV (1981) On isoniazid pharmacokinetics in combined chemotherapy of tuberculosis. Probl Tuberk 59 issue 10: 24–28

    Google Scholar 

  • Sokolova GB, Ivleva AY, Ziya AV, Zeliger LR, Suvorova VJ, Galenko NN (1984) Clinical pharmacology of isoniazid. Probl Tuberk 62 issue 9: 55–60

    Google Scholar 

  • Sprouse JS, Schneck DW, Hayes AH Jr (1978) The effect of isoniazid and other drugs on the acetylation of procainamide in the intact rat. J Pharmacol Exp Ther 207: 698–704

    PubMed  CAS  Google Scholar 

  • Sriprakash KS, Ramakrishnan T (1970) Isoniazid-resistant mutants of Mycobacterium tuberculosisH37Rv: Uptake of isoniazid and the properties of NADase inhibitor. J Gen Microbiol 60: 125–132

    PubMed  CAS  Google Scholar 

  • Stepanov VM (1981) Kinetics of isoniazid distribution after intravenous administration. Probi Tuberk 59 issue 8: 66–69

    Google Scholar 

  • Sunahara S (1962) Genetical, geographical and clinical studies on isoniazid metabolism. Bull Int Union Tuberc 32: 513–540

    Google Scholar 

  • Sunahara S, Urano M, Lin HT, Cheg TJ, Jarumilinda A (1963a) Further observations on trimodality of frequency distribution curve of biologically active isoniazid blood levels and “cline” in frequencies of alleles controlling isoniazid inactivation. Acta Tuberc Pneumol Scand 43: 181–195

    CAS  Google Scholar 

  • Sunahara S, Mukoyama H, Ogawa M, Kawai K (1963b) Urinary excretion of metabolites of INH and inactivation of sulfonamide in rapid, intermediate and slow inactivators of INH. Kekkaku 38: 1–7

    CAS  Google Scholar 

  • Sunahara S, Urano M, Kawai K, Honjo S, Takasaki S, Fujiwara T (1968) The patterns of isoniazid inactivation in Macaca irus. Kekkaku 43: 97–102

    PubMed  CAS  Google Scholar 

  • Suryanarayana Murthy P, Sirsi M, Ramakrishnan T (1973) Effect of isoniazid on the carbohydrate metabolism of isoniazid-susceptible and isoniazid-resistant Mycobacterium tuberculosisH37Rv. Am Rev Respir Dis 107: 139–141

    Google Scholar 

  • Sushkin AG, Guzeeva SA (1978) Polarographic determination of isoniazid in the urine. Probl Tuberk 56 issue 7: 76–79

    Google Scholar 

  • Szczawinska K, Chodera A, Cenajek D, Szczawinski R (1976) Pharmacokinetics of isoniazid (INH) in slow and rapid inactivators during combined treatment. I. Symposium für Klinische Pharmakologie, 7. 12. 1976, Dresden, DDR

    Google Scholar 

  • Takayama K, Armstrong EL, David HL (1974) Restoration of mycolate synthetase activity in Mycobacterium tuberculosisexposed to isoniazid Am Rev Respir Dis 110: 43–48

    CAS  Google Scholar 

  • Teichmann W, Köhler R (1964) Beitrag zur schnellen Differenzierung des individuellen INH-Stoffwechsels. Prax Pneumol 18: 535–541

    PubMed  CAS  Google Scholar 

  • Thénault D, Saltiel JC, Houin G, Vivien JN, Tillement JP, Chretien J (1976) Comparative study of two procedures for measuring isoniazid levels in serum. Rev Fr Mal Resp 4: 565–566

    Google Scholar 

  • Tiitinen H (1969a) Isoniazid and ethionamide serum levels and inactivation in Finnish subjects. Scand J Respir Dis 50: 110–124

    CAS  Google Scholar 

  • Tiitinen H (1969b) Isoniazid inactivation status and the development of chronic tuberculosis. Scand J Respir Dis 50: 227–234

    CAS  Google Scholar 

  • Tiitinen H (1969c) Modification by para-aminosalicylic acid and sulfamethazine of the isoniazid inactivation in man Scand J Respir Dis 50: 281–290

    CAS  Google Scholar 

  • Tiitinen H, Mattila MJ (1968) Modification of the serum isoniazid levels by different preparations of para-aminosalicylic acid. Arzneimittelforsch 18: 623–625

    PubMed  CAS  Google Scholar 

  • Tiitinen H, Mattila MJ, Eriksson AW (1968) Comparison of the isoniazid inactivation in Finns and Lapps. Ann Med Int Fenn 57: 161–166

    PubMed  CAS  Google Scholar 

  • Timbrell JA, Wright JM, Baillie TA (1977) Monoacetylhydrazine as a metabolite of isoniazid in man. Clin Pharmacol Ther 22 /51: 602–608

    PubMed  CAS  Google Scholar 

  • Titarenko OT, Vakhmistrova TI, Perova TL (1982) Time course of isoniazid excretion in chronic renal insufficiency. Probl Tuberk 60 issue 2: 48–52

    Google Scholar 

  • Toida I (1962a) Hydrazidase activity of isoniazid-resistant cells of mycobacteria grown on metal-supplemented media. Kekkaku 37: 85–91

    CAS  Google Scholar 

  • Toida I (1962b) Induced formation of hydrazidase. Kekkaku 37: 582–585

    CAS  Google Scholar 

  • Toida I (1962c) Isoniazid-hydrolyzing enzyme of mycobacteria. Am Rev Respir Dis 85: 720–726

    CAS  Google Scholar 

  • Toida I, Saito C (1962) Effect of nitrogen-source on hydrazidase activity. Kekkaku 37: 287–290

    PubMed  CAS  Google Scholar 

  • Toyohara M (1974) The experimental study of the transmission of the antituberculous drugs to fetuses. Kekkaku 49: 97–99

    CAS  Google Scholar 

  • Tripathy SP (1976) A slow-release preparation of isoniazid: therapeutic efficacy and adverse side-effects. Bull Int Union Tuberc 51: 133–141

    PubMed  CAS  Google Scholar 

  • Tsukamura M, Mizuno S (1962) Mode of action of isoniazid viewed from isotope incorporation studies. Kekkaku 37: 29–35

    PubMed  CAS  Google Scholar 

  • Tsukamura M, Tsukamura S, Nakano E (1963) The uptake of isoniazid by mycobacteria and its relation to isoniazid susceptibility. Am Rev Respir Dis 87: 269–275

    PubMed  CAS  Google Scholar 

  • Turnbull LB, Yard AS, McKennis H Jr (1962) Acetylhydrazine as an intermediate in the metabolism of aroylhydrazines. J Med Pharm Chem 5: 1327–1334

    CAS  Google Scholar 

  • Tytor YM (1975) Isoniazid and PAS metabolism and bacteriostatic activity of the blood in adolescents with intrathoracic tuberculosis. Probl Tuberk 53 issue 7: 51–54

    Google Scholar 

  • Tytor Y N (1976) Liver function and metabolism of isoniazid and PAS in adolescents with intrathoracic tuberculosis. Probl Tuberk 54 issue 7: 29–32

    Google Scholar 

  • Varughese P, Hamilton EJ, Eidus L (1974) Mass Phenotyping of isoniazid inactivators by automated determination of acetylisoniazid in urine. Clin Chem 20: 639–641

    PubMed  CAS  Google Scholar 

  • Venho VMK, Koskinen R (1971) The effect of pyrazinamide, rifampicin and cycloserine on the blood levels and urinary excretion of isoniazid Ann Clin Res 3: 277–280

    CAS  Google Scholar 

  • Venkataraman P, Menon NK, Nair NGK, Radhakrishna S, Ross CH, Tripathy SP (1972) Classification of subjects as slow or rapid inactivators of isoniazid, based on the ratio of the urinary excretion of acetylisoniazid to isoniazid. Tubercle 53: 84–91

    PubMed  CAS  Google Scholar 

  • Vivien JN, Grosset J (1961) Le taux d’ isoniazide actif dans le sérum sanguin. Adv Tuberc Res 11: 45–125

    Google Scholar 

  • Vivien JN, Thibier R, Lepeuple A (1972) Recent studies on isoniazid. Adv Tuberc Res 18: 148–230

    Google Scholar 

  • Vivien JN, Thibier R, Lepeuple A (1973) La pharmacocinétique de l’isoniazide dans la race blanche. Rev Fr Mal Resp 1: 753–772

    CAS  Google Scholar 

  • Viznerovâ A, Slavíkovâ Z, Ellard GA (1973) The determination of the acetylator phenotype of tuberculosis patients in Czechoslovakia using sulphadimidine. Tubercle 54: 6771

    Google Scholar 

  • Volkmann W, Mydlak G (1965) INH-Stoffwechsel und Resistenzentwicklung. Beitr Klin Tuberk 131: 89–95

    CAS  Google Scholar 

  • Wang L, Takayama K (1972) Relationship between the uptake of isoniazid and its action on in vivo mycolic acid synthesis in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2: 438–441

    PubMed  CAS  Google Scholar 

  • Weber WW, Cohen SN, Steinberg MS (1968) Purification and properties of N-acetyltransferase from mammalian liver. Ann NY Acad Sci 151: 734–741

    PubMed  CAS  Google Scholar 

  • Wimpenny JWT (1967a) Effect of isoniazid on biosynthesis in Mycobacterium tuberculosisvar. bovisBCG. J Gen Microbiol 47: 379–388

    CAS  Google Scholar 

  • Wimpenny JWT (1967b) The uptake and fate of isoniazid in Mycobacterium tuberculosisvar. bovisBCG. J Gen Microbiol 47: 389–403

    CAS  Google Scholar 

  • Winder F (1964) Early changes by isoniazid in the composition of Mycobacterium tuberculosis. Biochim Biophys Acta 82: 210–212

    CAS  Google Scholar 

  • Winder FG (1982) Mode of action of the antimycobacterial agents and associated aspects of the molecular biology of the mycobacteria. In: Ratledge C, Stanford J (eds) The biology of the mycobacteria, Vol 1. Academic Press, London New York Paris San Diego San Francisco Sao Paulo Sydney Tokyo Toronto, pp 353–438

    Google Scholar 

  • Winder F, Brennan P (1964) The accumulation of free trehalose by mycobacteria exposed to isoniazid. Biochim Biophys Acta 90: 442–444

    PubMed  CAS  Google Scholar 

  • Winder F, Collins P (1968) The effect of isoniazid on nicotinamide nucleotide levels in Mycobacterium bovis, strain BCG. Am Rev Respir Dis 97: 719–720

    PubMed  CAS  Google Scholar 

  • Winder F, Collins PB (1970) Inhibition by isoniazid of synthesis of mycolic acids in Mycobacterium tuberculosis. J Gen Microbiol 63: 41–48

    PubMed  CAS  Google Scholar 

  • Winder FG, Rooney SA (1968) Effects of isoniazid on the triglycerides of BCG. Am Rev Respir Dis 97: 938–940

    PubMed  CAS  Google Scholar 

  • Winder F, Rooney SA (1970) The effect of isoniazid on the carbohydrates of M. tuberculosisBCG. Biochem J 117: 355–368

    PubMed  CAS  Google Scholar 

  • Winder F, Brennan PJ, McDonnell I (1967) Effects of isoniazid on the composition of mycobacteria, with particular reference to soluble carbohydrates and related substances. Biochem J 104: 385–393

    PubMed  CAS  Google Scholar 

  • Wood JD, Peesker SJ (1971) Sequential lowering and raising of brain y-aminobutyric acid levels by isonicotinic acid hydrazide. Can J Physiol Pharmacol 49: 780–781

    PubMed  CAS  Google Scholar 

  • Youatt J (1961) The formation of 4-pyridine methanol from isonicotinic acid hydrazide (isoniazid) by mycobacteria. Aust J Chem 14: 308–311

    CAS  Google Scholar 

  • Youatt J (1965) Changes in the phosphate content of mycobacteria produced by isoniazid and ethambutol. Aust J Exp Biol Med Sci 43: 305–314

    PubMed  CAS  Google Scholar 

  • Youatt J (1969) A review of the action of isoniazid Am Rev Respir Dis 99: 729–749

    CAS  Google Scholar 

  • Youatt J, Tham SH (1969a) An enzyme system of Mycobacterium tuberculosisthat reacts specifically with isoniazid. Am Rev Respir Dis 100: 25–30

    CAS  Google Scholar 

  • Youatt J, Tham SH (1969b) An enzyme system of Mycobacterium tuberculosisthat reacts specifically with isoniazid. II. Correlation of this reaction with the binding and metabolism of isoniazid. Am Rev Respir Dis 100: 31–37

    CAS  Google Scholar 

  • Youatt J, Tham SH (1969c) Radioactive content of Mycobacterium tuberculosisafter exposure to “C-isoniazid. Am Rev Respir Dis 100: 77–78

    CAS  Google Scholar 

  • Youmans AS, Youmans GP (1960) The production of “Anti-Isoniazid” substance by Isoniazid-susceptible, Isoniazid-resistant, and unclassified strains of mycobacteria. Am Rev Respir Dis 81: 929–931

    PubMed  CAS  Google Scholar 

  • Zamboni V, Defranceschi A (1954) Identification of isonicotinoylhydrazones of pyruvic and a-ketoglutaric acid in rat urine after treatment with isonicotinic acid hydrazide (isoniazid). Biochem Biophys Acta 14: 430–432

    PubMed  CAS  Google Scholar 

  • Zdunczyk-Pawelek H, Blitek-Golc D, Kostrzewska K (1962) The concentration of biologically active Isoniazid in patients’ serum. Acta Tuberc Scand 42: 138–148

    CAS  Google Scholar 

  • Zdunczyk-Pawelek H, Otrzowsek N, Kostrzewska K (1965) Der Einfluß des gleichzeitigen Verabreichens von 5-Bromsalicylhydroxamid-Säure (T40) und INH auf die Konzentration des freien INH im Ham des Tuberkulosekranken. Z Tbk 124: 149–152

    CAS  Google Scholar 

  • Zierski M, Rotermund CH (1984) Isoniazid — Wesentliches und Neues. Prax Klin Pneumol 38: 201–216

    PubMed  CAS  Google Scholar 

  • Ziporin ZZ (1964) Effect of Isoniazid on blood ammonia concentrations. Am Rev Respir Dis 89: 936–937

    Google Scholar 

  • Ziporin ZZ, Chambers JS, Taylor RR, Wier JA (1962) The effect of Isoniazid administration on the blood ammonia in tuberculous patients. Am Rev Respir Dis 86: 21–28

    Google Scholar 

  • Zureck A (1968) 3-Hydroxymethyl-Pyridin im Stoffwechsel von Mykobakterien. Zentralbl Bakteriol Mikrobiol Hyg A 206:522–529

    CAS  Google Scholar 

  • Albaum G, Konrad RM, Thum HJ (1964) Untersuchungen über den Antibiotika-Spiegel im Pleuraexsudat nach Thorax-Eingriffen und prophylaktischer intravenöser Applikation von Oxytetracyclin. Arzneimittelforsch 14: 1137–1139

    PubMed  CAS  Google Scholar 

  • Antalovskâ Z, Beran J (1966) The fluorescence of tetracycline antibiotics (TA) in the hard dental tissues in an experiment. In: Herold M, Gabriel Z (eds) Antibiotics — Advances in research, production and clinical use. London: Butterworths, Prague: Czechoslovak Medical Press, pp 392–396

    Google Scholar 

  • Arima K, Izaki K (1963) Accumulation of oxytetracycline relevant to its bacterial action in the cells of Escherichia coli. Nature 200: 192–193

    PubMed  CAS  Google Scholar 

  • Benazet F, Dubost M, Jolies G, Leau O, Pascal C, Preudhomme J, Terlain B (1968) Liaisons et modifications des antibiotiques in vivo (sang et foyer infectieux). Biologie Médicale 57: 376–401

    CAS  Google Scholar 

  • Bergogne-Berezin E, Morel C, Even P, Benard Y, Kafe H, Berthelot G, Pierre J, Lambert-Zechovsky N (1978) Pharmacokinetic study of antibiotics in human respiratory tract. Nouv Presse Méd 7: 2831–2836

    PubMed  CAS  Google Scholar 

  • Berrettini B (1968) Contents of ampicillin and doxycycline in the human tonsil. Chemotherapy 13: 362–365

    PubMed  CAS  Google Scholar 

  • Bäcker R, Estler C-J, Weber A (1982) Metabolism of doxycycline. Lancet II: 1155

    Google Scholar 

  • Bäcker R, Estler C-J (1983) Formation and disposition of a metabolite of doxycycline. Naunyn-Schmiedebergs Arch Pharmacol 322 Suppl: R112

    Google Scholar 

  • Bràzda O (1964) Inkorporation von Tetrazyklinen in Zähnen. Dtsch Stomat 14: 780–787

    Google Scholar 

  • Bràzda O, Kolc J, Zàstava V (1966) The deposition of tetracyclines in hard dental tissues. In: Herold M, Gabriel Z (eds) Antibiotics — Advances in research, production and climcal use. London: Butterworths, Prague: Czechoslovak Medical Press, pp 397–400

    Google Scholar 

  • Buyske DA, Eisner HJ, Kelly RG (1960) Concentration and persistence of tetracycline and chlortetracycline in bone. J Pharmacol Exp Ther 130: 150–156

    PubMed  CAS  Google Scholar 

  • Cerna J, Rychlík I, Pulkràbek P (1969) The effect of antibiotics on the coded binding of peptidyl-t-RNA to the ribosome and on the transfer of the peptidyl residue to puromycin. Eur J Biochem 9: 27–35

    PubMed  CAS  Google Scholar 

  • Clauberg C (1979) Doxycyclin-Spiegel in Lungen-und Bronchialgewebe. MMW 121: 1469–1470

    CAS  Google Scholar 

  • Cundliffe E, McQuillen K (1967) Bacterial protein synthesis: The effect of antibiotics. J Mol Biol 30: 137–146

    PubMed  CAS  Google Scholar 

  • Dürckheimer W (1975) Tetracycline: Chemie, Biochemie und Struktur-Wirkungs-Beziehungen. Angew Chem 87: 751–784

    Google Scholar 

  • Ehrlich GE (1972) Concentrations of tetracycline and minocycline in joint effusions following oral administration. Pennsylvania Med J 75: 47–49

    CAS  Google Scholar 

  • Eisner HJ, Wulf RJ (1963) The metabolic fate of chlortetracycline and some comparisons with other tetracyclines. J Pharmacol Exp Ther 142: 122–131

    PubMed  CAS  Google Scholar 

  • Fabre J, Pitton JS, Kunz JP (1966) Distribution and excretion of doxycycline in man. Chemotherapia 11: 73–85

    CAS  Google Scholar 

  • Fabre J, Pitton JS, Vivieux C, Laurencet FL, Bernhardt JP, Godel JC (1967) Absorption, distribution et excrétion d’un nouvel antibiotique à large spectre chez l’homme. Schweiz Med Wochenschr 97: 915–924

    PubMed  CAS  Google Scholar 

  • Finerman GAM, Milch RA (1963) In vitro binding of tetracyclines to calcium. Nature 198:486–487

    CAS  Google Scholar 

  • Fabre J, Blanchard P, Rudhardt M (1977) Pharmacokinetics of ampicillin, cephalothin and doxycycline in various tissues of the rat. Chemotherapy 23: 129–141

    PubMed  CAS  Google Scholar 

  • Gauze GG, Fatkullina IG, Dolgilevich SM (1971) Effect of antibiotics with different mechanisms of action on incorporation of labeled desoxynucleoside triphosphates to DNA of isolated rat liver mitochondria. Antibiotiki 17: 296–301

    Google Scholar 

  • Goldberg IH (1965) Mode of action of antibiotics. Am J Med 39: 722–752

    PubMed  CAS  Google Scholar 

  • Gottesman ME (1967) Reaction of ribosome-bound peptidyl transfer ribonucleic acid with aminoacyl transfer ribonucleic acid or puromycin. J Biol Chem 242: 5564–5571

    PubMed  CAS  Google Scholar 

  • Hansson E, Hanngren Ä, Ullberg S (1966) Autoradiographic distribution studies with labelled penicillin, streptomycin, tetracycline and cycloserine. In: Herold M, Gabriel Z (eds) Antibiotics — Advances in research, production and clinical use. London: Butter-worths, Prague: Czechoslovak Medical Press, pp 156–164

    Google Scholar 

  • Hartnett BJS, Marlin GE (1976) Doxycycline in serum and bronchial secretions. Thorax 31: 144–148

    PubMed  CAS  Google Scholar 

  • Hawkins KI (1972) Fluorometric determination of demethylchlortetracycline and tetracycline in mammalian bone. Analytic Biochem 45: 128–136

    CAS  Google Scholar 

  • Hopf G (1963) Comparative evaluation of the hepatotoxicity of tetracycline in old and medium-aged female mice. Naunyn-Schmiedebergs Arch Pharmacol 322 Suppl: R118

    Google Scholar 

  • Izaki K, Arima K (1963) Disappearance of oxytetracycline accumulation in the cells of multiple drug-resistant Escherichia coli. Nature 200: 384–385

    PubMed  CAS  Google Scholar 

  • Izaki K, Arima K (1965) Effect of various conditions on accumulation of oxytetracycline in Escherichia coli. J Bacteriol 89: 1335–1339

    PubMed  CAS  Google Scholar 

  • Izaki K, Kiuchi K, Arima K (1966) Specificity and mechanism of tetracycline resistance in a multiple drug resistant strain of Escherichia coli. J Bacteriol 91: 628–633

    PubMed  CAS  Google Scholar 

  • Johnson NW (1966) The distribution and stability of tetracyclines in dental tissues. In: Herold M, Gabriel Z (eds) Antibiotics–Advances in research, production and clinical use. London: Butterworths, Prague: Czechoslovak Medical Press, pp 378–391

    Google Scholar 

  • Kahan IL, Kulka F, Vigh E (1977) Klinische und experimentelle Erfahrungen bei intravenöser Verabreichung von Tri-doxycyclin. Pneumonol Hung 30: 104–109

    Google Scholar 

  • Kelly RG, Buyske DA (1960) Metabolism of tetracycline in the rat and the dog. J Pharmacol Exp Ther 130: 144–149

    PubMed  CAS  Google Scholar 

  • Kelly RG, Kanegis LA, Buyske DA (1961) The metabolism and tissue distribution of radio-isotopically labeled demethylchlortetracycline. J Pharmacol 134: 320–324

    CAS  Google Scholar 

  • Krüger-Thiemer E j’, Kröger H, Nestler HJ, Seydel JK (1975) Wirkungsmodi antituberkulöser Chemotherapeutika: Tetracycline. In: Meissner G, Schmiedel A j, Nelles A Ì“ (Hrsg) Infektionskrankheiten und ihre Erreger, Band 4, Teil III. Fischer, Jena, pp 353–357

    Google Scholar 

  • Kunin CM, Finland M (1961) Clinical pharmacology of the tetracycline antibiotics. Clin Pharmacol Ther 2: 51–69

    PubMed  CAS  Google Scholar 

  • Laskin AJ, Last JA (1971) Tetracycline. Antibiot Chemother 17: 1–28 (M)

    CAS  Google Scholar 

  • MacArthur CGC, Johnson AJ, Chadwick MV, Wingfield HJ (1978) The absorption and sputum penetration of doxycycline. Antimicrob Chemother 4: 509–514

    CAS  Google Scholar 

  • Malek P, Cervinka F, Zastava V, Demelova M, Kolc J (1966a) A method of ascertaining the biological activity of the fixed form of tetracycline antibiotics in tissues. In: Herold M, Gabriel Z (eds) Antibiotics–Advances in research, production and clinical use. London: Butterworths, Prague: Czechoslovak Medical Press, pp 131–136

    Google Scholar 

  • Malek P, Zastava V, Kolc J (1966b) The distribution of tetracycline antibiotics in shock and in uremia. In: Herold M, Gabriel Z (eds) Antibiotics–Advances in research, production and clinical use. London: Butterworths, Prague: Czechoslovak Medical Press, pp 207–212

    Google Scholar 

  • Marlin GE, Cheng S, Thompson PJ (1981) Sputum and plasma doxycycline concentrations after a single oral 600 mg doxycycline dose in patients with chronic bronchitis. Eur J Respir Dis 62: 276–280

    PubMed  CAS  Google Scholar 

  • Marschang A, Diezel PB, Klein G (1978) Die Konzentrationen von Doxycyclin im Blutserum und Bronchialsekret. Prax Pneumol 32: 271–273

    CAS  Google Scholar 

  • Nelis HJCF, de Leenheer AP (1981) Unique metabolic fate of a tetracycline (minocycline). Lancet II: 938

    Google Scholar 

  • Oklund SA, Prolo DJ, Gutierrez RV (1981) The significance of yellow bone. Evidence for tetracycline in adult human bone. JAMA 246: 761–763

    PubMed  CAS  Google Scholar 

  • Ondracek Z, Zastava V (1966) Gall bladder diseases and tetracycline antibiotics. In: Herold M, Gabriel Z (eds) Antibiotics–Advances in research, production and clinical use. London: Butterworths, Prague: Czechoslovak Medical Press, pp 127–130

    Google Scholar 

  • Pohl W (1964) Demethylchlortetracyclin in Punktaten seröser Höhlen. Arzneimittelforsch 14: 1058–1059

    PubMed  CAS  Google Scholar 

  • Schach von Wittenau M, Twomey TM (1971) The disposition of doxycycline by man and dog. Chemotherapy 16: 217–228

    PubMed  CAS  Google Scholar 

  • Schach von Wittenau M, Yeary R (1963) The excretion and distribution in body fluids of tetracyclines after intravenous administration to dogs. J Pharmacol 140: 258–266

    Google Scholar 

  • Schach von Wittenau M, Twomey TM, Swindell AC (1972) The disposition of doxycycline by the rat. Chemotherapy 17: 26–39

    PubMed  CAS  Google Scholar 

  • Simon C, Sommerwerck D, Friehoff J (1978) Der Wert von Doxycyclin bei Atemwegsinfektionen (Serum-, Speichel-, Sputum-, Lungen-und Pleuraexsudatspiegel). Prax Pneumol 32: 266–270

    CAS  Google Scholar 

  • Sommerwerck D, Simon C, Friehoff J (1978) Minocyclin zur Therapie von Atemwegsinfektionen. Dtsch Med Wschr 103: 822–825

    PubMed  CAS  Google Scholar 

  • Taber LH, Yow MD, Nieberg FG (1967) The penetration of broad-spectrum antibiotics into the cerebrospinal fluid. Ann NY Acad Sci 145: 473–481

    PubMed  CAS  Google Scholar 

  • Thadepalli H, Mandai AK, Bach VT, Oparah SS (1980) Tissue levels of doxycycline in the human lung and pleura. Chest 78: 304–305

    PubMed  CAS  Google Scholar 

  • Videau D (1968) Pénétration, site et mode d’action des antibiotiques chez la bactérie. Biol Méd 57: 449–470

    CAS  Google Scholar 

  • Winkler E, Weih H (1967) Doxycyclin. Ergebnisse von Basisuntersuchungen. Med Klin 62: 1257–1262

    PubMed  CAS  Google Scholar 

  • Zimmermann I, Ulmer WT, Ritzerfeld W (1977) Tetracyclin-Spiegel im Sputum bei chronisch-obstruktiver Bronchitis. MMW 119: 845–848

    CAS  Google Scholar 

  • Bartmann K, Blisse A, Zander J (1956) Bakteriologische Untersuchungen über die Wirkung von Viomycin auf Tuberkelbakterien. Beitr KIM Tuberk 115: 211–222

    CAS  Google Scholar 

  • Gill Han Bai, Sung Chin Kim (1980) Study on tuberactinomycin-N (TUM-N) (Part II). Crossresistance of tubercle bacilli to TUM N, VM, CPM, KM, and SM. Tuberc Respir Dis 27: 19–26

    CAS  Google Scholar 

  • Goldberg IH (1965) Mode of action of antibiotics. Am J Med 39: 722–752

    PubMed  CAS  Google Scholar 

  • Höffler D (1981) Die Dosierung wichtiger Antibiotika und Tuberkulostatika bei Niereninsuffizienz. Internist (Berlin) 22: 601–606

    Google Scholar 

  • Kugel E, Polz E, Schmiedel A (1965) Erfahrungen über die Infusionsbehandlung mit Viocin. Beitr Klin Tuberk 131: 291–299

    CAS  Google Scholar 

  • Liou YF, Tanaka N (1976) Dual actions of viomycin on the ribosomal functions. Biochem Biophys Res Commun 71: 477–483

    PubMed  CAS  Google Scholar 

  • Mordasini ER, Eulenberger J (1971) Tuberkulostatika, Teil 1. Int J Clin Pharmacol Ther Toxicol 4: 467–486

    CAS  Google Scholar 

  • Robson JM, Sullivan FM (1963) Antituberculosis drugs. Pharmacol Rev 15: 169–223 (B, Ph)

    PubMed  CAS  Google Scholar 

  • Seneca H (1971) Biological basis of chemotherapy of infections and infestations. Davis, Philadelphia (Ph )

    Google Scholar 

  • Tanaka N, Igura S (1968) Effects of viomycin and polymycin B on protein synthesis in vitro. J Antibiot (Tokyo) 21: 239–240

    CAS  Google Scholar 

  • Trnka L, Kuska J, Havel A (1964) Zur Problematik der antimykobakteriellen Wirkung und Kreuzresistenz von Capreomycin. Prax Pneumol 18: 798–802

    PubMed  CAS  Google Scholar 

  • Trnka L, Havel A, Urbancik R (1966) Neueste Tuberkulostatika, ihre Bedeutung und Möglichkeiten der Wertbestimmung im Reagenzglas. Chemotherapia 11: 121–134

    CAS  Google Scholar 

  • Tsukamura M (1969) Cross-resistance relationship between capreomycin, kanamycin and viomycin resistance in tubercle bacilli from patients. Am Rev Respir Dis 99: 780–782

    PubMed  CAS  Google Scholar 

  • Walter AM, Heilmeyer L (1969) Antibiotika-Fibel. 3. Auflage. Heilmeyer L, Otten H, Plempel M ( Hrsg) Thieme, Stuttgart

    Google Scholar 

  • Wurmbach P, Nierhaus KH (1979) Codon-anticodon interaction at the ribosomal P (peptidyl-t-RNA) site. Proc Natl Acad Sci USA 76: 2143–2147

    PubMed  CAS  Google Scholar 

  • Yamada T, Masuda K, Shoji K, Hori M (1972) Analysis of ribosomes from viomycin-sensitive and -resistant strains of Mycobacterium smegmatis. J Bacteriol 112: 1–6

    PubMed  CAS  Google Scholar 

  • Crema A, Berté F (1960) Über die Verteilung und Stoffwechsel des Cycloserins bei der Ratte. Naunyn-Schmiedebergs Arch Pharmacol 239: 475–480

    CAS  Google Scholar 

  • Curtis R, Charamella LJ, Berg CM, Harris PE (1965) Kinetic and genetic analyses of D-cycloserine inhibition and resistance in Escherichia coli. J Bacteriol 90: 1238–1250

    Google Scholar 

  • David HL (1970a) Effect of o-carbamyl-D-serine on the growth of Mycobacterium tuber-culosis. Am Rev Respir Dis 102: 68–74

    CAS  Google Scholar 

  • David HL (1970b) Susceptibility of Mycobacterium intracellulare to o-carbamyl-D-serine. Am Rev Respir Dis 102: 105–106

    CAS  Google Scholar 

  • David HL, Takayama K, Goldman DS (1969) Susceptibility of mycobacterial D-alanyl-Dalanine synthetase to D-cycloserine. Am Rev Respir Dis 100: 579–581

    PubMed  CAS  Google Scholar 

  • Freerksen E, Krüger-Thiemer E, Rosenfeld M (1959) Cycloserin (D-4-Amino-isoxazolidin3-on). Antibiot Chemother 6: 303–396

    CAS  Google Scholar 

  • Gaidov N (1971) Terisidon–a new synthetic tuberculosis-suppressing antibiotic. Probl Tuberk 49 issue 12: 19–22

    PubMed  CAS  Google Scholar 

  • Grula EA, King RD (1971) Changes in the cell membranes of dividing and nondividing cells of Micrococcus lysodeikticus disllp+. Biochem Biophys Res Commun 44: 13561363

    Google Scholar 

  • Hansson E, Hanngren Ä, Ullberg S (1966) Autoradiographic distribution studies with labelled penicillin, streptomycin, tetracycline and cycloserine. In: Herold M, Gabriel Z (eds) Antibiotics–Advances in research, production and clinical use. London: Butter-worths, Prague: Czechoslovak Medical Press, pp 156–164

    Google Scholar 

  • Höffler D (1981) Die Dosierung wichtiger Antibiotika und Tuberkulostatika bei Niereninsuffizienz. Internist (Berlin) 22: 601–606

    Google Scholar 

  • Imaeda T, Kanetsuna F, Rieber M (1968) In vitro effect of cycloserine on mycobacterial ultrastructure. Tubercle 49: 385–396

    PubMed  CAS  Google Scholar 

  • Jungbluth H (1973) Tuberkulose-Chemotherapie bei Kranken mit vorgeschädigter Niere. Prax Pneumol 27: 175–182

    PubMed  CAS  Google Scholar 

  • Korotaev GA, Tatarinova NV (1972) Content of cycloserine in the blood serum and its discharge with the urine in patients with tuberculosis. Therap Arch 44: 81–84

    CAS  Google Scholar 

  • Krackhardt H (1960) Blutspiegel und Ausscheidung des Cycloserins bei länger dauernder Medikation. Schweiz Z Tuberk 17: 403–416

    Google Scholar 

  • Mattila MJ, Nieminen E, Tiitinen H (1969) Serum levels, urinary excretion, and side-effects of cycloserine in the presence of isoniazid and p-aminosalicylic acid. Scand J Respir Dis 50: 291–300

    PubMed  CAS  Google Scholar 

  • Rogers HJ, Forsberg CW (1971) Role of autolysins in the killing of bacteria by some bactericidal antibiotics. J Bacteriol 108: 1235–1243

    PubMed  CAS  Google Scholar 

  • Smirnov GA (1977) Decomposition of the hina and cycloserine preparations in the organism of patients with tuberculosis of the lungs. Probl Tuberk 55 issue 8: 63–66

    Google Scholar 

  • Stépaniane ES, Bréguer MA, Boligne IP (1960) Concentration de cyclosérine dans le sang et son excrétion. Probl Tuberk 38 issue 3: 89–94

    Google Scholar 

  • Strominger JL, Tipper DJ (1965) Bacterial cell wall synthesis and structure in relation to the mechanism of action of penicillins and other antibacterial agents. Am J Med 39: 708–721

    PubMed  CAS  Google Scholar 

  • Wareska W, Klott M, Izdebska-Makosa Z (1963) Cycloserine excretion in cases of renal diseases. Gruzlica 31: 664–668

    PubMed  CAS  Google Scholar 

  • Wargel RJ, Shadur CA, Neuhaus FC (1970) Mechanism of D-cycloserine action: transport systems for D-alanine, D-cycloserine, L-alanine, and glycine. J Bacteriol 103: 778–788

    PubMed  CAS  Google Scholar 

  • Wargel RJ, Shadur CA, Neuhaus FC (1971) Mechanism of D-cycloserine action: transport mutants for D-alanine, D-cycloserine and glycine. J Bacteriol 105: 1028–1035

    PubMed  CAS  Google Scholar 

  • Zitkova L, Tousek J (1973) Resorption and elimination of terizidone (Bracco) compared with cycloserine (Spofa). Stud Pneumol Phtiseol Cechoslov 33: 37–43

    Google Scholar 

  • Zitkova L, Toushek I (1978) Pharmacokinetics of cycloserin and ethambutol. Probl Tuberk 56 issue 3: 23–25

    Google Scholar 

  • Zygmunt WA (1963) Antagonism of D-cycloserine inhibition of mycobacterial growth by D-alanine. J Bacteriol 85: 1217–1220

    PubMed  CAS  Google Scholar 

  • Ammon R, Berninger H, Haas HJ, Landsberg I (1967) Thioacetamid-sulfoxid, ein Stoffwechselprodukt des Thioacetamids. Arzneimittelforsch 17: 521–523

    PubMed  CAS  Google Scholar 

  • Bieder A, Mazeau L (1964) Recherches sur le métabolisme de l’éthionamide chez l’homme. Séparation et identification de certains métabolites par chromatographie sur couche mince. Thérapie 19: 897–907

    PubMed  CAS  Google Scholar 

  • Eule H (1965) Aethionamid-Konzentration im Blut, Ham, gesunder und kranker Lunge. Beitr Klin Tuberk 132: 339–342

    CAS  Google Scholar 

  • Eule H, Werner E (1964) Recherches sur la concentration del’ éthionamide dans le poumon humain sain et tuberculeux. Rev Tuberc 28: 1301–1308

    CAS  Google Scholar 

  • Greenberg L, Eidus L (1962) Antituberculous drugs (Th 1314 and INH) in the host organism. Br J Dis Chest 56: 124–130

    PubMed  CAS  Google Scholar 

  • Grunert M (1969) Untersuchungen zum Verhalten des a-Äthylisonicotinsäurethioamides und seines Sulfoxydes in vitro und in vivo. Dissertation, Sektion Chemie der Humboldt-Universität Berlin

    Google Scholar 

  • Grunert M, Iwainsky H (1967) Zum Stoffwechsel des Äthionamids und seines Sulfoxydes im Makroorganismus. Arzneimittelforsch 17: 411–415

    PubMed  CAS  Google Scholar 

  • Grunert M, Iwainsky H (1971a) Pharmakokinetik und Biotransformation von Äthionamid. I. In vitro bestimmbare pharmakokinetisch bedeutsame Parameter. Z Erkr Atmungsorgane 134: 83–93

    Google Scholar 

  • Grunert M, Iwainsky H (1971b) Pharmakokinetik und Biotransformation von Äthionamid. II. Zur quantitativen Bestimmung von Äthionamid, Sulfoxyd und MethylÄthionamid in biologischem Material. Z Erkr Atmungsorgane 134: 219–225

    CAS  Google Scholar 

  • Grunert M, Iwainsky H (1971c) Pharmakokinetik und Biotransformation von Äthionamid. III. Zum Verhalten des Äthionamids im Makroorganismus. Z Erkr Atmungsorgane 134: 227–233

    CAS  Google Scholar 

  • Hamilton EJ, Eidus L, Little E (1962) A comparative study in vivo of isoniazid and alphaethylthioisonicotinamide. Am Rev Respir Dis 85: 407–412

    PubMed  CAS  Google Scholar 

  • Iwainsky H, Rogowski J, Grunert M (1963) Zur intravenösen Verabreichung von Ätina. Mschr Tbk-Bekpfg 6: 146–153

    Google Scholar 

  • Iwainsky H, Sehrt I, Grunert M (1964) Zum Stoffwechsel des Äthionamids. Naturwissenschaften 51: 316

    CAS  Google Scholar 

  • Iwainsky H, Sehrt I, Grunert M (1965) Zum Stoffwechsel des Äthionamids nach intravenöser Verabreichung. Arzneimittelforsch 15: 193–197

    PubMed  CAS  Google Scholar 

  • Johnston JP, Kane PO, Kibby MR (1967) The metabolism of ethionamide and its sulphoxide. J Pharm Pharmac 19: 1–9

    CAS  Google Scholar 

  • Krüger-Thiemer E †, Kröger H, Nestler HJ, Seydel JK (1975) Wirkungsmodi antituberkulöser Chemotherapeutika: Pyridincarbonsäurethioamide, Thiocarbanilide und Thiosemicarbazone. In: Meissner G, Schmiedel A t, Nelles A t (Hrsg) Infektionskrankheiten und ihre Erreger, Band 4, Teil III. Fischer, Jena, pp 289–298

    Google Scholar 

  • Pilheu JA (1975) Rifampicin concentrations in cerebrospinal fluid of patients with tuberculous meningitis. Am Rev Respir Dis 111: 240

    PubMed  CAS  Google Scholar 

  • Putter J (1964) Photometrische Bestimmung des 2-Äthyl-isothio-nicotinylamid in Organen und Körperflüssigkeiten. Arzneimittelforsch 14: 1198–1203

    Google Scholar 

  • Putter J (1972) Bestimmung von Prothionamid und Äthionamid sowie den entsprechenden Sulfoxiden im Blutplasma. Arzneimittelforsch 22: 1027–1031

    PubMed  CAS  Google Scholar 

  • Rist N (1960) L’ activité antituberculeuse de l’ éthionamide (L’alpha-éthylthioisonicotin-amide ou 1314 Th). Etude expérimentale et clinique. Adv Tuberc Res 10: 69–126

    Google Scholar 

  • Ritter W (1973) Neue Ergebnisse über Biotransformation und Pharmakokinetik von An-tituberkulotika. Prax Pneumol 27: 139–145

    PubMed  CAS  Google Scholar 

  • Simâne Z, Kraus P (1962) Ethionamide ( 1314 Th) serum levels and its urinary excretion. Rozhl Tbk (Praha) 22: 289–293

    Google Scholar 

  • Tikhonov VA, Grigalyunas AP, Guzeeva SA (1976) Polarographic investigation of the blood ethionamide and prothionamide concentration in patients with tuberculosis of the lungs. Probl Tuberk 54 issue 5: 75–78

    Google Scholar 

  • Tsukamura M (1972) Permeability of tuberculous cavities to antituberculous drugs. Tubercle 53: 47–52

    PubMed  CAS  Google Scholar 

  • Venkataraman P, Eidus L, Tripathy SP, Velu S (1967) Fluorescence test for the detection of ethionamide metabolites in urine. Tubercle 48: 291–296

    PubMed  CAS  Google Scholar 

  • Winder FG (1982) Mode of action of the antimycobacterial agents and associated aspects of the molecular biology of the mycobacteria. In: Ratledge C, Stanford J (eds) The biology of the mycobacteria, Vol 1. Academic Press London New York Paris San Diego San Francisco Sao Paulo Sydney Tokyo Toronto, pp 353–438

    Google Scholar 

  • Baggot JD (1978) Comparative pharmacokinetics of kanamycin. Abstracts 7`h Int Congress Pharmacol Paris Pergamon Press, p 787 Nr 2451

    Google Scholar 

  • Eichenwald HF (1966) Some observations on dosage and toxicity of kanamycin in premature and full-term infants. Ann NY Acad Sci 132: 984–991

    PubMed  CAS  Google Scholar 

  • Faragó E, Kiss J, Fâbiân E, Molnar E (1974) Untersuchung des Kanamycin Serum-und Lungengewebespiegels im Menschen. Tuberkulózis (Budapest) 27: 213–216

    Google Scholar 

  • Fujii R (1966) Postcript to the panel discussion: proper dosage of kanamycin for premature babies. Ann NY Acad Sci 132: 1031–1036

    Google Scholar 

  • Grange JM, Nordstrom G (1974) Kanamycin and neomycin resistance in Mycobacterium ranae (fortuitum) associated with serological and biochemical markers. Zentralbi Bakteriol Mikrobiol 226: 369–375

    CAS  Google Scholar 

  • Knowles BR, Lucas SB, Mawer GE, Stirland RM, Tooth JA (1971) Use of a digital computer programme as a guide to the precribing of kanamycin in patients with renal insufficiency. Brit Pharm Soc 43:481P–482P

    CAS  Google Scholar 

  • Konno K, Oizumi K, Kumano N, Oka S (1973) Mode of action of kanamycin on Mycobacterium bonisBCG. Am Rev Respir Dis 108: 101–107

    PubMed  CAS  Google Scholar 

  • Konno K, Motomiya M, Oizumi K, Ariji F (1977) The 52nd Annual Meeting Special Lecture III. Mode of action of antituberculosis drugs on tubercle bacilli. Kekkaku 52: 661–668

    PubMed  CAS  Google Scholar 

  • Krüger-Thiemer E †, Kröger H, Nestler HJ, Seydel JK (1975) Wirkungsmodi antituberkulöser Chemotherapeutika: Inositanaloga. In: Meissner G, Schmiedel A †, Nelles A † (Hrsg) Infektionskrankheiten und ihre Erreger, Band 4, Teil III. Fischer, Jena, pp 337–352

    Google Scholar 

  • Kunin CM (1966) Absorption, distribution, excretion and fate of kanamycin. Ann NY Acad Sci 132: 811–818

    PubMed  CAS  Google Scholar 

  • Kuntz E (1962) Kanamycin-Konzentrationen im Blut, Liquor und Pleuraexsudat. Klin Wochenschr 40: 1107–1111

    PubMed  CAS  Google Scholar 

  • Orme BM, Cutler RE (1969) The relationship between kanamycin pharmacokinetics, distribution and renal function. Clin Pharmacol Ther 10: 543–550

    PubMed  CAS  Google Scholar 

  • Pesnel G, Geslin P, Borderon J-C, Reinert P, Canet J, Farbe A, Bouhana A, Solle R, Lajouanine P (1973) Apport pratique d’un laboratoire spécialisé en antibiothérapie dans un service de pédiatrie générale. II. Rôle du laboratoire dans le contrôle du traitement antibiotique. Ann Pediat 20: 245–262

    Google Scholar 

  • Pindell MH (1966) The pharmacology of kanamycin — a review and new developments. Ann NY Acad Sci 132: 805–810

    PubMed  CAS  Google Scholar 

  • Pissiotis CA, Nichols RL, Condon RE (1972) Absorption and excretion of intraperito-neally administered kanamycin sulfate. Surg Gynecol Obstet 134: 995–998

    PubMed  CAS  Google Scholar 

  • Quinn EL, McHenry MC, Truant JP, Cox F (1966) The use of kanamycin in selected patients with serious infections caused by gram-negative bacilli: serum concentration and inhibition studies in patients with azotemia given reduced doses. Ann NY Acad Sci 132: 850–853

    PubMed  CAS  Google Scholar 

  • Robson JM, Sullivan FM (1963) Antituberculosis drugs. Pharmacol Rev 15: 169–223

    PubMed  CAS  Google Scholar 

  • Seneca H (1971) Biological basis of chemotherapy of infections and infestations. Davis Company, Philadelphia (Ph )

    Google Scholar 

  • Simon HJ, Axline SG (1966) Clinical pharmacology of kanamycin in premature infants. Ann NY Acad Sci 132: 1020–1025

    PubMed  CAS  Google Scholar 

  • Serenen AWS, Szabo L, Pedersen A, Scharff A (1967) Correlation between renal function and serum half-life of kanamycin and its application to dosage adjustement. Postgrad Med J Supp1: 37–43

    Google Scholar 

  • Tsukamura M (1972) Permeability of tuberculous cavities to antituberculosis drugs. Tubercle 53: 47–52

    PubMed  CAS  Google Scholar 

  • Walter AM, Heilmeyer L (1969) Antibiotika-Fibel. 3. Auflage. Heilmeyer L, Otten H, Plempel M ( Hrsg) Thieme, Stuttgart

    Google Scholar 

  • Yow EM, Abu-Nassar H (1963) Kanamycin: A re-evaluation after three years’ experience. Antibiot Chemother 11: 148–174

    PubMed  CAS  Google Scholar 

  • Emerson PA, Nicholson JP (1965) The absorption of 4,4-diisoamyloxythiocarbanilide (Isoxyl) using radioactive material (S35 tagged). Trans 24`h Res Conf Pulm Dis VAAF: 44–45

    Google Scholar 

  • Eule H, Werner E (1966) Thiocarlide (4,4-diisoamyloxythiocarbanilide) blood levels in patients suffering from tuberculosis. Tubercle 47: 214–220

    PubMed  CAS  Google Scholar 

  • Freerksen E (1963) Experimentelle Erfahrungen über 4,4’-Diisoamyloxythiocarbanilide (Isoxyl). Acta Tuberc Pneumol Belg 54: 12–34

    PubMed  CAS  Google Scholar 

  • Gubler HU, Favez G, Bergier N, Mailard J-M, Friedrich T (1966) Beitrag zur Resorption von Thiocarlid beim Menschen. Beitr Klin Tuberk 133: 126–139

    CAS  Google Scholar 

  • Krüger-Thiemer E †, Kröger H, Nestler HJ, Seydel JK (1975) Wirkungsmodi antituberkulöser Chemotherapeutika: Pyridincarbonsäurethioamide, Thiocarbanilide und Thiosemicarbazone. In: Meissner G, Schmiedel A t, Nelles A t (Hrsg) Infektionskrankheiten und ihre Erreger, Band 4, Teil III. Fischer, Jena, pp 289–298

    Google Scholar 

  • Larkin JC Jr (1960) Results of therapy with thiocarbanidin used with isoniazid or streptomycin. Am Rev Respir Dis 81: 235–240

    PubMed  Google Scholar 

  • Lucchesi M (1963) Recherches expérimentales sur le 4,4’-diisoamyloxythiocarbanilide (Isoxyl). Acta Tuberc Pneumol Belg 54: 42–58

    PubMed  CAS  Google Scholar 

  • Meissner J (1965) Verteilungsstudien mit radioaktiv markiertem Isoxyl. Beitr Klin Tuberk 132: 322–324

    CAS  Google Scholar 

  • Moodie AS, Aquinas M, Foord RD (1964) Controlled clinical trial of 4,4’-diisoamyloxy-carbanilide in the treatment of pulmonary tuberculosis. Tubercle 45: 192–200

    PubMed  CAS  Google Scholar 

  • Robinson OPW, Hunter PA (1966) Absorption and excretion studies with thiocarlide (4,4’-diisoamyloxythiocarbanilide) in man Tubercle 47: 207–213

    CAS  Google Scholar 

  • Schmidt LH (1963) Discussion remark. Trans 22“d Res Conf Pulm Dis VAAF, p 254

    Google Scholar 

  • Steffen J (1971) Ist Isoxyl in den bisher angegebenen Dosierungen als Tuberkuloseheilmittel zu verwenden? Prax Pneumol 25: 263–277

    PubMed  CAS  Google Scholar 

  • Tacquet A, Guillaume J, Macquet V (1963) Etude expérimentale du métabolisme de la 4,4’diisoamyloxythiocarbanilide marquée au saufre radioactif. Acta Tuberc Belg 54: 59–65

    PubMed  CAS  Google Scholar 

  • Urbanczik R, Trnka L (1963) Report on the antimicrobial activity of Isoxyl on M. tuberculosis “in vitro” and “in vivo”. Acta Tuberc Pneumol Belg 54: 66–86

    Google Scholar 

  • Winder FG (1982) Mode of action of the antimycobacterial agents and associated aspects of the molecular biology of the mycobacteria. In: Ratledge C, Stanford J (eds) The biology of the mycobacteria, Vol. 1. Academic Press London New York Paris San Diego San Francisco Sao Paulo Sydney Tokyo Toronto, pp 353–438

    Google Scholar 

  • Black HR, Griffith RS, Peabody AM (1966) Absorption, excretion and metabolism of ca-preomycin in normal and diseased states. Ann NY Acad Sci 135: 974–982

    PubMed  CAS  Google Scholar 

  • Donomae J (1966) Capreomycin in the treatment of pulmonary tuberculosis. Ann NY Acad Sci 135: 1011–1038

    PubMed  CAS  Google Scholar 

  • Herr EB Jr (1963) Chemical and biological properties of capreomycin and other peptide antibiotics. Antimicrob Agents Chemother 1962: 201–212

    Google Scholar 

  • Junge O (1972) Dünnschichtchromatographische Auftrennung der Antibiotika Carbenicillin, Polymycin und Capreomycin. Int J Clin Pharmacol 6: 67–76

    PubMed  CAS  Google Scholar 

  • Morse WC, Sproat EF, Arrington CW, Hawkins JA (1966) M. tuberculosis in vitro susceptibility and serum level experiences with capreomycin. Ann NY Acad Sci 135:983–988

    PubMed  CAS  Google Scholar 

  • Ritter W (1973) Neue Ergebnisse über Biotransformation und Pharmakokinetik von An-tituberkulotika. Prax Pneumol 27: 139–145

    PubMed  CAS  Google Scholar 

  • Tsukamura M (1972) Permeability of tuberculous cavities to antituberculous drugs. Tubercle 53: 47–52

    PubMed  CAS  Google Scholar 

  • Väre T (1974) Rifampicin, ethambutol and capreomycin in the treatment of pulmonary tuberculosis. Scand J Respir Dis Suppl 87: 6–57

    Google Scholar 

  • Welles JS, Harris PU, Small RM, Worth HM, Anderson RC (1966) The toxicity of capreomycin in laboratory animals. Ann NY Acad Sci 135: 960–973

    PubMed  CAS  Google Scholar 

  • Aoyagi T (1977) Clinical problems on the binding of protein to antituberculous drugs. Kekkaku 52: 459–468

    PubMed  CAS  Google Scholar 

  • Beggs WH, Auran NE (1972) Uptake and binding of 14C-ethambutol by tubercle bacilli and the relation of binding to growth inhibition. Antimicrob Agents Chemother 2: 390–394

    PubMed  CAS  Google Scholar 

  • Bernski G (1973) PMR study of the interaction of ethambutol with polynucleotides and related compounds. FEBS Letters 30: 79–83

    Google Scholar 

  • Borchard U, Dreistein A, Hamacher J (1975) Influence of ethambutol on resting and action potential of the peripheral nerve. Naunyn-Schmiedebergs Arch Pharmacol 287 Suppl: R 18

    Google Scholar 

  • Buyske DA, Sterling W, Peets E (1966) Pharmacological and biochemical studies on ethambutol in laboratory animals. Ann NY Acad Sci 135: 711–725

    PubMed  CAS  Google Scholar 

  • Campbell IA, Elmes PC (1975) Ethambutol and the eye; zinc and copper. Lancet II: 711

    Google Scholar 

  • Chen MM, Lee CS, Perrin JH (1984) Absorption and disposition of ethambutol in rabbits. J Pharm Sci 73: 1053–1055

    PubMed  CAS  Google Scholar 

  • Dume T, Wagner C, Wetzels E (1971) Zur Pharmakokinetik von Ethambutol bei Gesunden und Patienten mit terminaler Niereninsuffizienz. Dtsch Med Wochenschr 96: 1430–1434

    PubMed  CAS  Google Scholar 

  • Eule H, Werner E (1970) Ethambutol-Serumspiegel bei unterschiedlicher Dosierung; Vergleich von vier verschiedenen Bestimmungsmethoden. Z Erkr Atmungsorgane 133: 443–448

    CAS  Google Scholar 

  • Figueroa R, Weiss H, Smith JC Jr, Hackley BM, McBean LD, Swassing CR, Halsted JA (1971) Effect of ethambutol on the ocular zinc concentration in dogs. Am Rev Respir Dis 104: 592–594

    PubMed  CAS  Google Scholar 

  • Forbes M, Kuck NA, Peets EA (1965) Effect of ethambutol on nucleic acid metabolism in Mycobacterium smegmatis and its reversal by polyamines and divalent cations. J Bacteriol 89: 1299–1305

    PubMed  CAS  Google Scholar 

  • Forbes M, Peets EA, Kuck NA (1966) Effect of ethambutol on mycobacteria. Ann NY Acad Sci 135: 726–731

    PubMed  CAS  Google Scholar 

  • Höffler D (1981) Die Dosierung wichtiger Antibiotika und Tuberkulostatika bei Niereninsuffizienz. Internist (Berlin) 22: 601–606

    Google Scholar 

  • Jenne JW, Beggs WH (1973) Correlation of in vitro and in vivo kinetics with clinical use of isoniazid, ethambutol and rifampin. Am Rev Respir Dis 107: 1013–1021

    PubMed  CAS  Google Scholar 

  • Jungbluth H, Urbanczik R (1974) Ethambutol-Serumspiegel nach oraler und intravenöser Verabreichung. Prax Pneumol 28: 499–504

    PubMed  CAS  Google Scholar 

  • Kanther R (1970) Myambutol: chemistry, pharmacology, and toxicology. Antibiot Chemother 16: 203–214

    PubMed  CAS  Google Scholar 

  • Kelly RG, Kaleita E, Eisner HJ (1981) Tissue distribution of (14C)ethambutol in mice. Am Rev Respir Dis 123: 689–690

    PubMed  CAS  Google Scholar 

  • Kroening U (1974) Die Konzentrationsbestimmung von Ethambutol im Vollblut und ihre Bedeutung für den Nachweis der Kumulation des Medikamentes. Pneumonologie 151: 135–146

    PubMed  CAS  Google Scholar 

  • Kuck UA, Peets EA, Forbes M (1963) Mode of action of ethambutol on Mycobacterium tuberculosis, strain H37Rv. Am Rev Respir Dis 87: 905–906

    PubMed  CAS  Google Scholar 

  • Omer LMO (1978) Tagesprofile und Profilverlaufskontrollen von Ethambutol bei älteren Tuberkulosekranken. Prax Pneumol 32: 252–256

    CAS  Google Scholar 

  • Peets EA, Buyske DA (1962) Studies of the metabolism in the dog of ethambutol C14, a drug having antituberculosis activity. Pharmacologist 4: 171

    Google Scholar 

  • Peets EA, Sweeney WM, Place VA, Buyske DA (1965) The absorption, excretion and metabolic fate of ethambutol in man. Am Rev Respir Dis 91: 51–58

    PubMed  CAS  Google Scholar 

  • Place VA, Thomas JP (1963) Clinical pharmacology of ethambutol. Am Rev Respir Dis 87: 901–904

    PubMed  CAS  Google Scholar 

  • Place VA, Peets EA, Buyske DA (1966) Metabolic and special studies of ethambutol in normal volunteers and tuberculosis patients. Ann NY Acad Sci 135: 775–795

    PubMed  CAS  Google Scholar 

  • Pujet J-C, Pujet C (1972) Dosages sanguines et humoraux de l’éthambutol administré par perfusion intraveineuse. Bordeaux Méd: 1215–1222

    Google Scholar 

  • Reutgen H (1975) Wirkungsmodi antituberkulöser Verbindungen: Ethambutol. In: Meissner G, Schmiedel AJ, Nelles AI (Hrsg) Infektionskrankheiten und ihre Erreger, Band 4, Teil III. Fischer, Jena, pp 299–318

    Google Scholar 

  • Reutgen H, Iwainsky H (1970) Zum Wirkungsmechanismus des Ethambutols. Z Erkr Atmungsorgane 133: 457–459

    CAS  Google Scholar 

  • Reutgen H, Iwainsky H (1972) Untersuchungen zum endogenen Stoffwechsel von Mykobakterien. 5. Mitt. Über den Einfluß von Ethambutol auf den endogenen Stoffwechsel von Mycobacterium smegmatis. Z Naturforschung 27 b: 1405–1411

    Google Scholar 

  • Shepherd RG, Baughn C, Cantrall ML, Goodstein B, Thomas JP, Wilkinson RG (1966) Structure-activity studies leading to ethambutol, a new type of antituberculous compound. Ann NY Acad Sci 135: 686–710

    PubMed  CAS  Google Scholar 

  • Shneerson JM, Francis RS (1979) Ethambutol in pregnancy — foetal exposure. Tubercle 60: 167–169

    PubMed  CAS  Google Scholar 

  • Tsukamura M, Mizuno S (1967) Mode of action of ethambutol. Effect of ethambutol on the incorporations of several isotopic compounds into lipids, nucleic acids and protein by M. smegmatis. Kekkaku 42: 437–442

    PubMed  CAS  Google Scholar 

  • Youatt J (1965) Changes in the phosphate content of mycobacteria produced by isoniazid and ethambutol. Aust J Exp Biol Med Sci 43: 305–314

    PubMed  CAS  Google Scholar 

  • Zeller F, Róka L (1973) Ethambutolausscheidung bei Tuberkulosepatienten mit mäßig eingeschränkter Nierenfunktion. Prax Pneumol 27: 36–43

    PubMed  CAS  Google Scholar 

  • Zitkova L, Toushek I (1978) Pharmacokinetics of cycloserin and ethambutol. Probl Tuberk 56 issue 3: 23–25

    Google Scholar 

  • Abai AM, Tomchani A (1979) Rifampicin binding by the blood serum proteins. Probl Tuberk 57 issue 1: 54–59

    Google Scholar 

  • Acocella G (1967) A comparative study on the concentration of two antibiotics in the human appendix wall. Chemotherapia 12: 36–40

    CAS  Google Scholar 

  • Acocella G (1978) Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet 3: 108–127

    PubMed  CAS  Google Scholar 

  • Acocella G, Conti R (1980) Interaction of rifampicin with other drugs. Tubercle 61: 171–177

    PubMed  CAS  Google Scholar 

  • Acocella G, Mattiussi R, Segre G (1978) Multicompartmental analysis of serum, urine and bile concentrations of rifampicin and desacetyl-rifampicin in subjects treated for one week. Pharmacol Res Commun 10: 271–288

    PubMed  CAS  Google Scholar 

  • Acocella G, Bonollo L, Garimoldi M, Mainhardi M, Tenconi LT, Nicolis FB (1972) Kinetics of rifampicin and isoniazid administered alone and in combination to normal subjects and patients with liver disease. Gut 13: 47–53

    PubMed  CAS  Google Scholar 

  • Allen BW, Ellard GA, Mitchison DA, Hatfield ARW, Kenwright S, Levi AJ (1975) Probenecid and serum-rifampicin. Lancet II: 1309

    Google Scholar 

  • Aoyagi T (1977) Clinical problems on the binding of protein to antituberculous drugs. Kekkaku 52: 459–468

    PubMed  CAS  Google Scholar 

  • Beeuwkes H, Buytendijk HJ, Maesen FPV (1969) Der Wert des Rifampicin bei der Behandlung von Patienten mit bronchopulmonären Affektionen. Arzneimittelforsch 19: 1283–1285

    PubMed  CAS  Google Scholar 

  • Binda G, Domenichini E, Gottardi A, Orlandi B, Ortelli E, Pacini B, Foust G (1971) Rifampicin, a general review. Arzneimittelforsch 21: 1907–1977

    PubMed  CAS  Google Scholar 

  • Blasi A, Ninni A, Olivieri D, Caputi M (1971) Livelli ematici, livelli tessutali e livelli lesionali della rifamicina nella cavia infettata con micobatteri tubercolari. Giorn Ital Mal Tor 25: 283–287

    CAS  Google Scholar 

  • Blundell MR, Wild DC (1971) Altered ribosomes after inhibition of Escherichia coli by rifampicin. Biochem J 121: 391–398

    PubMed  CAS  Google Scholar 

  • Bolt HM (1975) Nebenwirkungen von Rifampicin und ihre biochemischen Grundlagen. Dtsch Med Wochenschr 100: 63–65

    PubMed  CAS  Google Scholar 

  • Boman G (1974) Clinical and experimental studies on rifampicin: distribution, kinetics and drug interactions. Thesis, Stockholm

    Google Scholar 

  • Boman G (1975) Autoradiographic studies of the distribution of rifampicin. Scand J Respir Dis Suppl 93: 3

    Google Scholar 

  • Boman G, Ringberger V-A (1974) Binding of rifampicin by human plasma proteins. Eur J Clin Pharmacol 7: 369–373

    PubMed  CAS  Google Scholar 

  • Canetti G, Djurovic V, Le Lirzin M, Thibier R, Lepeuple A (1970) Étude comparative de l’ évolution des taux sanguins de rifampicine chez l’ homme par deux méthodes micro-biologiques différentes. Rev Tuberc Pneumol 34: 93–106

    CAS  Google Scholar 

  • Decroix G, Djurovic V (1972) Taux sanguin de rifampicine chez les tuberculeux cirrhotiques. Rev Tuberc Pneumol 36: 1003–1008

    CAS  Google Scholar 

  • Devine IF, Johnson DP, Hagerman CR, Pierce WE, Rhode SL, Peckinpaugh RO (1970) Rifampin. Levels in serum and saliva and effect on the meningococcal carrier state. JAMA 214: 1055–1059

    PubMed  CAS  Google Scholar 

  • Dickinson JM, Jackett PS, Mitchison DA (1972) The effect of pulsed exposures to rifampicin on the uptake of uridine-14C by Mycobacterium tuberculosis. Am Rev Respir Dis 105: 519–527

    PubMed  CAS  Google Scholar 

  • Dold U, Petersen KF (1978) Sputumkonzentrationen von Rifampicin vor und nach Bromhexin-Gabe. Prax Klin Pneumol 32: 543–550

    PubMed  CAS  Google Scholar 

  • Fallon RJ, Allan GW, Lees AW, Smith J, Tyrrell WF (1975) Probenecid and rifampicin serum levels. Lancet II: 792–796

    Google Scholar 

  • Furesz S (1970) Chemical and biological properties of rifampicin. Antibiot Chemother 16: 316–351

    PubMed  CAS  Google Scholar 

  • Furesz S, Scotti R, Pallanza R, Mapelli E (1967) Rifampicin: A new rifamycin. III. Absorption, distribution and elimination in man. Arzneimittelforsch 17: 534–537

    PubMed  CAS  Google Scholar 

  • Grassi GG (1971) Aspetti dell’ attività antimicobatterica della rifampicina. Giorn Ital Mal Tor 25: 77–88

    Google Scholar 

  • Hakim J, Feldmann G, Boucherot J, Boivin P, Guibout P, Kreis B (1971) Effect of rifampicin, isoniazid and streptomycin on the human liver: a problem of enzyme induction. Gut 12: 761

    Google Scholar 

  • Handschin J, Wunderli W, Wehrli W (1976) The binding of rifampicin to RNA polymerase at various transcription steps. EXPEAM 32: 796

    Google Scholar 

  • Hartmann G, Honikel KO, Knüsel F, Nüesch J (1967) The specific inhibition of the DNA-directed RNA synthesis by rifamycin. Biochim Biophys Acta 145: 843–844

    PubMed  CAS  Google Scholar 

  • Heubel F, Netter KJ (1979) Atypical inductive properties of rifampicin. Biochem Pharmacol 28: 3373–3378

    PubMed  CAS  Google Scholar 

  • Holdiness MR (1984) Clinical pharmacokinetics of the antituberculosis drugs. Clin Pharmacokin 9: 511–544

    CAS  Google Scholar 

  • Honikel K, Sippel A, Hartmann G (1968) Mode of action of antibiotics on DNA-directed polymerase reactions. Hoppe-Seyler’s Z Physiol Chem 349: 957

    PubMed  CAS  Google Scholar 

  • Houin G, Beucler A, Richelet S (1983) Pharmacokinetics of rifampicin and desacetylrifampicin in tuberculous patients after different rates of infusion. Ther Drug Monit 5: 67–72

    PubMed  CAS  Google Scholar 

  • Hussels H-J (1969) Zur Methodik der Serum-Konzentrationsbestimmungen des neuen Antibiotikums Rifampicin. Med Lab 22: 195–203

    CAS  Google Scholar 

  • Ioffe RA (1973) Rifampicin passage with urine during treatment of tuberculous patients. Probl Tuberk 51 issue 12: 43–46

    PubMed  CAS  Google Scholar 

  • Iwainsky H, Eule H, Winsel K, Werner E (1971) Pharmakokinetic of high rifampicin-dosages during intermittent controlled chemotherapy. Acta Tuberc Pneumol Belg 62: 326–327

    Google Scholar 

  • Iwainsky H, Winsel K, Werner E, Eule H (1974) On the pharmacokinetics of rifampicin I: Influence of dosage and duration of treatment with intermittent administration. Scand J Respir Dis 55: 229–236

    PubMed  CAS  Google Scholar 

  • Iwainsky H, Winsel K, Werner E, Eule H (1976) On the pharmacokinetics of rifampicin (RMP) during treatment with intermittent administration II. Influence of age and sex of the patients. Scand J Respir Dis 57: 5–11

    PubMed  CAS  Google Scholar 

  • Janiszewski M, Szewczyk I (1975) Assessment of the diagnostic usefulness of a chemical method of determination of rifampicin in the urine. Gruzlica 37: 157–162

    Google Scholar 

  • Kenwright S, Levi AJ (1973) Impairment of hepatic uptake of rifamycin antibiotics by probenecid and its therapeutic implications. Lancet II: 1401–1405

    Google Scholar 

  • Kislitsyna NA, Kotova NI (1975) Rifampicin concentration in pathological formations of resected lungs. Probl Tuberk 53 issue 6: 79–81

    Google Scholar 

  • Kiss J, Farago E, Juhasz I, Bacsa S, Fabian E (1975) Untersuchung des Rifampicinspiegels im Blutserum und Lungengewebe des Menschen. Tuberkulózis (Budapest) XXVIII: 82–86

    Google Scholar 

  • Köhler H, Winsel K (1982) Klinische und experimentelle Untersuchungen zur Optimierung der Chemotherapie der Lungen-und Nierentuberkulose. Promotion B-Arbeit, Friedrich-Schiller-Universität, Jena

    Google Scholar 

  • Kolos OT, Eidus LL (1972) A simple thin-layer chromatographic method for the separation and identification of rifampin and its metabolites. J Chromatogr 68: 294–295

    PubMed  CAS  Google Scholar 

  • Konno K, Oizumi K, Hayshi I, Oka S (1972) Action mode of rifampicin on Mycobacterium tuberculosis. Kekkaku 47: 255–260

    PubMed  CAS  Google Scholar 

  • Konno K, Oizumi K, Ariji F, Yamaguchi J, Oka S (1973a) Mode of action of rifampin on mycobacteria. I. Electron microscopic study of the effect of rifampin on Mycobacterium tuberculosis. Am Rev Respir Dis 107: 1002–1005

    CAS  Google Scholar 

  • Konno K, Oizumi K, Oka S (1973b) Mode of action of rifampin on mycobacteria. II. Biosynthetic studies on the inhibition of ribonucleic acid polymerase of Mycobacterium bovisBCG by rifampin and uptake of rifampin-14C by Mycobacterium phlei. Am Rev Respir Dis 107: 1006–1012

    CAS  Google Scholar 

  • Konno K, Motomiya M, Oizumi K, Ariji F (1977) Mode of action of antituberculosis drugs on tubercle bacilli. Kekkaku 52: 661–668

    PubMed  CAS  Google Scholar 

  • Leoni L, Tecce G (1963) Azione della rifamicina SV sulle reazioni della sintesi proteica in vitro. Chemotherapia 7: 194–199

    CAS  Google Scholar 

  • Loos U, Musch E, Jensen JC, Mikus G, Schwabe HK, Eichelbaum M (1985) Pha.rmacokinetics of oral and intravenous rifampicin during chronic administration. Klin Wochenschr 63: 1205–1211

    PubMed  CAS  Google Scholar 

  • Maggi N, Furesz S, Pallanza R, Pelizza G (1969) Rifampicin desacetylation in the human organism. Arzneimittelforsch 19: 651–654

    PubMed  CAS  Google Scholar 

  • Meyer-Brunot HG, Schmid K, Keberle H (1967) Stoffwechsel und Pharmakokinetik von Rifampicin bei Tier und Mensch. Proc V ’ Int Congress Chemotherapy Vienna Vol I/ 2: 763–770

    Google Scholar 

  • Michel-Briand Y (1978) Mécanismes d’action des antibiotiques, à propos de quelques exemples. CR Soc Biol 172: 609–627

    CAS  Google Scholar 

  • Misoli P, Trnka L (1973) Zum Wirkungsmechanismus von Rifampicin. Mschr Lungenkrankh Tbk-Bekpfg 16: 259–264

    Google Scholar 

  • Mouton RP, Mattie H, Suart K, Kreukniet J, de Wael J (1979) Blood levels of rifampicin, desacetyl-rifampicin and isoniazid during combined therapy. J Antimicrob Chemother 5: 447–454

    PubMed  CAS  Google Scholar 

  • Nakagawa H, Sunahara S (1973) Metabolism of rifampicin in the human body. 1’ report. Kekkaku 48: 167–176

    PubMed  CAS  Google Scholar 

  • Nitti V, Virgilio R, Patricolo MR, Juliano A (1977) Pharmacokinetic study of intravenous rifampicin. Chemotherapy 23: 1–6

    PubMed  CAS  Google Scholar 

  • D’Oliveira JJG (1972) Cerebrospinal fluid concentrations of rifampin in meningeal tuberculosis. Am Rev Respir Dis 106: 432–437

    PubMed  Google Scholar 

  • Otani G, Remmer H (1975) Participation of microsomal NADPH-cytochrome C reductase in the metabolism of rifampicin. Naunyn-Schmiedebergs Arch Pharmacol 287 Suppl: R76

    PubMed  Google Scholar 

  • Pawlowska I, Pniewski T (1975) On the methodology of determination of rifampicin (RMP) concentration in sputum. Gruzlica 43: 969–975

    PubMed  CAS  Google Scholar 

  • Pilheu JA (1975) Rifampicin concentrations in cerebrospinal fluid of patients with tuberculous meningitis. Am Rev Respir Dis 111: 240

    PubMed  CAS  Google Scholar 

  • Pogo BGT (1971) Biogenesis of vaccinia: effect of rifampicin on transcription. Virology 44: 576–581

    PubMed  CAS  Google Scholar 

  • Ritter W (1973) Neue Ergebnisse über Biotransformation und Pharmakokinetik von Antituberkulotika. Prax Pneumol 27: 139–145 (B, Ph)

    PubMed  CAS  Google Scholar 

  • Schoene B, Fleischmann RA, Remmer H, Oldershausen HF v (1972) Induction of drug-metabolizing enzymes in human liver. Naunyn-Schmiedebergs Arch Pharmacol 274 Suppl: R101

    Google Scholar 

  • Sunahara S, Nakagawa H (1972) Metabolic study and controlled clinical trials of rifampin. Chest 61: 526–532

    PubMed  CAS  Google Scholar 

  • Tenconi LT, Beretta E (1970) Urinary and biliary metabolites of rifampicin in different animal species. In: Baker SBDC, Tripod J, Jacob J (eds) Proc Europ Soc for the Study of Drug Toxicity 11: 80–85. Excerpta Media Foundation, Amsterdam

    Google Scholar 

  • Termine A, Santuari E (1968) Il passaggio trans-placentare delle rifampicina. Dosaggio del farmaco nel siero materno e fetale e nel liquido amniotico. Ann Ist Forlanini 28: 431–439

    PubMed  CAS  Google Scholar 

  • Titarenko OT, Vakhmistrova TI, Perova TL (1983) Rifampicin excretion with urine in patients with renal insufficiency treated with rifampicin alone or in combination with isoniazid. Antibiotiki 28: 698–702

    PubMed  CAS  Google Scholar 

  • Toyohara M (1971) An experimental study on the antituberculous activity of rifampicin. Kekkaku 46: 211–216

    CAS  Google Scholar 

  • Tsukamura M (1972) Permeability of tuberculous cavities to antituberculosis drugs. Tubercle 53: 47–52

    PubMed  CAS  Google Scholar 

  • Tsukamura M, Imazu S, Tsukamura S, Mizuno S, Toyama H, Termine A, Rossi P (1963) Studies on the mode of action of rifamycin SV. Chemotherapia 7: 478–481

    Google Scholar 

  • Umezawa H, Mizuno S, Yamazaki H, Nitta K (1968) Inhibition of DNA-dependent RNA synthesis by rifamycins. J Antibiotics 21: 234–235

    CAS  Google Scholar 

  • Verbist L, Rollier F (1971) Pharmacological study of rifampicin after repeated high dosage during intermittent combined therapy. II. Bilirubin levels and other biochemical determinations. Respiration 28 Suppl: 17–28

    PubMed  Google Scholar 

  • Wehrli W, Staehelin M (1971) Actions of the rifamycins. Bact Rev 35: 290–309

    PubMed  CAS  Google Scholar 

  • White RJ, Lancini GC, Silvestri LG (1971) Mechanism of action of rifampin on Mycobacterium smegmatis. J Bacteriol 108: 737–741

    PubMed  CAS  Google Scholar 

  • Winsel K, Iwainsky H, Werner E, Eule H (1976) Trennung, Bestimmung und Pharmakokinetik von Rifampicin und seinen Biotransformationsprodukten. Pharmazie 31: 95–99

    PubMed  CAS  Google Scholar 

  • Winsel K, Eule H, Werner E, Iwainsky H (1985) Zur Pharmakokinetik des Rifampicins (RMP) bei intermittierender Behandlung von Patienten mit Lungentuberkulose. Pharmazie 40: 253–256

    PubMed  CAS  Google Scholar 

  • Zilly W, Breimer DD, Richter E (1977) Stimulation of drug metabolism by rifampicin in patients with cirrhosis or cholestasis measured by increased hexobarbital and tolbutamide clearance. Europ J Clin Pharmacol 11: 287–293

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iwainsky, H. (1988). Mode of Action, Biotransformation and Pharmacokinetics of Antituberculosis Drugs in Animals and Man. In: Bartmann, K. (eds) Antituberculosis Drugs. Handbook of Experimental Pharmacology, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72873-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72873-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72875-4

  • Online ISBN: 978-3-642-72873-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics