Experimental Evaluation of Efficacy

  • L. Trnka
  • P. Mišoň
  • K. Bartmann
  • H. Otten
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 84)

Abstract

Experiments offer the possibility of varying several conditions and thus of assessing the importance of particular technical details. Studies of the therapeutic efficacy of antituberculotics involve three variables: the tuberculous disease, the drug, and the pathogen.

References

  1. Abe S (1958) Studies on the intraperitoneal cells of a guinea pig and the multiplication of tubercle bacilli in the intraperitoneal mononuclear cells cultured in vitro. Sci Rep Res Inst Tohoku Univ (Med) 8:161–178Google Scholar
  2. Armstrong AR (1960) Time-concentration relationship of isoniazid with tubercle bacilli. Am Rev Respir Dis 81:498–503PubMedGoogle Scholar
  3. Armstrong AR (1965) Further studies on the time-concentration relationships of isoniazid and tubercle bacilli in vitro. Am Rev Respir Dis 91:440–443PubMedGoogle Scholar
  4. Barclay WR, Winberg E (1964) Bactericidal effect of isoniazid as a function of time. Am Rev Respir Dis 90:749–753PubMedGoogle Scholar
  5. Bartmann K, Villnow J, Schwarz C (1958) Tierexperimentelle Untersuchungen zu einer intermittierenden Chemotherapie und -prophylaxe der Tuberkulose. VII. Der Erfolg kontinuierlicher und intermittierender Gaben von INH und der Tripelkombination INH, Streptomycin, PAS im therapeutischen Versuch an Meerschweinchen. Beitr Klin Tuberk 118:297–313Google Scholar
  6. Bartmann K (1960) Die experimentellen Grundlagen einer Chemoprophylaxe der Tuberkulose mit Isonicotinsäurehydrazid (INH). Adv Tuberc Res 10:127–215Google Scholar
  7. Bartmann K, Abel U, Hart R (1966) Die Abhängigkeit des Hemmtiters von der Bebrütungsdauer bei der Bestimmung der Resistenz von M. tuberculosis gegen Antituberkulotika auf Löwenstein-Jensen Medium. Zentralbi Bakteriol Mikrobiol Hyg (A) 201:538–548Google Scholar
  8. Bartmann K, Gâlvez-Brandon J (1968) Towards an international standardization of resistance tests on mycobacteria. Scand J Respir Dis 49:141–152PubMedGoogle Scholar
  9. Bartmann K (1974) Antimikrobielle Chemotherapie. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  10. Bartmann K (1975) Biometrie der Mykobakterien. In: Meissner G, Schmiedel A, Nelles A (Hrsg) Mykobakterien und mykobakterielle Krankheiten. III. Bakteriologische Grundlagen der Chemotherapie der Tuberkulose. Fischer, Jena, pp 19–57Google Scholar
  11. Bartmann K (1980) Mikrobiologische Grundlagen. In: Jentgens H (Hrsg) Atmungsorgane. Lungentuberkulose. Springer, Berlin Heidelberg New York Tokyo, pp 1–45 (Handbuch der inneren Medizin Bd IV/3)Google Scholar
  12. Beggs WH, Jenne JW, Hall WH (1968) Isoniazid uptake in relation to growth inhibition of Mycobacterium tuberculosis. J Bacteriol 96:293–297PubMedGoogle Scholar
  13. Beggs WH, Jenne JW (1970) Growth inhibition of Mycobacterium tuberculosis after single pulsed exposure to streptomycin, ethambutol and rifampicin. Infect Immun 2:479–483PubMedGoogle Scholar
  14. Beggs WH, Williams NE (1971) Streptomycin uptake by Mycobacterium tuberculosis. Appl Microbiol 21:751–753PubMedGoogle Scholar
  15. Berthrong M, Hamilton MA (1958) Tissue culture studies on resistance in tuberculosis. I. Normal guinea pig monocytes with tubercle bacilli of different virulence. Am Rev Tuberc Pulm Dis 77:436–449Google Scholar
  16. Berthrong M, Hamilton MA (1959) Tissue culture studies on resistance in tuberculosis. II. Monocytes from normal and immunized guinea pigs infected with virulent human tubercle bacilli. Am Rev Tuberc Pulm Dis 79:221–231Google Scholar
  17. Bonventre PF, Imhoff JG (1970) Uptake of 3H-dihydrostreptomycin by macrophages in culture. Infect Immun 2:89–95PubMedGoogle Scholar
  18. Brown CA (1970) Association of lysozomal enzymes in cultured fibroblasts with the intracellular growth of Mycobacterium lepraemurium. Br J Exp Pathol 51:203–209PubMedGoogle Scholar
  19. Canetti G, Froman S, Grosset J, Hauduroy P, Langerovâ M, Mahler HT, Meissner G, Mitchison DA, gula L (1963) Mycobacteria: laboratory methods for testing drug sensitivity and resistance. Bull WHO 29:565–578PubMedGoogle Scholar
  20. Canetti G, Rist N, Grosset J (1963) Mesure de la sensibilité du bacille tuberculeux aux drogues antibacillaires par la méthode des proportions. Méthodologie, critères de résistance, résultats, interprétation. Rev Tuberc 27:217–272Google Scholar
  21. Canetti G (1965) Present aspects of bacterial resistance in tuberculosis. Am Rev Respir Dis 92:687–703PubMedGoogle Scholar
  22. Canetti G, Fox W, Khomenko A, Mahler HT, Menon NK, Mitchison DA, Rist N, gmelev NA (1969) Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull WHO 41:21–43PubMedGoogle Scholar
  23. Clark ME, Forrest E (1959) Growth characteristics of acid-fast microorganisms other than tubercle bacilli in He La cells. Am Rev Respir Dis 80:744–746Google Scholar
  24. Clini V, Grassi C (1970) The action of new antituberculous drugs on intracellular tubercle bacilli. Antibiot Chemother 16:20–26PubMedGoogle Scholar
  25. Crowle AJ (1958) Lung density as a measure of tuberculous involvement in mice. Am Rev Tuberc Pulm Dis 77:681–693Google Scholar
  26. Deutsches Zentralkomitee zur Bekämpfung der Tuberkulose (1966) Empfehlungen zur Methodik und Bewertung von Resistenz-Bestimmungen bei Tuberkulose-BakterienGoogle Scholar
  27. Dickinson JM (1969) The suitability of new drugs for intermittent chemotherapy of tuber-culosis. An experimental study. Scand J Respir Dis (Suppl) 96:91–98Google Scholar
  28. Dickinson JM, Mitchison DA (1970) Suitability of rifampicin for intermittent administration in the treatment of tuberculosis. Tubercle 51:82–94PubMedGoogle Scholar
  29. Donovick R, McKee CM, Jambor WP, Rake G (1949) The use of the mouse in a standardized test for antituberculous activity of compounds of natural or synthetic origin. I. Choice of mouse strain. Am Rev Tuberc 60:109–120PubMedGoogle Scholar
  30. Dubos RJ, Pierce C (1948) The effect of diet on experimental tuberculosis of mice. Am Rev Tuberc 57:287–293PubMedGoogle Scholar
  31. Feldman WH (1943) A scheme for numerical recording of tuberculous changes in experimentally infected guinea pigs. Am Rev Tuberc 48:248–255Google Scholar
  32. Feldman WH, Hinshaw HC (1945) Chemotherapeutic testing in experimental tuberculosis; suggested outlines of laboratory procedures for testing antituberculous substances in experimentally infected guinea pigs. Am Rev Tuberc 51:582Google Scholar
  33. Fenner F, Martin SP, Pierce CH (1950) The enumeration of viable tubercle bacilli in cultures and infected tissues. Ann NY Acad Sci 52:751–764Google Scholar
  34. Fink H, Schröder KH (1973) Sensibilitätsbestimmung von Mykobakterien mit der Diffusionsmethode. Prax Pneumol 27:509–513PubMedGoogle Scholar
  35. Fong J, Schneider P, Elberg SS (1956) Studies on tubercle bacillus — monocyte relationship. I. Quantitative analysis of effect of serum of animals vaccinated with BCG upon bacterium — monocyte system. J Exp Med 104:455–465PubMedGoogle Scholar
  36. Freerksen E, Schellenberg H (1956) Die Vermehrung von Tuberkelbakterien in Monozyten gesunder Tiere. Z Hyg 142:554–571Google Scholar
  37. Freerksen E, Krüger-Thiemer E (1956) Mycobakterien in der Gewebekultur. A. Gegenwärtiger Kenntnisstand. Jahrber Borstel 3:66–93Google Scholar
  38. Gâlvez-Brandon J, Bartmann K (1969) Statistical aspects of the proportion method for determining the drug-resistance of tubercle bacilli. Scand J Respir Dis 50:1–18PubMedGoogle Scholar
  39. Gebelein H, Wagner WH (1956) Statistische Prüfung des chemotherapeutischen Reihen- versuchs bei der experimentellen Mäusetuberkulose. Beitr Klin Tuberk 116:253–267Google Scholar
  40. Grumbach F, Canetti G, LeLirzin M (1970) Caractère durable de la stérilisation de la tuberculose expérimentale de la souris par l’association rifampicine — isoniazide: épreuve de la cortisone. Rev Tuberc Pneumol 34:312–319Google Scholar
  41. Hanks JH (1947) The fate of leprosy bacilli in fibroblasts cultivated from macular and tuberculoid lesions. Int J Lepr 15:48–60PubMedGoogle Scholar
  42. Hanks JH (1958) Assay of the fate of mycobacteria in cell and tissue cultures. Am Rev Tuberc 77:789–801PubMedGoogle Scholar
  43. Havel A, Trnka L, Kuska J (1965) Comparison of antituberculous effects of morphazinamide and pyrazinamide in chronic experimental tuberculosis. II. The emergence of resistance and its retardation in the course of monotherapy and combinations of anti-tuberculous drugs. Chemotherapia 9:168–175Google Scholar
  44. Hejnÿ J, Melichar J (1965) Inhibitory concentrations of antituberculosis drugs for strains of Mycobacterium tuberculosis on Löwenstein-Jensen and ATS media. Acta Tuberc Pneumol Scand 46:51–56PubMedGoogle Scholar
  45. Hsu HS, Kapral FA (1960) The suppressed multiplication of tubercle bacilli within macrophages derived from triiodothyronine-treated guinea pigs. Am Rev Respir Dis 81:881–887PubMedGoogle Scholar
  46. Hussels HJ, Kroening U, Wundschock M (1981) Biophotometrische Schnellbestimmung der Empfindlichkeit von Mykobakterien. Prax Pneumol 35:609–611Google Scholar
  47. Huempfner HR, Deuschle KW (1966) Experimental tuberculosis in germ-free and conventional mice. Am Rev Respir Dis 93:465–467Google Scholar
  48. Ilaysky J (1954) A new procedure for screening antituberculous agents. Effect of chemotherapeutic agents on mice infected with massive doses of tubercle bacilli intraperitoneally. Am Rev Tuberc 69:280–286Google Scholar
  49. Kradolfer F, Schnell R (1967) Analyse der Wirksamkeit von Rifamycin-Derivaten und bekannten Therapeutika erster Ordnung an der murinen Tuberkulose. In: Spitzy KH, Haschek H (eds) Proc Vth Int Congr Chemotherapy Wien, Vol II/2:525–532Google Scholar
  50. Krebs A (1975) Mykobakterielle Resistenz und Resistenzbestimmungen. In: Meissner G, Schmiedel A, Nelles A (Hrsg) Mykobakterien und mykobakterielle Krankheiten. III. Bakteriologische Grundlagen der Chemotherapie der Tuberkulose. Fischer, Jena, pp 183–250Google Scholar
  51. Kunze M, Sanabria de Isele T, Vogt A (1977) Über die Möglichkeit einer Schnellmethode zur Resistenzbestimmung von Mykobakterien durch Einbau von Uracil-5–143. Zentralbl Bakteriol Mikrobiol Hyg (A) 239:87–94Google Scholar
  52. Laboratory Subcommittee of the Tuberculosis Chemotherapy Trials Committee, Medical Research Council (1953) Laboratory techniques for the determination of sensitivity of tubercle bacilli to isoniazid, streptomycin, and P.A.S. Lancet II:213–217Google Scholar
  53. Litchfield JT Jr (1949) A method for rapid graphic solution of time-percent effect curves. J Pharmacol Exp Ther 97:399–408PubMedGoogle Scholar
  54. Litchfield JT Jr, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113PubMedGoogle Scholar
  55. Lyang KW (1960) Studies on the interaction between host cell and parasite. I. Morphologic studies of lung cultured in vitro. Am Rev Respir Dis 81:200–205PubMedGoogle Scholar
  56. Mackaness GB (1952) The action of drugs on intracellular tubercle bacilli. J Pathol Bacteriol 64:429–446PubMedGoogle Scholar
  57. Mackaness GB (1954a) Artificial cellular immunity against tubercle bacilli. An effect of polyoxyethylene ethers (Triton). Am Rev Tuberc 69:690–704Google Scholar
  58. Mackaness GB (1954b) The growth of tubercle bacilli in monocytes from normal and vaccinated rabbits. Am Rev Tuberc 69:495–504Google Scholar
  59. Mackaness GB, Smith N (1953) The bactericidal action of isoniazid, streptomycin and terramycin on extracellular and intracellular tubercle bacilli. Am Rev Tuberc 67:322340Google Scholar
  60. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Statist 18:50–60Google Scholar
  61. McCune RM, Tompsett R (1956) Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J Exp Med 104:737–762PubMedGoogle Scholar
  62. McCune RM, Feldmann FF, Lambert HP, McDermott W (1966) Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissue. J Exp Med 123:445–486PubMedGoogle Scholar
  63. Meissner G (1965) Häufigkeit der Resistenz für Conteben and deren Bedeutung für das Auftreten der Resistenz für Isoxyl (4–4’-Diisoamyloxythiocarbanilid) bei Tuberkelbakterien. Prax Pneumol 19:387–395PubMedGoogle Scholar
  64. Mitchison DA, Dickinson JM (1971) Laboratory aspects of intermittent drug therapy. Postgrad Med 47:737–741Google Scholar
  65. Pavlov EP (1970) Some factors influencing the activity of streptomycin, kanamycin and isoniazid with respect to intracellularly seated Myco. tuberculosis (in Russian). Probi Tuberk 48, issue 9:72–76Google Scholar
  66. Pavlov EP, Tushov EG, Kotlyarov LM (1974) The action of rifampicin on the extra-and intracellularly located Myco. tuberculosis (in Russian). Probl Tuberk 52, issue 12:6467Google Scholar
  67. Raleigh GW, Youmans GP (1948a) The use of mice in experimental chemotherapy of tuberculosis. I. Rationale and review of the literature. J Infect Dis 82:197–204Google Scholar
  68. Raleigh GW, Youmans GP (1948b) The use of mice in experimental chemotherapy of tuberculosis. II. Pathology and pathogenesis. J Infect Dis 82:205–220Google Scholar
  69. Reutgen H (1973) Zur Resistenzbestimmung von Mycobacterium tuberculosis gegenüber INH, Streptomycin, PAS, Äthionamid, Ethambutol and Rifampicin mittels 32P-Inkorporationstest. Acta Biol Med Ger 30:309–316PubMedGoogle Scholar
  70. Schellenberg H (1957) Die Gewebekultur in der Tuberkuloseforschung unter besonderer Berücksichtigung immunobiologischer Fragen. Jahrber Borstel 4:700–722Google Scholar
  71. Schmiedel A (1958) Der Vertikaldiffusionstest als Methode zur Resistenzbestimmung von Tuberkelbakterien and zur INH-Spiegeltestung. Z Tbk 112:48–56Google Scholar
  72. Shepard CC (1955) Phagocytosis by HeLa cells and their susceptibility to infection by human tubercle bacilli. Proc Soc Exp Biol Med 90:392–398PubMedGoogle Scholar
  73. Shepard CC (1957a) Growth characteristics of tubercle bacilli and certain other mycobacteria in HeLa cells. J Exp Med 105:39–48Google Scholar
  74. Shepard CC (1957b) Use of HeLa cells infected with tubercle bacilli for the study of anti-tuberculous drugs. J Bacteriol 73:494–498Google Scholar
  75. Shepard CC (1958) A study of the growth in HeLa cells of tubercle bacilli from human sputum. Am Rev Tuberc Pulm Dis 77:423–435Google Scholar
  76. Shepard CC (1959) A comparison of the growth of selected mycobacteria in HeLa, monkey kidney, and human amnion cells in tissue culture. J Exp Med 107:237–246Google Scholar
  77. Snider DE Jr, Good RC, Kilburn JO, Laskowski LF Jr, Lusk RH, Marr JJ, Reggiardo Z, Middlebrook G (1981) Rapid drug-susceptibility testing of Mycobacterium tuberculosis. Am Rev Respir Dis 123:402–406PubMedGoogle Scholar
  78. Stottmeier KD, Woodley CL, Kubica GP (1969) New approach for the evaluation of antimycobacterial drug combinations in vitro (the laboratory model man). Appl Microbiol 18:399–403PubMedGoogle Scholar
  79. Suter E (1953) Multiplication of tubercle bacilli within mononuclear phagocytes in tissue cultures derived from normal animals and animals vaccinated with BCG. J Exp Med 97:235–245PubMedGoogle Scholar
  80. Suter E (1961) Passive transfer of acquired resistance to infection with Mycobacterium tuberculosis by means of cells. Am Rev Respir Dis 83:535–543Google Scholar
  81. Trnka L, Urbana R (1962) Comparative study on the sensitivity of mice strain H and CF1 to experimental tuberculous infection (in Czech). Rozhl Tuberk 22:187–192Google Scholar
  82. Trnka L, Havel A, Urbana R (1966) Neueste Tuberkulostatika, ihre Bedeutung und Möglichkeiten der Wertbestimmung im Reagenzglas. Chemotherapia 11:121–134Google Scholar
  83. Trnka L, Staflova S (1974) Experimental principles on the use of rifampicin in the intermittent chemotherapy of tuberculosis. Ain Shams Med J 25 (Suppl):157–159Google Scholar
  84. Trnka L, Misoìï P, Staflovâ S (1974) Interaction aspects of antimycobacterial drugs in the chemotherapy of tuberculosis. II. The role of rifampicin and other drugs in the dependent or independent action of drug associations in vitro. Chemotherapy 20:82–91PubMedGoogle Scholar
  85. Uesaka I, Oiwa K (1956) Studies on experimental tuberculosis in mice. 1. Factors affecting the survival time of mice experimentally infected with human type tubercle bacilli. Jpn J Tuberc 4:64–72Google Scholar
  86. Urbancík R, Trnka L (1962) Preliminary observations on the increase in isoniazid resistance of M. tuberculosis H 37 Rv after exposure to an extract of tuberculous tissue. Am Rev Respir Dis 85:596–598PubMedGoogle Scholar
  87. Urbana R, Trnka L (1963) Report on the antimicrobial activity of Isoxyl on M. tuberculosis “in vitro” and “in vivo”. Acta Tuberc Pneumol Belg 54:66–86Google Scholar
  88. Urbancík R, Trnka L, Polenskâ H (1963) The suitability of intracutaneous infection in guinea pigs induced by virulent tubercle bacilli for the use in chemotherapeutic trials. Experientia 19:23–24PubMedGoogle Scholar
  89. Utagawa K (1962) Intracellular multiplication of tubercle bacilli in HeLa cells. Sci Rep Res Inst Tohoku Univ (Med) Ser C10:302–309Google Scholar
  90. Wagner WH (1964) Experimentelle Infektionen mit Tubercelbakterien. In: Eichler O (Hrsg) Erzeugung von Krankheitszuständen durch das Experiment. Springer, Berlin Göttingen Heidelberg, pp 354–430 (Handbook of Experimental Pharmacology, vol 16, Teil 9)Google Scholar
  91. Wagner WH (1975) Die Wertbestimmung tuberkulostatischer Substanzen in vivo. In: Meissner G, Schmiedel A, Nelles A (Hrsg) Mykobakterien und mykobakterielle Krankheiten. III. Bakteriologische Grundlagen der Chemotherapie der Tuberkulose. Fischer, Jena, pp 129–158Google Scholar
  92. Youmans GP (1957) Acquired immunity to tuberculosis. J Chronic Dis 6:606–632PubMedGoogle Scholar
  93. Youmans GP, Raleigh G (1948) The use of mice in experimental chemotherapy of tuber-culosis. III. The histopathologic assay of chemotherapeutic action. J Infect Dis 82:221–226PubMedGoogle Scholar
  94. Youmans GP, Youmans AS, Kanai K (1959) The difference in response of four strains of mice to immunization against tuberculous infection. Am Rev Tuberc 80:753–756Google Scholar
  95. Zebrowski T (1966) A new method for investigating the dynamic aspects of antibacterial properties of chemical compounds in vitro by the use of the dialyser tubing. Am Rev Respir Dis 93:111–113PubMedGoogle Scholar

References

  1. Adair CV, Drobeck B, Bunn PA (1951) Use of rabbit eye as a tissue to study tuberculosis. II. Effect of certain antituberculous agents upon ocular tuberculosis. Am Rev Tuberc 64:207–217PubMedGoogle Scholar
  2. Bartmann K (1960) Die experimentellen Grundlagen der Chemoprophylaxe der Tuberkulose mit Isonicotinsäurehydrazid (INH). Adv Tuberc Res 10:127–215Google Scholar
  3. Bartmann K, Abel U, Hart R (1966) Die Abhängigkeit des Hemmtiters von der Bebrütungsdauer bei der Bestimmung der Resistenz von M. tuberculosis gegen Antituberkulotika auf Löwenstein-Jensen Medium. Zentralbi Bakteriol Mikrobiol Hyg (A) 201:538–548Google Scholar
  4. Bjartveit K (1978) Tuberculosis situation in the Scandinavian countries. Norway. Scand J Respir Dis Suppl No 102:28–35Google Scholar
  5. Bloch RG, Vennesland K, Ebert RH, Gomori G (1949) The effect of streptomycin, paraaminosalicylic acid (PAS) and their combination on the tubercle bacillus in vitro and in vivo. Am Rev Tuberc 59:554–561PubMedGoogle Scholar
  6. Bogen E, Loomis RN, Will DW (1950) Para-aminosalicylic acid treatment of tuberculosis. A review. Am Rev Tuberc 61:226–246PubMedGoogle Scholar
  7. Bönicke R (1950/51) Ernährung und tuberkulostatische Aktivität der PAS in vivo. Jahrber Borstel 1:255–258Google Scholar
  8. Bönicke R, Reif W (1950/51) Untersuchungen über die tuberkulostatische Wirksamkeit und die Schwermetallkomplexbildung der PAS und ihrer Derivate. Jahrber Borstel 1:243–251Google Scholar
  9. Bryson V, Szybalski W (1955) Microbial drug resistance. Adv Genet 7:1–46PubMedGoogle Scholar
  10. Burjanovâ B, Dornetzhuber V (1975) Empfindlichkeit der Stämme des M. kansasii auf ver-schiedene Antibiotika und Chemotherapeutika in vitro und in vivo. Z Erkr Atmungs-organe 142:68–77Google Scholar
  11. Burjanovâ B, Turzovâ M, Grigelovâ R (1979) Bacteriological tuberculosis diagnostics in the Slovak Socialist Republic during the period 1968–1977 (in Czech). Stud Pneumol Phtiseol Cechoslov 39:81–87Google Scholar
  12. Canetti G, Kreis B, Thibier R, Gay P, LeLirzin M (1967) Données actuelles sur la résistance primaire dans la tuberculose pulmonaire de l’adulte en France. Deuxieme enquête du Centre d’Etudes sur la résistance primaire; années 1965–1966. Rev Tuberc 31:433–474Google Scholar
  13. Canetti G (1968) Experiments on long-term intermittent chemotherapy in advanced tuberculosis in mice. Tubercle 49 (Suppl):70–74PubMedGoogle Scholar
  14. Canetti G, Fox W, Khomenko A, Mahler HT, Menon NK, Mitchison DA, Rist N, Smelev NA (1969) Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull WHO 41:21–43PubMedGoogle Scholar
  15. Carmichael J, Maclay MH (1950) The use of chicks in evaluation of anti-tuberculous agents. J Pathol Bacteriol 62:363–370PubMedGoogle Scholar
  16. Carr DT, Karlson AG (1961) Optimal regimens of antituberculous drugs. Am Rev Respir Dis 84:90–92PubMedGoogle Scholar
  17. Demerec M (1955) Genetic basis of acquired drug resistance. Public Health Rep 70:817–821PubMedGoogle Scholar
  18. Deutsches Zentralkomitee zur Bekämpfung der Tuberkulose (1966) Empfehlungen zurMethodik und Bewertung von Resistenz-Bestimmungen bei Tuberkulose-BakterienGoogle Scholar
  19. Diczfaluzy E (1947) Action of salicylic acid derivatives. I. Investigations on the action of PAS. Ark Kemi 24B:1–8Google Scholar
  20. Domagk G (1950) Investigations on the antituberculous activity of the thiosemicarbazones in vitro and in vivo. Am Rev Tuberc 61:8–19PubMedGoogle Scholar
  21. Donovick R, Bayan A, Hamre D (1952) The reversal of the activity of antituberculous compounds in vitro. Am Rev Tuberc 66:219–227PubMedGoogle Scholar
  22. East African/British Medical Research Council Tanzania Tuberculosis Survey (1975) Tuberculosis in Tanzania: a national sampling survey of drug resistance and other factors. Tubercle 56:269–294Google Scholar
  23. East African/British Medical Research Council Second Kenya Tuberculosis Survey (1978) Tuberculosis in Kenya: a second national sampling survey of drug resistance and other factors, and a comparison with the prevalence data from the first national sampling survey. Tubercle 59:155–177Google Scholar
  24. Feldman WH, Karlson AG, Carr DT, Hinshaw HC (1949) Parenteral administration of PAS in experimental tuberculosis. Proc Staff Meet Mayo Clin 24:220–224Google Scholar
  25. Freerksen E (1954a) Wirkungsmöglichkeiten tuberkulostischer Stoffe im Makroorganis-mus. Beitr Klin Tuberk 111:17–34Google Scholar
  26. Freerksen E (1954b) Über die experimentelle Grundlagen der Kombinationstherapie. Beitr Klin Tuberk 111:574–585Google Scholar
  27. Freerksen E, Krüger-Thiemer E (1954/55) Mycobakterien in der Gewebekultur. A. Gegenwärtiger Kenntnisstand. Jahrber Borstel 3:66–93Google Scholar
  28. Furesz S (1970) Chemical and biological properties of rifampicin. Antibiot Chemother 16:316–351PubMedGoogle Scholar
  29. Gâlvez-Brandon J, Bartmann K (1969) Statistical aspects of the proportion method for determining the drug-resistance of tubercle bacilli. Scand J Respir Dis 50:1–18PubMedGoogle Scholar
  30. Gernez-Rieux C, Devulder B (1970) Comparative investigation in vitro of the sensibility of atypical mycobacteria to cycloserine and to other antibacterial substances. Scand J Respir Dis Suppl 71:22–34PubMedGoogle Scholar
  31. Gomi J, Chiba Y, Yanagisawa K (1979) A study on prevalence of resistance to primary and secondary drugs among newly admitted pulmonary tuberculosis patients in 1977. Kekkaku 54:549–555PubMedGoogle Scholar
  32. Goodacre CL, Mitchell BW, Seymour DE (1948) Para-aminosalicylic acid. Part II. The in vitro tuberculostatic behaviour of para-aminosalicylic acid and related compounds. Quart J Pharmacol 21:301–305Google Scholar
  33. Goodacre CL, Seymour DE (1949) Attempts to induce resistance to P.A.S. in strains of Mycobacterium tuberculosis. J Pharm Pharmacol 1:788–789PubMedGoogle Scholar
  34. Grosset J, Canetti G (1962) Teneur de souches sauvages de Mycobacterium tuberculosis en variants résistants aux antibiotiques mineurs (acide para-amino-salicylique, éthion-amide, cyclosérine, viomycine, kanamycine). Ann Inst Pasteur 103:163–184Google Scholar
  35. Grumbach F (1965) Etudes chimiothérapeutiques sur la tuberculose avancée de la souris. Adv Tuberc Res 14:31–96Google Scholar
  36. Hedgecock LW (1956) Antagonism of the inhibitory action of aminosalicylic acid on M. tuberculosis by methionine, biotin and certain fatty acids, amino acids, and purines. J Bacteriol 72:839–846PubMedGoogle Scholar
  37. Hedgecock LW (1958) Mechanisms involved in the resistance of Mycobacterium tuberculosis to para-aminosalicylic acid. J Bacteriol 75:345–350PubMedGoogle Scholar
  38. Hedgecock LW (1965) Comparative study of the mode of action of para-aminosalicylic acid on Mycobacterium kansasii and Mycobacterium tuberculosis. Am Rev Respir Dis 91:719–727PubMedGoogle Scholar
  39. Heilmeyer L (1950) Weitere Erfahrungen mit Streptomycin, PAS und TB I (Conteben) in der Behandlung der internen Tuberkulosen. Dtsch Med Wochenschr 75:473–477PubMedGoogle Scholar
  40. Hershfield ES, Eidus L, Hlebecque DM (1979) Canadian survey to determine the rate of drug resistance to isoniazid, PAS and streptomycin in newly detected untreated tuberculosis patients and retreatment cases. Int J Clin Pharmacol Biopharm 17:387–393PubMedGoogle Scholar
  41. Hobby GL, Johnson PM, Crawford-Gagliardi L, Boytar V, Johnson GE (1966) Primary drug resistance: a continuing study of drug resistance in tuberculosis in a veteran population within the United States. Am Rev Respir Dis 94:703–708PubMedGoogle Scholar
  42. Hobby GL, Johnson PM, Boytar-Papirnyik V (1974) Primary drug resistance: a continuing study of drug resistance in tuberculosis in a veteran population within the United States. X. September 1970 to September 1973. Am Rev Respir Dis 110:95–98PubMedGoogle Scholar
  43. Home NW (1969) Drug-resistant tuberculosis: a review of the world situation. Tubercle 50 (Suppl):2–12Google Scholar
  44. Humi H (1949a) Gibt es eine Gewöhnung an p-Amino-salicylsäure (PAS)? Experientia 5:128Google Scholar
  45. Hurni H (1949b) Über die quantitativen Verhältnisse beim Antagonismus zwischen pAminosalicylsäure (PAS) and p-Aminobenzoesäure (PABA). Schweiz Z Pathol Bakteriol 12:282–286Google Scholar
  46. Hussels H (1977) Die Häufigkeit der primären Resistenz von Tuberkulosebakterien in der Bundesrepublik Deutschland einschließlich Berlin (West) im Beobachtungszeitraum 1972 bis 1975. Prax Pneumol 31:664–670Google Scholar
  47. Hussels H, Mathiessen W, Kind A, Göbel D (1978) Frequency and epidemiology of primary drug-resistance in tuberculosis in the Federal Republic of Germany including Berlin (West). Partial result of study of the W.A.T.L. Scand J Respir Dis Suppl 79:6567Google Scholar
  48. Ichioka M, Okawa H (1962) Studies on Mycobacterium tuberculosis showing extremely high resistance to SM, PAS, and INH (in Japanese). Kekkaku 37:621–624Google Scholar
  49. Ivânovics G (1949) Antagonism between effects of p-aminosalicylic acid and salicylic acid on growth of M. tuberculosis. Proc Soc Exp Biol Med 70:462–463PubMedGoogle Scholar
  50. Ivânovics G (1950) Über die p-Aminosalicylsäure-Festigkeit von Tuberkelbakterien. Experientia 6:108–109Google Scholar
  51. Janowiec M, Zwolska-Kwiek Z, Wisniewska A, Wróblevska H (1977) Interakcja leków przeciwopratkowych. I. Skojarzone dzialanie rifampicyny s hydrazydem kwasu izonikotynowego, streptomycyna i kwasem paraaminosalicylowym na wzrost szcepów pratków gruílicy. Pneumol Pol 45:425–430Google Scholar
  52. Janowiec M, Zwolska-Kwiek Z, Bek E (1979) Drug resistance in newly discovered untreated tuberculosis patients in Poland, 1974–1977. Tubercle 60:233–237PubMedGoogle Scholar
  53. Kakemi K, Sezaki H, Kitazawa S (1967) Studies on the pharmaceutical potentiation of drugs. III. Antagonistic effect of PABA on antitubercular activities of PAS derivatives. Chem Pharm Bull (Tokyo) 15:925–931Google Scholar
  54. Kanai K, Yanagisawa K (1955) Antibacterial action of streptomycin against tubercle bacilli of various growth phase. Jpn J Med Sci Biol 8:63–76PubMedGoogle Scholar
  55. Kanai K, Okamoto S, Murohashi T (1963) The in vitro effect of antituberculous agents in relation to the exposure time on Ogawa glycerol egg medium (in Japanese). Kekkaku 38:512–516PubMedGoogle Scholar
  56. Karlson AG, Delaude A, Carr DT, Pfuetze KH, Feldman WH (1949) The occurrence of tubercle bacilli resistant to p-aminosalicylic acid (PAS). Dis Chest 16:667–675PubMedGoogle Scholar
  57. Karlson AG, Carr DT (1958) Effect of single and of double daily doses of para-aminosalicylic acid in tuberculosis of guinea pigs. Am Rev Tuberc 78:753–759Google Scholar
  58. Khalil A, Sathianathan S (1978) Impact of anti-tuberculosis legislation in Libya on the prevalence of primary and acquired resistance to the three main drugs at a major tuberculosis centre. Tubercle 59:1–12PubMedGoogle Scholar
  59. Kim SC (1971) Primary drug resistance of Mycobacterium tuberculosis isolated from untreated patients with pulmonary tuberculosis in Korea (in Japanese). Kekkaku 46:165171Google Scholar
  60. Klebanova AA (1954) Action of PAS on the tubercle bacillus (in Russian). In: Shebanov FV (ed) Therapy of tuberculous patients by PAS. Medgiz, Moscow, pp 22–33Google Scholar
  61. Kok-Jensen A, Tinning K (1969) Aspects of the tuberculosis situation in Denmark. Espe-cially chemoresistance. Scand J Respir Dis (Suppl) 69:17–20Google Scholar
  62. Kopanoff DE, Kilburn JO, Glassroth JL, Snider DE Jr, Farer LS, Good RC (1978) A continuing survey of tuberculosis primary drug resistance in the United States: March 1975 to November 1977. A United States Public Health Service cooperative study. Am Rev Respir Dis 118:835–842PubMedGoogle Scholar
  63. Krebs A (1967) The action of antituberculous drugs. Tuberkuloza (Beograd) 19:329–337 Krebs A (1968) Die Wirkungsweise der „Tuberkulostatika“. Konsequenzen für die Therapie. Z Tbk 128:208–217Google Scholar
  64. Krebs A (1969) Experimentelle Chemotherapie der Tuberkulose. Z Erkr Atmungsorgane 130:417–448Google Scholar
  65. Krebs A (1975) Mykobakterielle Resistenz und Resistenzbestimmungen. In: Meissner G, Schmiedel A, Nelles A (Hrsg) Mykobakterien und mykobakterielle Krankheiten. Teil III. Bakteriologische Grundlagen der Chemotherapie der Tuberkulose. Fischer, Jena, pp 183–250Google Scholar
  66. Krebs A, Kalich R (1964) Unpublished data; cited from Krebs A (1975) p 238Google Scholar
  67. Kreis B, Fournaud S (1965a) Les traitements antituberculeux de très courte durée chez le souris. I. Méthode d’étude et de comparison des médicaments antibacillaires. Ann Inst Pasteur 108:113–117Google Scholar
  68. Kreis B, Fournaud S (1965b) Les traitements antituberculeux de très courte durée chez la souris. II. Résultats. Ann Inst Pasteur 108:117–120Google Scholar
  69. Krüger-Thiemer E, Ringer P (1965/66) The role of the therapeutic regimen in dosage design. Chemotherapia (Basel) 10:61–73Google Scholar
  70. Kucanda F (1977) Primary drug resistance in pulmonary tuberculosis (from 1966 till 1975). Plucne Bolesni Tuberk 29:229–233Google Scholar
  71. Lauber E, Hurni H, Schmidt U, Aebi H (1962) Aufnahme und Retention von p-Aminosalicylsäure (PAS) und Benzoyl-p-aminosalicylsäure (B-PAS) durch M. tuberculosis. Z Naturforsch (B) 17:663–670Google Scholar
  72. Lauener H, Hodler J, Favez C, Dettwiler E, Hadorn L (1957) Bildung und Ausscheidung der Stoffwechselprodukte von p-Aminosalicylsäure. Klin Wochenschr 35:393–401PubMedGoogle Scholar
  73. Lehmann J (1946a) Kemoterapi av tuberkulos: p-Aminosalicylsyra (PAS) och närstâende derivats bakteriostatiska effekt pâ tuberkelbacillen jämte djurexperimentella och kliniska försök med PAS. Sven Läkartidn 43:2029–2041Google Scholar
  74. Lehmann J (1946b) Para-aminosalicylic acid in treatment of tuberculosis: preliminary communication. Lancet I:15–16Google Scholar
  75. Lehmann J (1947) Recherches sur le bacille tuberculeux: Action bactériostatique, différentiation in vivo. Rev Gen Sci Pures Appl 54:222–230Google Scholar
  76. Lehmann J (1949) On the effect of isomers of PAS and related substances on the tuberculostatic effect of PAS. Experientia 5:365–367Google Scholar
  77. Lehmann J (1969) The role of the metabolism of p-amino-salicylic acid (PAS) in the treatment of tuberculosis. Scand J Respir Dis 50:169–185PubMedGoogle Scholar
  78. Lorian V (1966) Antibiotics and chemotherapeutic agents in clinical laboratory practice. Thomas, Springfield, USAGoogle Scholar
  79. Mackaness GB (1952) The action of drugs on intracellular tubercle bacilli. J Pathol Bacteriol 64:429–436PubMedGoogle Scholar
  80. Mackaness GB, Smith N (1953) The bactericidal action of isoniazid, streptomycin, and terramycin on extracellular tubercle bacilli. Am Rev Tuberc 67:322–340PubMedGoogle Scholar
  81. Maral R, Blandin A (1950) Étude in vitro de l’action du para-amino-salicylate de sodium (P.A.S.). I. Sur la sensibilité des souches de B.K. à la streptomycine. Ann Inst Pasteur 78:681–684Google Scholar
  82. Marks J (1961) The design of sensitivity tests on tubercle bacilli. Tubercle 42:314–316PubMedGoogle Scholar
  83. Matthiessen W, Kind A, Göbel D (1977) Epidemiologie der Primärresistenz von Tuberku-losebakterien in der Bundesrepublik Deutschland einschließlich Berlin (West) im Beob-achtungszeitraum 1972 bis 1975. Prax Pneumol 31:890–899Google Scholar
  84. Mayer FL, Eisman PC, Gisi TA, Konopka EA (1958) The chemotherapeutic activity upon chromogenic mycobacteria of certain derivatives of thiocarbanilide (SU-1906), thiazoline (SU-3068), and thiazolidinone (SU-3912). Am Rev Tuberc 77:694–702PubMedGoogle Scholar
  85. Miller AB, Tall E, Fox W (1966) Primary drug resistance in pulmonary tuberculosis in Great Britain: Second national survey, 1963. Tubercle 47:92–107PubMedGoogle Scholar
  86. Mitchison DA (1970) Bacteriological mechanisms in recent controlled chemotherapy studies. Bull Inter Un Tuberc 43:322–331Google Scholar
  87. Ogawa T, Otani N (1961a) Studies on inactivation of antituberculous agents in media. 1st report: The relationship between the amount of incorporated activated carbon and inactivation of antituberculous agents (in Japanese). Kekkaku 36:32–37Google Scholar
  88. Ogawa T, Otani N (1961b) Studies on inactivation of antituberculous agents in media. 2nd report: Influence of p-aminobenzoic acid on inactivating effect of activated carbon (in Japanese). Kekkaku 36:67–72Google Scholar
  89. Pagon S, Jakssié A (1979) Auswertung der Mykobakterienbefunde, einschließlich Resistenzlage in den Jahren 1973 bis 1977. Tuberk Lungenkr No 5, pp 74–87Google Scholar
  90. Porven G, Piccolo R, Padin L (1978) Primary resistance observed in 974 strains of M. tuberculosis isolated from adult pulmonary patients (in Spanish). Medicina (B Aires) 38:497–501Google Scholar
  91. Porven GH (1980) Primary resistance observed in 974 strains of Mycobacterium tuberculosis isolated from adult lung patients. Medicina (B Aires) 40:490–492Google Scholar
  92. Protivinsky R (1971) Chemotherapeutics with tuberculostatic action. Antibiot Chemother 17:101–121PubMedGoogle Scholar
  93. Ragaz L (1948) p-Aminosalicylsäure in der Chemotherapie der Tuberkulose. Schweiz Med Wochenschr 78:1212–1232Google Scholar
  94. Rake G, Jambor WP, McKee CM, Pansy F, Wiselogle FY, Donovick R (1949) The use of the mouse in a standardized test for antituberculous activity of compounds of natural or or synthetic origin. III. The standardized test. Am Rev Tuberc 60:121–130PubMedGoogle Scholar
  95. Reutgen H (1975) p-Aminosalicylsäure. In: Meissner G, Schmiedel A, Nelles A (Hrsg) Mykobakterien und mykobakterielle Krankheiten. Teil III. Bakteriologische Grundlagen der Chemotherapie der Tuberkulose. Fischer, Jena, pp 319–336Google Scholar
  96. Rist N, Véran P, Ballet B, Grumbach F, Trichereau R (1951a) La résistance du bacille tu-berculeux à l’acide para-amino-salicylique. Sem Hôp Paris 27:1823–1830Google Scholar
  97. Rist N, Véran P, Ballet B, Grumbach F, Trichereau R (1951b) L’abaissement du risqué de résistance au PAS par l’association sulfones au PAS. Sem Hôp Paris 27:1830–1833Google Scholar
  98. Robson JM, Keele CA (1956) Recent advances in pharmacology, 2nd ed. Churchill, Lon-don, pp 266–501Google Scholar
  99. Rohan P, Rosenberg M (1950) Influence of p-aminosalicylic acid on Mycobacterium tuberculosis followed by electron microscope (in Czech). Lék listy 5:8Google Scholar
  100. Rosdahl KG (1948) Some properties and derivatives of para-aminosalicylic acid (PAS). Sven Kemi Tid 60:12–14Google Scholar
  101. Sievers O (1946) Experimental trials with p-aminosalicylic acid (PAS) against various bacteria (in Swedish). Sven Läkartidn 43:2041–2047Google Scholar
  102. Sievers O (1947) Experimentella försök med para-aminosalicylsyra (PAS) och olika slag av bakterier. Nord Med 33:145–147Google Scholar
  103. Singh B, Mitchison DA (1954) Bactericidal activity of streptomycin and isoniazid against tubercle bacilli. Br Med J 1:130–132PubMedGoogle Scholar
  104. Solomides J, Boulaud E (1949) Essai de traitement de la tuberculose expérimentale du cobaye par les formes hyperactives du PAS (para-amino-salicylate de sodium). Ann Inst Pasteur 77:310–318Google Scholar
  105. Sorkin E, Roth W, Kocher V, Erlenmeyer K (1951) Über die Wirkung von Metallionen auf die tuberkulostatische Aktivität des Oxins und der PAS. Experientia 7:257–258PubMedGoogle Scholar
  106. Standard methods in the microbiology of tuberculosis and lepra (in Czech) (1980). Institute for Hygiene and Epidemiology, PragueGoogle Scholar
  107. Steenken W Jr, Wolinsky E, Pratt PC (1951) Streptomycin and PAS in experimental tuberculosis of guinea pigs infected intracerebrally with virulent tubercle bacilli. Am Rev Tuberc 64:87–101PubMedGoogle Scholar
  108. Steiner P, Rao M, Goldberg R, Steiner M (1974) Primary drug resistance in children. Drug susceptibility of strains of M. tuberculosis isolated from children during the years 19691972 at the Kings County Hospital Medical Center at Brooklyn. Am Rev Respir Dis 110:98–100PubMedGoogle Scholar
  109. Steiner P, Rao M, Victoria MS, James P, Steiner M (1979) Primary drug resistance in children. Drug susceptibility of strains of Mycobacterium tuberculosis isolated from children during the years 1973 through 1977 at the Kings County Hospital Center of Brooklyn. Am Rev Respir Dis 119:680–682PubMedGoogle Scholar
  110. Suzuki O (1958) On the mechanism of the bacteriostatic activity of p-aminosalicylic acid (in Japanese). Med Biol (Tokyo) 47:173–176Google Scholar
  111. Swedberg B, Widström G (1948) Treatment of experimental tuberculosis in mice and guinea pigs with PAS and streptomycin. Acta Med Scand 131:116–128PubMedGoogle Scholar
  112. Szybalski W, Bryson V (1953) One step resistance development to isoniazid and sodiump-aminosalicylate. J Bacteriol 66:468–469PubMedGoogle Scholar
  113. Szybalski W (1954) Genetic studies on microbial cross resistance to toxic agents. IV. Cross resistance of Bacillus megaterium to forty-four antimicrobial drugs. Appl Microbiol 2:57–63PubMedGoogle Scholar
  114. Tobie WC, Jones Al (1949) Para-aminosalicylic acid in the metabolism of bacteria. J Bacteriol 57:573Google Scholar
  115. Toman K (1979) Tuberculosis. Case-finding and chemotherapy. WHO, Geneva, p 240Google Scholar
  116. Tsukamura M (1961) Variation and heredity of mycobacteria with special reference to drug resistance. Jpn J Tuberc 9:43–64PubMedGoogle Scholar
  117. Tsukamura M (1977) Cross-resistance of tubercle bacilli (a review II). Kekkaku 52:47–49PubMedGoogle Scholar
  118. Tsukamura M, Miura K, Noda Y (1956a) On the mutation to streptomycin resistance and isoniazid resistance in PAS-resistant Mycobacterium tuberculosis var. hominis. J Anti-biot (Tokyo) 9A:210–217Google Scholar
  119. Tsukamura M, Noda Y, Miura K (1956b) A quantitative analysis of the resistance of Mycobacterium tuberculosis to streptomycin, isoniazid and PAS (in Japanese). Kekkaku 31:107–110Google Scholar
  120. Tsukamura M, Noda Y, Yamamoto M (1959a) Studies on the kanamycin resistance in Mycobacterium tuberculosis. V. Sensitivity of kanamycin resistant mutants to various antituberculous drugs and mutation frequency to various drug resistance in kanamycin-resistant mutants. J Antibiot (Tokyo) A 12:323–327Google Scholar
  121. Tsukamura M, Noda Y, Yamamoto M, Hayashi M (1959b) Genetic considerations of the mechanisms involved in PAS-resistant tubercle bacilli. Am Rev Tuberc 79:371–373Google Scholar
  122. Tsukamura M, Noda Y, Yamamoto M, Hayashi M (1959c) A genetic study on the PAS-resistance-system of Mycobacterium tuberculosis. Jpn J Genet 34:43–54Google Scholar
  123. Tsukamura M, Mizuno S (1980) A comparative study of the relationship between the growth rate of tubercle bacilli and the concentration of antituberculous agents (in Japanese). Kekkaku 55:365–370PubMedGoogle Scholar
  124. Velluti G (1967) Observations on the acquired resistance of Mycobacterium tuberculosis to ethambutol. Riv Patol Clin Tuberc 40:815–822Google Scholar
  125. Vennesland K, Ebert RH, Bloch RG (1948) In vitro effect of streptomycin and para-aminoalicylic acid (PAS) on the growth of tubercle bacilli. Proc Soc Exp Biol Med 68:250–255PubMedGoogle Scholar
  126. Véran P, Rist N, Ballet B, Grumbach F, Trichereau R (1951) La résistance du bacille de Koch à l’acide paraamino-salicylique (PAS) au cours de la tuberculose pulmonaire cavitaire. Rev Tuberc 15:87–92PubMedGoogle Scholar
  127. Wacker A (1956a) Wirkungsmechanismus der Sulfonamide und anderer Chemotherapeutika: Untersuchungen mit radioaktiv markierten Verbindungen. Pharmazie 11:562–563Google Scholar
  128. Wacker A (1956b) Ursachen der Bakterienresistenz: Untersuchungen mit radioaktiv markierten Verbindungen. Angew Chem 68:388–389Google Scholar
  129. Waksman SA, Lechevalier HA (1953) Sensitivity of actinomycetales to isonicotinic acid hydrazide, compared to other synthetic and antibiotic antituberculosis agents. Am Rev Tuberc 67:261–264PubMedGoogle Scholar
  130. Walter A (1950) Die tuberkulostatische Wirksamkeit verschiedener PAS-Präparate in vitro. Dtsch Med Wochenschr 75:587PubMedGoogle Scholar
  131. Way EL, Smith PK, Howie DL, Weiss R, Swanson R (1948) The absorption, distribution, excretion and fate of para-aminosalicylic acid. J Pharmacol Exp Ther 93:368–382PubMedGoogle Scholar
  132. Winder F (1964) The antibacterial action of streptomycin, isoniazid and PAS. In: Barry VC (ed) Chemotherapy of tuberculosis. Butterworths, London, pp 111–149Google Scholar
  133. Wolinsky E, Smith MM, Steenken W Jr (1957) Drug susceptibilities of 20 “atypical” as compared with 19 selected strains of mycobacteria. Am Rev Tuberc Pulm Dis 76:497–502Google Scholar
  134. Wyss O, Rubin M, Strandskov FB (1943) Biological action of substituted p-aminobenzoic acids. Proc Soc Exp Biol Med 52:155–164Google Scholar
  135. Yashchenko TN (1954) PAS in therapy of experimental tuberculosis (in Russian). In: Shebanov FV (ed) Therapy of tuberculous patients with PAS. Medgiz, Moscow, pp 3448Google Scholar
  136. Yegian D, Vanderlinde RJ (1950) The resistance of tubercle bacilli to chemotherapeutic agents. A review of basic biological considerations. Am Rev Tuberc 61:483–507Google Scholar
  137. Yegian D, Long RT (1951) The specific resistance of tubercle bacilli to para-aminosalicylic acid and sulfonamides. J Bacteriol 61:747–749PubMedGoogle Scholar
  138. Youmans GP (1946) The effect of para-aminosalicylic acid in vitro and in vivo on virulent human type bacilli. Bull Northwestern Un Med School 20:420–428Google Scholar
  139. Youmans GP, Raleigh GW, Youmans AS (1947a) The tuberculostatic action of para-aminosalicylic acid. J Bacteriol 54:409–416Google Scholar
  140. Youmans GP, Raleigh GW (1947b) The effect of para-aminosalicylic acid on tubercle bacilli. J Bacteriol 54:65–66Google Scholar
  141. Youmans GP, Youmans AS (1951) The assessment of antituberculous chemotherapeutic activity in mice, using virulent human-type tubercle bacilli. Am Rev Tuberc 64:541–550PubMedGoogle Scholar
  142. Zeyer J, Humi H, Fischer R, Lauber E, Schönholzer G, Aebi H (1960) Versuche mit verschieden 14C-markierter Benzoyl-PAS in Kulturen von M. tuberculosis. Z Naturforsch 15b:694–701Google Scholar

References

  1. Abraham EP, Duthie ES (1946) Effect of pH of the medium on activity of streptomycin and penicillin. Lancet I:455–459Google Scholar
  2. Adair CV, Drobeck B, Bunn PA (1951) Use of rabbit eye as a tissue to study tuberculosis. II. Effect of certain antituberculous agents upon ocular tuberculosis. Am Rev Tuberc 64:207–217PubMedGoogle Scholar
  3. Alberghina M, Nicoletti G, Torrisi A (1973) Genetic determinants of aminoglycoside resistance in strains of Mycobacterium tuberculosis. Chemotherapy 19:148–160PubMedGoogle Scholar
  4. American Trudeau Society (1951) Current status of antimicrobial therapy in tuberculosis. Report of clinical subcommittee of committee on medical research and therapy. Am Rev Tuberc 63:617–623Google Scholar
  5. Bacos JM, Smith DT (1953) The effect of corticotropin (ACTH), dihydrostreptomycin, and corticotropin-dihydrostreptomycin on experimental bovine tuberculosis in the rabbit. Am Rev Tuberc 67:201–208PubMedGoogle Scholar
  6. Bartmann K (1960a) Langfristige Einwirkung von Isonicotinsäurehydrazid und Streptomycin auf ruhende Tuberkelbakterien in vitro. Beitr Klin Tuberk 122:94–113Google Scholar
  7. Bartmann K (1960b) Tierexperimentelle Untersuchungen zu einer intermittierenden Chemotherapie und -prophylaxe der Tuberkulose. X. Mitteilung. Der Erfolg kontinuierlicher und intermittierender Gaben von INH und der Kombination INH-Streptomycin bei der Tuberkulose der Maus. Beitr Klin Tuberk 122:251–264Google Scholar
  8. Bartmann K, Abel U, Hart R (1966) Die Abhängigkeit des Hemmtiters von der Bebrütungsdauer bei der Bestimmung der Resistenz von M. tuberculosis gegen Antituberkulotika auf Löwenstein-Jensen Medium. Zentralbl Bakteriol Mikrobiol Hyg (A) 201:538–548Google Scholar
  9. Beeuwkes H, Vos H (1952) Résistance des bacilles tuberculeux a la streptomycine. Poumon 6:25–39Google Scholar
  10. Beggs WH, Andrews FA (1971) Protection of Mycobacterium smegmatis from ethambutol and streptomycin inhibition by MgSO4 and polyamines. Infect Immun 3:496–497PubMedGoogle Scholar
  11. Beggs WH, Andrews FA (1975a) Nonspecificity in the divalent cation antagonism of dihydrostreptomycin action on Mycobacterium smegmatis. Res Comm Chem Pathol Pharmacol 10:185–188Google Scholar
  12. Beggs WH, Andrews FA (1975b) Inhibition of dihydrostreptomycin action on Mycobacterium smegmatis by monovalent and divalent cation salts. Antimicrob Agents Chemother 7:636–639Google Scholar
  13. Beggs WH, Williams NE (1971) Streptomycin uptake by Mycobacterium tuberculosis. Appl. Microb. 21:751–770.Google Scholar
  14. Benda R, Urquia DA (1950) Essai de mesure rapide de la streptomycino-résistance. Rev Tuberc 14:343–347PubMedGoogle Scholar
  15. Berkman S, Henry RJ, Housewright RD (1947) Studies on streptomycin. I. Factors influencing the activity of streptomycin. J Bacteriol 53:567–574Google Scholar
  16. Bernard E, Kreis B (1948) Action d’un traitement streptomycinique immédiat, mais de courte durée, sur la tuberculose expérimentale du cobaye. Rev Tuberc 12:348–354Google Scholar
  17. Bernard E, Kreis B (1951) Bases expérimentales de la streptomycino-thérapie en injections spacées (tous le deux ou trois jours). Bull Acad Nat Med 135:492–496PubMedGoogle Scholar
  18. Bernard E, Kreis B, Lutier H (1954) Recherche expérimentale pour le pouvoir bactéricide des agents antibacillaires. Rev Tuberc 18:1010–1014Google Scholar
  19. Berthrong M, Hamilton MA (1958) Tissue culture studies on resistance in tuberculosis. I. Normal guinea pig monocytes with tubercle bacilli of different virulence. Am Rev Tuberc Puim Dis 77:436–449Google Scholar
  20. Bloch RG, Gomori G, Sperry-Braude M (1948) The effect of iron on experimental tuberculosis. Am Rev Tuberc 58:671–674PubMedGoogle Scholar
  21. Bloch RG, Vennesland K, Ebert RH, Gomori G (1949) The effect of streptomycin, paraaminosalicylic acid (PAS) and their combination on the tubercle bacillus in vitro and in vivo. Am Rev Tuberc 59:554–561PubMedGoogle Scholar
  22. Bee J, Vogelsang TM (1946) The sensitivity of BCG to streptomycin. Acta Tuberc Scand 20:158–163Google Scholar
  23. Bondi A, Dietz CC, Spaulding EH (1946) Interference with the antibacterial action of streptomycin by reducing agents. Science 103:399–401Google Scholar
  24. Bonventre PF, Imhoff JG (1970) Uptake of 311-dihydrostreptomycin by macrophages in culture. Infect Immun 2.89–95PubMedGoogle Scholar
  25. Brownlee G, Kennedy CR (1948) The chemotherapeutic action of streptomycin, sulphe-trone, and promin in experimental tuberculosis. Br J Pharmacol 3:37–43Google Scholar
  26. Buraczewska M (1952) Wplyw streptomycyny na grúzlice doswiadczalnaswinek morskich przy rbznym sposobie dawkowania i stosowania. Gruzlica 20:171–184PubMedGoogle Scholar
  27. Burjanovâ B, Dornetzhuber V (1975) Empfindlichkeit der Stämme des M. kansasii auf verschiedene Antibiotika und Chemotherapeutika in vitro und in vivo. Z Erkr Atmungsorgane 142:68–77PubMedGoogle Scholar
  28. Callomon FT, Kolmer JA, Rule AM, Paul AJ (1946) Streptomycin and diasone in the treatment of experimental tuberculosis of guinea pigs. Proc Soc Exp Biol Med 63:237–240PubMedGoogle Scholar
  29. Canetti G (1959) Modifications des populations des foyers tuberculeux au cours de la chimiothérapie antibacillaire. Ann Inst Pasteur 97:53–79Google Scholar
  30. Canetti G, Rist N, Grosset J (1963) Mesure de la sensibilité du bacille tuberculeux aux drogues antibacillaires par la méthode des proportions. Méthodologie, critères de résistance, résultats, interprétation. Rev Tuberc 27:217–272Google Scholar
  31. Canetti G, Fox W, Khomenko A, Mahler HT, Menon NK, Mitchison DA, Rist N,Smelev NA (1969) Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull WHO 41:21–43Google Scholar
  32. Carmichael J, Maclay MH (1950) The use of chicks in the evaluation of anti-tuberculous agents. J Pathol Bacteriol 62:363–370PubMedGoogle Scholar
  33. Cavallito CJ (1946) Relationship of thiol structures to reaction with antibiotics. J Biol Chem 164:29–34PubMedGoogle Scholar
  34. Cohn ML, Middlebrook G, Russell WF (1959) Prevention of emergence of mutant populations of tubercle bacilli resistant to both streptomycin and isoniazid in vitro. J Clin Invest 38:1349–1355PubMedGoogle Scholar
  35. Coletsos PJ (1963) Données actuelles sur l’évaluation précise de la résistance du bacille de la tuberculose aux antibiotiques spécifiques. Poumon 19:109–127Google Scholar
  36. Corper HJ, Cohn ML (1946) The tubercle bacillus and fundamental chemotherapeutic and antibiotic action. Yale J Biol Med 19:1–22PubMedGoogle Scholar
  37. Crowle AJ, Sbarbaro A, Judson FN, Douvas GS, May MH (1984) Inhibition by streptomycin of tubercle bacilli within cultured human macrophages. Am Rev Respir Dis 130:839–844PubMedGoogle Scholar
  38. Cummings MM, Hudgins PC, Whorton MC, Sheldon WH (1952) The influence of cortisone and streptomycin on experimental tuberculosis in the albino rat. Am Rev Tuberc 65:596–602PubMedGoogle Scholar
  39. Denkelwater RG, Cook MA, Tishler M (1945) The effect of cysteine on streptomycin and streptothricin. Science 102:12PubMedGoogle Scholar
  40. Deutsches Zentralkomitee zur Bekämpfung der Tuberkulose (1966) Empfehlungen zur Methodik and Bewertung von Resistenz-Bestimmungen bei Tuberkulose-BakterienGoogle Scholar
  41. Dickinson JM, Mitchison DA (1966) Short-term intermittent chemotherapy of experimen-tal tuberculosis in the guinea pig. Tubercle 47:381–393Google Scholar
  42. Dickinson JM (1968) In vitro and in vivo studies to assess the suitability of anti-tubercu-losis drugs for use on intermittent chemotherapy regimens. Tubercle 49 (Suppl):60–70Google Scholar
  43. Dickinson JM, Aber VR, Mitchison DA (1977) Bactericidal activity of streptomycin, iso-niazid, rifampin, ethambutol, and pyrazinamide alone and in combination against My-cobacterium tuberculosis. Am Rev Resp Dis 116:627–635PubMedGoogle Scholar
  44. Divatia KJ, Gardner G, Dufrenoy J, Pratt R (1951) Antagonism between streptomycin and para-aminosalicylic acid. Experientia 7:141–142Google Scholar
  45. Doane EA, Bogen E (1951) Streptomycin-dependent tubercle bacilli. Am Rev Tuberc 64:192–196PubMedGoogle Scholar
  46. Donovick R, Bayan AP, Canales P, Pansy F (1948) The influence of certain substances on the activity of streptomycin. III. Differential effects of various electrolytes on the action of streptomycin. J Bacteriol 56:125–137Google Scholar
  47. Dunner E, Brown WB, Wallace J (1949) Effects of streptomycin with para-aminosalicylic acid on emergence of resistant strains of tubercle bacilli. Dis Chest 16:661PubMedGoogle Scholar
  48. Edison AO, Frost BM, Graessle OE, Hawkins JE Jr, Kuna S, Mushett CW, Silber RH, Solotorovsky M (1948) An experimental evaluation of dihydrostreptomycin. Am Rev Tuberc 58:487–493PubMedGoogle Scholar
  49. Ekzemplyarow ON (1966) Effect of tetracycline, chloramphenicol, monomycin, and streptomycin on S. typhimurium after phagocytosis by macrophages. Fed Proc (Suppl):T309–T312Google Scholar
  50. Feldman WH, Hinshaw HC (1944) Effects of streptomycin on experimental tuberculosis in guinea pigs: a preliminary report. Proc Staff Meet Mayo Clin 19:593–599Google Scholar
  51. Feldman WH, Hinshaw HC, Mann FC (1945) Streptomycin in experimental tuberculosis. Am Rev Tuberc 52:269–298Google Scholar
  52. Feldman WH, Hinshaw HC (1947) Streptomycin in experimental tuberculosis. In vivo sensitivity to streptomycin of recently isolated strains of human tubercle bacilli and strains of bovine tubercle bacilli. Am Rev Tuberc 55:428–434Google Scholar
  53. Feldman WH, Hinshaw HC, Karlson AG (1947a) Frequency of administration of streptomycin. Its influence on results of treatment of tuberculosis in guinea pigs. Am Rev Tuberc 55:435–443Google Scholar
  54. Feldman WH, Karlson AG, Hinshaw HC (1947b) Streptomycin in experimental tuberculosis. The effects in guinea pigs following infection by intravenous inoculation. Am Rev Tuberc 56:346–359Google Scholar
  55. Feldman WH, Karlson AG, Hinshaw CH (1948a) Streptomycin-resistant tubercle bacilli. Effects of resistance on therapeutic results in tuberculous guinea pigs. Am Rev Tuberc 57:162–174Google Scholar
  56. Feldman WH, Karlson AG, Hinshaw HC (1948b) Dihydrostreptomycin: its effect on experimental tuberculosis. Am Rev Tuberc 58:494–500Google Scholar
  57. Feldman WH, Karlson AG (1949) Streptomycin in experimental tuberculosis. In: Waksman SA (ed) Streptomycin. Nature and practical applications. Williams and Wilkins, Baltimore, pp 133–157Google Scholar
  58. Fisher MW (1948a) Streptomycin resistant tubercle bacilli. Their development during streptomycin therapy of pulmonary tuberculosis. Am Rev Tuberc 57:53–57Google Scholar
  59. Fisher MW (1948b) Sensitivity of tubercle bacilli to streptomycin. An in vitro study of some factors affecting results in various test media. Am Rev Tuberc 57:58–62Google Scholar
  60. Freerksen E (1954) Über die experimentellen Grundlagen der Kombinationstherapie. Beitr Klin Tuberk 111:574–585Google Scholar
  61. Gâlvez-Brandon J, Bartmann K (1969) Statistical aspects of the proportion method for de-termining the drug-resistance of tubercle bacilli. Scand J Resp Dis 50:1–18Google Scholar
  62. Garrod LW (1950) The nature of the action of streptomycin on tubercle bacilli. Am Rev Tuberc 62:582–585PubMedGoogle Scholar
  63. Geiger WB, Green SR, Waksman SA (1946) The inactivation of streptomycin and its practical application. Proc Soc Exp Biol Med 61:187–192PubMedGoogle Scholar
  64. Goodman S, Gilman A (1965) The pharmacological basis of therapeutics, 3rd edn. Macmillan, New YorkGoogle Scholar
  65. Graessle OE, Pietrowski JJ (1949) The in vitro effect of para-aminosalicylic acid (PAS) in preventing acquired resistance to streptomycin by Mycobacterium tuberculosis. J Bacteriol 57:459–464Google Scholar
  66. Green SR, Waksman SA (1948) Effect of glucose, peptone, and salts on streptomycin activity. Proc Soc Exp Biol Med 67:281–285PubMedGoogle Scholar
  67. Grumbach F, Canetti G, Grosset J (1964) Further experiments on long-term chemotherapy of advanced murine tuberculosis with emphasis on intermittent regimes. Tubercle (Lond) 45:125–135Google Scholar
  68. Grumbach F (1965) Etudes chimiothérapeutiques sur la tuberculose avancée de la souris. Progr Explor Tuberc 14:31–96Google Scholar
  69. Hamilton MA, Geever EF (1952) The use of potassium iodide in combination with streptomycin in the treatment of experimental tuberculosis in guinea pigs. Am Rev Tuberc 66:680–698PubMedGoogle Scholar
  70. Hejnÿ J (1982) A drug sensitivity test strategy for atypical mycobacteria. Tubercle 63:63–69PubMedGoogle Scholar
  71. Henry J, Henry RJ, Housewright RD, Berkman S (1947) On the mode of action of streptomycin. J Bacteriol 54:9–10PubMedGoogle Scholar
  72. Henry RJ, Hobby GL (1949) The mode of action of streptomycin. In: Waksman SA (ed) Streptomycin. Nature and practical applications. Williams and Wilkins, Baltimore, pp 197–218Google Scholar
  73. Hobby GL, Dougherty N (1948) Isolation of streptomycin-resistant organism capable of utilizing streptomycin for growth. Proc Soc Exp Biol Med 69:544–548PubMedGoogle Scholar
  74. Hobby G, Regna P, Lenert T (1949) The chemotherapeutic action of streptomycin para- aminosalicylate in experimental tuberculosis in mice. Am Rev Tuberc 60:808–810PubMedGoogle Scholar
  75. Hobby GL, Lenert TF (1953) The control of experimental mouse tuberculosis by the intermittent administration of streptomycin, viomycin, isoniazid, and streptomycylidene isonicotinyl hydrazine. Am Rev Tuberc 68:292–294PubMedGoogle Scholar
  76. Hok TT, Seng TK (1964) A comparative study of the susceptibility to streptomycin, cycloserine, viomycin, and kanamycin of tubercle bacilli from 100 patients never treated with cycloserine, viomycin, or kanamycin. Am Rev Resp Dis 90:961–962PubMedGoogle Scholar
  77. Howlett KS Jr, O’Connor JB, Sadusk JF Jr, Swift WE Jr, Beardsley FA (1949) Sensitivity of tubercle bacilli to streptomycin. The influence of various factors upon the emergence of resistant strains. Am Rev Tuberc 59:402–414PubMedGoogle Scholar
  78. Hsie JY, Bryson V (1950) Genetic studies on the development of resistance to neomycin and dihydrostreptomycin in Mycobacterium ranae. Am Rev Tuberc 62:286–299PubMedGoogle Scholar
  79. Hurwitz C, Miller JB (1950) Effect of Triton A-20 and pH value on the streptomycin sensitivity of a resistant strain of M. tuberculosis. Am Rev Tuberc 62:91–98PubMedGoogle Scholar
  80. Hurwitz C (1951) The enhancement of growth of dihydrostreptomycin-resistant strains of tubercle bacilli by dihydrostreptomycin, a function of initial pH value of the medium. Am Rev Tuberc 63:568–578PubMedGoogle Scholar
  81. James LA, Sides LJ, Dye WE, Deyke VF (1951) Intermittent streptomycin regimens. An analysis of ninety-seven patients with pulmonary tuberculosis treated with one or two grams of streptomycin every third day. Am Rev Tuberc 63:275–294PubMedGoogle Scholar
  82. Jones WD Jr, Beam RE, David HL (1974) Transduction of a streptomycin R-factor from Mycobacterium smegmatis to Mycobacterium tuberculosis H37Rv. Tubercle 55:73–80PubMedGoogle Scholar
  83. Kanai K, Yanagisawa K (1955) Antibacterial action of streptomycin against tubercle bacilli of various growth phase. Jap J med Sci Biol. 8:63–76.PubMedGoogle Scholar
  84. Karlson AG, Feldman WH (1948) The subeffective dose of streptomycin in experimental tuberculosis of guinea pigs. Am Rev Tuberc 58:129–133PubMedGoogle Scholar
  85. Karlson AG, Gainer JH, Feldman WH (1950) The effect of dihydrostreptomycin-paraaminosalicylate (DHS-PAS) on experimental tuberculosis in guinea pigs. Am Rev Tuberc 62:149–155PubMedGoogle Scholar
  86. Kitamoto O, Rist N (1951) Sur le méchanisme d’action de l’association P.A.S.-streptomycine (étude bactériologique in vitro). Rev Tuberc 15:950–957PubMedGoogle Scholar
  87. Kolmer JA (1951) Sulfone compounds and potassium iodide alone and in combination with streptomycin in the treatment of experimental tuberculosis of guinea pigs. Am Rev Tuberc 64:102–112PubMedGoogle Scholar
  88. Koníckovâ-Radochovâ M, Malek I (1968) The mutagenic effect of hydroxylamine on Mycobacterium phlei strain PA. Fol Microbiol 13:226–230Google Scholar
  89. Koseki Y, Okamoto S (1963) Studies on cross-resistance between capreomycin and certain other anti-mycobacterial agents. Jpn J Med Sci Biol 16:31–38PubMedGoogle Scholar
  90. Krebs A, Käppler W, Ferreira OT (1962) Beitrag zur Behebung von Unstimmigkeiten bei der Resistenzbestimmung von Tuberkelbakterien gegenüber Streptomycin. Beitr Klin Tuberk 126:84–97Google Scholar
  91. Krebs A (1967) The action of antituberculous drugs. Tuberkuloza 19:328–337PubMedGoogle Scholar
  92. Krebs A (1968) Die Wirkungsweise der „Tuberkulostatika“. Konsequenzen für die Therapie. Z Tbk 128:208–217Google Scholar
  93. Krebs A (1969) Experimentelle Chemotherapie der Tuberkulose. Z Erkr Atmungsorg 130:417–448Google Scholar
  94. Krebs A (1975) Mykobakterielle Resistenz und Resistenzbestimmungen. In: Meissner G, Schmiedel A, Nelles A (Hrsg) Mykobakterien und mykobakterielle Krankheiten. III. Bakteriologische Grundlagen der Chemotherapie der Tuberkulose. Fischer, Jena, pp 183–250Google Scholar
  95. Krebs A, Kalich R (1964) Unpublished data; cited from Krebs A (1975) p 238Google Scholar
  96. Kuze F, Takeda S, Maekawa N (1977a) Sensitivities of atypical mycobacteria to various drugs. III. Sensitivities of M. intracellulare to antituberculous drugs in triple combina-tion. Kekkaku 52:331–338Google Scholar
  97. Kuze F, Naito Y, Takeda S, Maekawa N (1977b) Sensitivities of atypical mycobacteria to various drugs. IV. Sensitivities of atypical mycobacteria originally isolated in the USA to antituberculous drugs in triple combinations (in Japanese). Kekkaku 52:505–513Google Scholar
  98. Lee HF, Stavitsky AB (1947) Intravenous infection of the chick embryo with tubercle bacilli Inhibitory effects of streptomycin. Am Rev Tuberc 55:262–280PubMedGoogle Scholar
  99. Lenert TF, Hobby GL (1947) Observations on the action of streptomycin in vitro. (I). Proc Soc Exp Biol Med 65:235–242PubMedGoogle Scholar
  100. Lenert TF, Hobby GL (1949) Streptomycin-dependent strains of Mycobacterium tuberculosis. Am Rev Tuberc 59:219–220PubMedGoogle Scholar
  101. Levaditi C, Vaisman A (1950) Effets antituberculeux exercés par la streptomycine chez les souris contaminées par les souches de bacille acido-résistants H.512, BCG et 607. Ann Inst Pasteur 78:407–411Google Scholar
  102. Levaditi C, Vaisman A, Chaigneau H, Henry-Eveno J (1950) Effets antituberculeux du pamino-salicylate de streptomycine. Ann Inst Pasteur 79:886–890Google Scholar
  103. Linz R (1954) La multiplication de Mycobacterium tuberculosis en présence de streptomycine. Ann Inst Pasteur 86:334–337Google Scholar
  104. Lorian V (1966) Antibiotics and chemotherapeutic agents in clinical and laboratory practice. Thomas, SpringfieldGoogle Scholar
  105. Lucchesi M (1970) The antimycobacterial activity of capreomycin. Antibiot Chemother 16:27–31PubMedGoogle Scholar
  106. Mackaness GB, Smith N (1953) The bactericidal action of isoniazid, streptomycin, and terramycin on extracellular and intracellular tubercle bacilli. Am Rev Tuberc 67:322–340PubMedGoogle Scholar
  107. Manten A (1957) Antimicrobial susceptibility and some other properties of photochromogenic mycobacteria associated with pulmonary disease. Antonie Van Leeuwenhoek 23:357–363PubMedGoogle Scholar
  108. McClatchy JK, Kanes W, Davidson PT, Moulding TS (1977) Cross-resistance in M. tuberculosis to kanamycin, capreomycin and viomycin. Tubercle 58:29–34PubMedGoogle Scholar
  109. McClosky WT, Smith MI, Frias JEG (1948) The action of p-aminosalicylic acid (PAS) in experimental tuberculosis. J Pharmacol 92:447–453Google Scholar
  110. McCune RM, Tompsett R (1956) Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J Exp Med 104:737–742PubMedGoogle Scholar
  111. Meissner G (1953) Zur Frage der Virulenz chemo-resistenter Tuberkelbakterien. I. Ein Fall mit Doppelresistenz gegen Streptomycin and Isoniazid. Beitr Klin Tuberk 110:219–226Google Scholar
  112. Middlebrook G, Yegian D (1946) Certain effects of streptomycin on mycobacteria in vitro. Am Rev Tuberc 54:553–558PubMedGoogle Scholar
  113. Middlebrook G (1952) Sterilization of tubercle bacilli by isonicotinic acid hydrazide and the incidence of variants resistant to the drug in vitro. Am Rev Tuberc 65:765–767PubMedGoogle Scholar
  114. Mitchison DA (1951) The segregation of streptomycin-resistant variants of Mycobacterium tuberculosis into groups with characteristic levels of resistance. J Gen Microbiol 5:596–604PubMedGoogle Scholar
  115. Mitchison DA (1953) The ecology of tubercle bacilli resistant to streptomycin and isoniazid. 3rd Symp Soc Gen Microbiol, LondonGoogle Scholar
  116. Modr Z, Hermanskÿ M, Vlcek V (1969) Antibiotics and their drug forms (in Czech). SZN PrahaGoogle Scholar
  117. Mordasini ER, Eulenberger J (1971) Tuberkulostatika. Teil 2. Spezifische Chemotherapeutika. Int J Clin Pharmacol 5:70–95Google Scholar
  118. Murray R, Finland M (1948) Effect of pH on streptomycin activity. Am J Clin Pathol 18:247–252PubMedGoogle Scholar
  119. Neubert R (1976) Sensibilitätsprüfungen von Mykobakterien gegenüber INH, SM, EMB and RMP im halbflüssigen Serum-Sauton-Agar. Z Erkr Atmungsorgane 144:63–68PubMedGoogle Scholar
  120. Owen CR, Adcock J, Stow RM, Staudt LW, Devey WN (1950) Susceptible, resistant, and dependent tubercle bacilli isolated from patients treated with streptomycin. Am Rev Tuberc 61:705–718PubMedGoogle Scholar
  121. Paine TF, Finland M (1948a) Streptomycin-sensitive, -dependent, and -resistant bacteria. Science 107:143–144Google Scholar
  122. Paine TF Jr, Finland M (1948b) Observations on bacteria sensitive to, resistant to, and dependent upon streptomycin. J Bacteriol 56:207–218Google Scholar
  123. Pavlov EP (1970) Some factors influencing the activity of streptomycin, kanamycin and isoniazid with respect to intracellularly seated Myco. tuberculosis (in Russian). Probl Tuberk 48, issue 9:72–76PubMedGoogle Scholar
  124. Pyle MM (1947) Relative numbers of resistant tubercle bacilli in sputa of patients before and during treatment with streptomycin. Proc Staff Meet Mayo Clin 22:465–475Google Scholar
  125. Rabukhin AE (1970) Chemotherapy of tuberculosis (in Russian). Medicina, Moscow Rake G, Pansy FE, Jambor WP, Donovick R (1948) Further studies on the dihydrostrep-tomycins. Am Rev Tuberc 58:479–486Google Scholar
  126. Rake G, Donovick R (1949) Tuberculostatic activity of aureomycin in vitro and in vivo. Am Rev Tuberc 60:143Google Scholar
  127. Russell WF, Middlebrook G (1961) Chemotherapy of tuberculosis. Thomas, SpringfieldGoogle Scholar
  128. Savarino S (1949) Action of streptomycin in vitro with p-aminosalicylic acid against tubercle bacilli. Minerva Med 2:19–20Google Scholar
  129. Schatz A, Bugie E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against gram positive and gram negative bacteria. Proc Soc Exp Biol Med 55:66–69Google Scholar
  130. Schatz A, Waksman SA (1944) Effect of streptomycin and other antibiotic substances upon Mycobacterium tuberculosis and related organisms. Proc Soc Exp Biol Med 57:244–248Google Scholar
  131. Schoenbach EB, Chandler CA (1947) Activity of streptomycin in presence of serum and whole blood. Proc Soc Exp Biol Med 66:493–500PubMedGoogle Scholar
  132. Seligmann E, Wassermann M (1947) Induced resistance to streptomycin. J Immunol 57:351–360PubMedGoogle Scholar
  133. Simon RD (1948) Antagonization of the antibacterial action of neoarsphenamine, penicillin and streptomycin by - SH compounds. Br J Exp Pathol 29:202–215PubMedGoogle Scholar
  134. Smith MI, McClosky WT (1945) The chemotherapeutic action of streptomycin and promin in experimental tuberculosis. Public Health Rep 60:1129–1138Google Scholar
  135. Smith MI, McClosky WT, Emmart EW (1946) Influence of streptomycin and promin on proliferation of tubercle bacilli in the tissue of albino rat. Proc Soc Exp Biol Med 62:157–162PubMedGoogle Scholar
  136. Smith DG, Waksman SA (1947) Tuberculostatic and tuberculocidal properties of streptomycin. J Bacteriol 54:253–261Google Scholar
  137. Smith MI, McClosky WT, Jackson EL (1947a) Studies in chemotherapy of tuberculosis. VIII. The comparative action of four sulfones in experimental tuberculosis in guinea pigs and the combined action of streptomycin with one of the sulfones. Am Rev Tuberc 55:366–373Google Scholar
  138. Smith MI, McClosky WT, Jackson EL, Bauer H (1947b) Chemotherapeutic action of streptomycin and of streptomycin with a sulfone or sulfadiazine on tuberculosis. Proc Soc Exp Biol Med 64:261–269Google Scholar
  139. Smith MI, Emmart EW, McClosky WT (1948) Streptomycin in experimental guinea pig tuberculosis. Am Rev Tuberc 58:112–122PubMedGoogle Scholar
  140. Solotorovsky M, Siegel H, Bugie EJ, Gregory FJ (1949) The evaluation of antituberculous agents with avian tuberculosis in chicks: a comparison of dihydrostreptomycin and streptomycin. Am Rev Tuberc 60:366–376PubMedGoogle Scholar
  141. Spendlove GA, Cummings MM, Fackler WB, Michael M (1948) Enhancement of growth of a strain of M. tuberculosis (var. hominis) by streptomycin. Public Health Rep 63:1177–1179PubMedGoogle Scholar
  142. Stakemann G (1954) Undersegelser over de streptomycinresistente tubercelbacteriers oprindelse. Dansk Videnskabs Forlag, KobenhavnGoogle Scholar
  143. Standard methods in the microbiology of tuberculosis and lepra (1980) (in Czech). Institute for Hygiene and Epidemiology, PragueGoogle Scholar
  144. Steenken W Jr, Wolinsky E (1947) Streptomycin in experimental tuberculosis. I. Its effect upon a well-established progressive tuberculous infection in guinea pigs. Am Rev Tuberc 56:227–240PubMedGoogle Scholar
  145. Steenken W Jr, Wolinsky E (1948) Streptomycin in experimental tuberculosis. II. Response in guinea pigs infected with strains of varying degrees of streptomycin resistance. Am Rev Tuberc 58:353–362PubMedGoogle Scholar
  146. Steenken W Jr (1949) Streptomycin and the tubercle bacillus. In: Riggins HM, Hinshaw HC (eds) Streptomycin and dihydrostreptomycin in tuberculosis. National Tuberculosis Association, pp 39–57Google Scholar
  147. Steenken W Jr, Pratt PC (1949) Streptomycin in experimental tuberculosis. III. Effect on the pathogenesis of early tuberculosis in the guinea pig infected with streptomycin-sensitive H37Rv tubercle bacilli. Am Rev Tuberc 59:664–673PubMedGoogle Scholar
  148. Steenken W, Wolinsky E, Reginster A, Pratt P (1949) La streptomycine et le bacille tuberculeux. Rev Belge Pathol Med Exp 19:225–227Google Scholar
  149. Steenken W Jr, Wolinsky E, Pratt PC (1951) Streptomycin and PAS in experimental tuberculosis of guinea pigs infected intracerebrally with virulent tubercle bacilli. Am Rev Tuberc 64:87–101PubMedGoogle Scholar
  150. Steenken W Jr, Wolinsky E, Pratt PC, Smith MM (1952) Streptomycin in guinea pigs with discrete chronic tuberculous lesions. Am Rev Tuberc 66:194–212PubMedGoogle Scholar
  151. Steenken W Jr, Wolinsky E, Bristol Li, Costigan WJ (1953) Use of the rabbit in experimental tuberculosis. I. A visual method of evaluation of antituberculous agents by serial chest roentgenograms. Am Rev Tuberc 68:65–74PubMedGoogle Scholar
  152. Steenken W Jr, Smith MM, Montalbine V (1958) In vitro and in vivo effect of antimicrobial agents on atypical mycobacteria. Am Rev Tuberc 78:454–461PubMedGoogle Scholar
  153. Steenken W Jr, Montalbine V, Thurston JR (1959) The antituberculous activity of kanamycin in vitro and in the experimental animal (guinea pig). Am Rev Tuberc Pulm Dis 79:66–71Google Scholar
  154. Suter E (1952) Multiplication of tubercle bacilli within phagocytes cultivated in vitro, and effect of streptomycin and isonicotinic acid hydrazide. Am Rev Tuberc 65:775–776PubMedGoogle Scholar
  155. Swedberg B, Widström G (1948) Treatment of experimental tuberculosis in mice and guinea pigs with para-aminosalicylic acid (PAS) and streptomycin. Acta Med Scand 131:116–128PubMedGoogle Scholar
  156. Tison F (1949) Repartition des bacilles plus ou moins résistant à la streptomycine selon les organes et le type de lésion dans la tuberculose expérimentale du cobaye: action des traitements par l’antibiotique. Ann Inst Pasteur 77:767–769Google Scholar
  157. Toril F, Yamamoto M, Hayashi M, Noda Y, Tsukamura M (1959) Studies on the kanamycin-resistance of Mycobacterium tuberculosis. II. Kanamycin-sensitivity of various drug-resistant strains. J Antibiot (Tokyo) Ser Al2:103–104Google Scholar
  158. Tsang AY, Bentz RR, Schork MA, Sodeman TM (1978) Combined vs. single-drug studies on susceptibilities of Mycobacterium kansasii to isoniazid, streptomycin, and ethambutol. Am J Clin Pathol 70:816–820PubMedGoogle Scholar
  159. Tsukamura M, Noda Y, Miura K (1956) A quantitative analysis of the resistance of Mycobacterium tuberculosis to streptomycin, isoniazid and PAS (in Japanese). Kekkaku 31:107–110, 116–117Google Scholar
  160. Tsukamura M, Noda Y, Yamamoto M (1959) Studies on the kanamycin resistance in Mycobacterium tuberculosis. V. Sensitivity of kanamycin resistant mutants to various antituberculous drugs and mutation frequency to various drug resistance in kanamycin-resistant mutants. J Antibiot (Tokyo) Ser A 12:323–327Google Scholar
  161. Tsukamura M (1961) Variation and heredity of mycobacteria with special reference to drug resistance. Jpn J Tuberc 9:43–64PubMedGoogle Scholar
  162. Tsukamura M, Mizuno S (1980) A comparative study of the relationship between the growth rate of tubercle bacilli and the concentration of antituberculous agents (in Japanese). Kekkaku 55:365–370PubMedGoogle Scholar
  163. Urbanczik R (1982) Medikamentöse Therapie der Lungentuberkulose. In: Hein J, Ferlinz R (Hrsg) Lungentuberkulose, Pathogenese, Klinik, Therapie und Epidemiologie. vol 2, P. 8.1–8.65. Thieme, Stuttgart New YorkGoogle Scholar
  164. Ushiba D, Hsu Y, Fukazawa T (1957) Spontaneity of the gradual increase of streptomycin resistance in Mycobacterium 607. Am Rev Tuberc 75:841–842PubMedGoogle Scholar
  165. Vanderlinde RJ, Yegian D (1951) The pathogenicity of streptomycin-dependent tubercle bacilli. Am Rev Tuberc 63:96–99PubMedGoogle Scholar
  166. Vennesland K, Ebert RH, Bloch RG (1947) The demonstration of naturally-occurring streptomycin-resistant variants in the human strain of tubercle bacillus H37Rv. Science 106:476–477PubMedGoogle Scholar
  167. Vennesland K, Ebert RH, Bloch RG (1948) In vitro effect of streptomycin and para-aminosalicylic acid (PAS) on the growth of tubercle bacilli. Proc Soc Exp Biol Med 68:250255Google Scholar
  168. Vennesland K, Altona J, Bloch RG (1950) Comparative in vitro response of tubercle bacillus (H37Rv) to dihydrostreptomycin, para-aminosalicylic acid, and dihydrostreptomycin-para-aminosalicylate. Proc Soc Exp Biol Med 75:436–438PubMedGoogle Scholar
  169. Waksman SA, Schatz A (1945) Streptomycin-origin, nature and properties. J Am Pharm Ass 34:273–280Google Scholar
  170. Williston EH, Youmans GP (1947) Streptomycin resistant strains of tubercle bacilli. Pro-duction of streptomycin resistance in vitro. Am Rev Tuberc 55:536–539PubMedGoogle Scholar
  171. Williston EH, Youmans GP (1949) Factors affecting the sensitivity in vitro of tubercle ba-cilli to streptomycin. Am Rev Tuberc 59:336–352PubMedGoogle Scholar
  172. Wittmann HG, Apirion D (1975) Analysis of ribosomal proteins in streptomycin resistant and dependent mutants isolated from streptomycin independent Escherichia-coli strain. MGG 141:343–356Google Scholar
  173. Wolinsky E, Steenken W Jr (1947) Effect of streptomycin on the tubercle bacillus. The use of Dubos’ and other media in tests for streptomycin sensitivity. Am Rev Tuberc 55:281–288PubMedGoogle Scholar
  174. Wolinsky E, Reginster A, Steenken W Jr (1948) Drug-resistant tubercle bacilli in patients under treatment with streptomycin. Am Rev Tuberc 58:335–343PubMedGoogle Scholar
  175. Wolinsky E, Smith MM, Steenken W Jr (1957) Drug susceptibilities of 20 “atypical” as compared with 19 selected strains of mycobacteria. Am Rev Resp Dis 76:497–502Google Scholar
  176. Wood LE, Buhler VB, Pollak A (1956) Human infection with the “yellow” acid-fast bacil-lus. Am Rev Tuberc 73:917–929PubMedGoogle Scholar
  177. Yegian D, Budd V (1948) A variant of Mycobacterium ranae requiring streptomycin for growth. J Bacteriol 55:459–461Google Scholar
  178. Yegian D, Vanderlinde RJ (1948) A quantitative analysis of the resistance of mycobacteria to streptomycin. J Bacteriol 56:177–186Google Scholar
  179. Yegian D, Budd V, Vanderlinde RJ (1949) Streptomycin-dependent tubercle bacilli: a simple method for isolation. J Bacteriol 58:257–259Google Scholar
  180. Yegian D, Vanderlinde RJ (1949) The biological characteristics of streptomycin-dependent Mycobacterium ranae. J Bacteriol 57:169–178PubMedGoogle Scholar
  181. Yegian D, Vanderlinde RJ (1950) The resistance of tubercle bacilli to chemotherapeutic agents. Am Rev Tuberc 61:483–507Google Scholar
  182. Yegian D, Budd V (1951) Heterogeneous character of streptomycin-dependent mutants of a Mycobacterium. J Bacteriol 61:161–165PubMedGoogle Scholar
  183. Youmans GP, McCarter JC (1945) Streptomycin in experimental tuberculosis. Am Rev Tuberc 52:432–439PubMedGoogle Scholar
  184. Youmans GP, Williston EH (1946) Effect of streptomycin on experimental infections produced in mice with streptomycin resistant strains of M. tuberculosis var. hominis. Proc Soc Exp Biol Med 63:131–134PubMedGoogle Scholar
  185. Youmans GP, Karlson AG (1947) Streptomycin sensitivity of tubercle bacilli. Studies on recently isolated tubercle bacilli and the development of resistance to streptomycin in vivo. Am Rev Tuberc 55:529–535PubMedGoogle Scholar
  186. Youmans GP, Williston EH (1948) Streptomycin-resistant variants obtained from recently isolated cultures of tubercle bacilli. Proc Soc Exp Biol Med 68:458–460PubMedGoogle Scholar
  187. Youmans GP (1949) Some bacteriological aspects of streptomycin therapy in tuberculosis. In: Riggins HM, Hinshaw HC (eds) Streptomycin and dihydrostreptomycin in tuberculosis. National Tuberculosis Association, p 58–73Google Scholar
  188. Youmans GP, Fisher MW (1949) Action of streptomycin on microorganisms in vitro. In: Waksman SA (ed) Streptomycin. Nature and practical applications. Williams and Wilkins, Baltimore, pp 91–111Google Scholar
  189. Youmans GP, Williston EH, Osborne RR (1949) Occurrence of streptomycin-resistant tubercle bacilli in mice treated with streptomycin. Proc Soc Exp Biol Med 70:36–37PubMedGoogle Scholar
  190. Youmans GP, Youmans AS (1951) The effect of viomycin in vitro and in vivo on Myco-bacterium tuberculosis. Am Rev Tuberc 63:25–29PubMedGoogle Scholar
  191. Zimelis VM, Jackson GG (1973) Activities of aminoglycoside antibiotics against Pseudomonas aeruginosa: specificity and site of calcium and magnesium antagonism. J Infect Dis 127:663–669PubMedGoogle Scholar

References

  1. Afanasijeva JP, Mkrtchjan SV (1969) Criteria of M. tuberculosis resistance to thiacetazone and of cross resistance to ethionamide (in Russian). Probl Tuberk 47, issue 3:66–69Google Scholar
  2. Arita T (1956) Change of thiosemicarbazone in vivo. II. Colorimetric determination of thiosemicarbazone in urine and its excretion. III. Decomposition products of thiacetazone excreted in urine. IV. Decomposition of thiacetazone in the intestinal tract. J Pharm Soc Jpn 76:984–996Google Scholar
  3. Barnett M, Bushby SRM, Dickinson JM, Mitchison DA (1963) The response to treatment with thiacetazone of guinea pigs and mice infected with tubercle bacilli obtained from untreated African patients. Tubercle 44:417–430PubMedGoogle Scholar
  4. Bartmann K (1954a) Die Bildung gegen Conteben hochresistenter Varianten als stammes-spezifische Eigenschaft bei Mycobact. tuberc. var. horn, Z Túberk 104:305–311Google Scholar
  5. Bartmann K (1954b) Die wachstumshemmende Wirkung verschiedener Tuberkulostatika und ihrer Kombinationen in vitro. Tuberkulosearzt 8:276–282Google Scholar
  6. Bartmann K (1960) Kreuzresistenz zwischen a-Äthylthioisonicotinamid (1314 Th) und Thiosemicarbazon (Conteben). Tuberkulosearzt 14:525–529PubMedGoogle Scholar
  7. Bartmann K (1974) Antimikrobielle Chemotherapie. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  8. Bartmann K, Abel U, Hart R (1966) Die Abhängigkeit des Hemmtiters von der Bebrütungsdauer bei der Bestimmung der Resistenz von M. tuberculosis gegen Antituberkulotika auf Löwenstein-Jensen Medium. Z Bakteriol Mikrobiol Hyg (A) 201:538–548Google Scholar
  9. Bavin EM, Rees RJW, Robson JM, Seiler M, Seymour DE, Suddaly D (1950) The tuber-culostatic activity of some thiosemicarbazones. J Pharm Pharmacol Lond 2:764–771Google Scholar
  10. Behnisch R, Mietzsch F, Schmidt H (1950) Chemical studies on thiosemicarbazones with particular reference to antituberculous activity. Am Rev Tuberc 61:1–7PubMedGoogle Scholar
  11. Bekierkunst A (1968) Tubercle bacilli grown in vivo. Ann N Y Acad Sci 154:79–87PubMedGoogle Scholar
  12. Burjanovâ B, Urbanczik R (1970) Experimental chemotherapy of mycobacterioses provoked by atypical mycobacteria. Adv Tub Res 17:154–188Google Scholar
  13. Canetti G, Fox W, Khomenko A, Mahler HT, Menon NK, Mitchison DA, Rist N, Smelev NA (1969) Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull WHO 41:21–43PubMedGoogle Scholar
  14. Chicou FJ, Hétrick G, Huet M, Radenac H, Rist N (1968) Essai comparatif de deux types de traitement oral de la tuberculose pulmonaire (éthionamide + isoniazide, thiacetazone + isoniazide). Bull WHO 39:731–769PubMedGoogle Scholar
  15. Childress WG, Norman JW, Ott RH, Spain DM (1952) Observations on the effect of amithiozone (Tibione) in selected tuberculous pulmonary lesion. Am Rev Tuberc 65:692–708PubMedGoogle Scholar
  16. Croshaw B, Dickinson L (1950) Experimental tuberculosis and its chemotherapy. Br J Pharmacol 5:178–187Google Scholar
  17. Davis JD, Netzer S, Schwartz JA, Pattison EH (1950) Tibione: laboratory and clinical studies. Dis Chest 18:521–522PubMedGoogle Scholar
  18. Dickinson JM, Mitchison DA (1966) In vitro studies on the choice of drugs for intermittent chemotherapy of tuberculosis. Tubercle 47:370–380Google Scholar
  19. Dickinson JM (1968) In vitro and in vivo studies to assess the suitability of antituberculous drugs for use in intermittent chemotherapy regimens. Tubercle 49 (Suppl):66–70PubMedGoogle Scholar
  20. Domagk G, Behnisch R, Mietzsch F, Schmidt H (1946) Liber eine neue, gegen Tuberkel-bakterien in vitro wirksame Verbindungsklasse. Naturwiss 33:315Google Scholar
  21. Domagk G (1949) Die experimentellen Grundlagen einer Chemotherapie der Tuberkulose. Beitr Klin Tuberk 101:365–394Google Scholar
  22. Domagk G (1950) Chemotherapie der Tuberkulose mit Thiosemikarbazonen. Thieme, StuttgartGoogle Scholar
  23. Domagk G (1950) Investigations of the antituberculous activity of the thiosemicarbazones in vitro and in vivo. Am Rev Tuberc 61:8–19PubMedGoogle Scholar
  24. Donovick R, Bernstein J (1949) On the action of thiosemicarbazone in experimental tuberculosis in the mouse. Am Rev Tuberc 60:539Google Scholar
  25. Donovick R, Pansy F, Stryker G, Bernstein J (1950) The chemotherapy of experimental tuberculosis. I. The in vitro activity of thiosemicarbazides, thiosemicarbazones and related compounds. J Bacteriol 59:667–674PubMedGoogle Scholar
  26. Eule H, Werner E (1967) Die Resistenz des Mycobacterium tuberculosis gegen Ethionamid, Thiosemicarbazon und Isoxyl und ihre Beziehungen zueinander. Beitr Klin Tuberk 134:247–258Google Scholar
  27. Francis J, Spinks A, Stewart GA (1950) The toxic and antituberculous effect of two thiosemicarbazones in dogs, monkeys and guinea pigs. Brit J Pharmacol 5:549–564PubMedGoogle Scholar
  28. Geks FJ, Wolf J (1950) Experimentelle und klinische Untersuchungen mit Conteben. Dtsch Med Wochenschr 75:1293–1295PubMedGoogle Scholar
  29. Grosset J, Rodrigues F, Benhassine M, Chaulet P, Larbaoui D (1968) Sensitivity to thiacetazone of strains of Mycobacterium tuberculosis isolated in Algiers: practical deductions. Tubercle 49 (Suppl):46–48PubMedGoogle Scholar
  30. Grosset J, Benhassine M (1970) La thiacetazone (TB1) donnée expérimentales et cliniques récentes. Adv Tub Res 17:107–153Google Scholar
  31. Grumbach F (1965) Etudes chimiothérapiques sur la tuberculose avancée de la souris. Adv Tub Res 14:31–96Google Scholar
  32. Hamre D, Bernstein J, Donovick R (1950) The chemotherapy of experimental tuberculosis. II. Thiosemicarbazones and analogues in experimental tuberculosis in the mouse. J Bacteriol 59:675–680PubMedGoogle Scholar
  33. Hejnÿ J (1978) Mycobacteriological aspects of the treatment of mycobacterioses. I. In vitro studies (in Czech). Stud Pneumol Phtiseol Cechoslovac 38:579–583Google Scholar
  34. Hejnÿ J (1979) The bacteriological aspect of the treatment of mycobacterial diseases with non-specific antibiotics and with sulphonamides. Bull Int Union Tuberc 54:342–343Google Scholar
  35. Hofmann P, Nickel L (1950) Über die Resistenz von Tuberkelbakterien und den antibakteriellen Blutspiegel bei Lungentuberkulösen während der Behandlung mit Conteben, PAS und Streptomycin. Tuberkulosearzt 4:695–702PubMedGoogle Scholar
  36. Hoggarth E, Martin AR, Storey NE, Young EHP (1949) Studies on the chemotherapy of tuberculosis. Part V. Thiosemicarbazones and related compounds. Br J Pharmacol 4:248–253Google Scholar
  37. Hoggarth E, Martin AR (1951) Studies on the chemotherapy of tuberculosis. Part VII. The oxidation and reduction products of thiosemicarbazones. Br J Pharmacol 6:454–458Google Scholar
  38. Hurni H (1949) Die tuberkulostatische Wirkung von Kombinationen einiger bekannter Chemotherapeutica. Schweiz Z Path Bakter 12:596–601Google Scholar
  39. Karlson AG, Gainer JH, Feldman WH (1950) The therapeutic effect on experimental tuberculosis in guinea pigs of 4-acetylamino-benzaldehyde thiosemicarbazone (TB I) alone and in combination with streptomycin. Proc Mayo Clin 25:160–164.Google Scholar
  40. Klapp A (1956) Contebengehalt gesunder und kranker Meerschweinchenorgane. Ein Beitrag zur Frage der Contebenwirkung. Beitr Klin Tuberk 115:135–144Google Scholar
  41. Kuze F, Lee Y, Maekawa N, Suzuki Y (1979) A study on experimental mycobacterioses provoked by atypical mycobacteria. Combined antituberculous chemotherapy against conventional mice infected intravenously with M. intracellulare (in Japanese). Kekkaku 54:453–460PubMedGoogle Scholar
  42. Levaditi C (1949) Effets curatifs du thiosémicarbazone (Tb I) dans la tuberculose expérimentale de la souris. Presse Med 57:519PubMedGoogle Scholar
  43. Maltuche H (1952) Die Thiosemicarbazon-Therapie der Tuberkulose. Fortschr Tbk Forsch 5:152–254Google Scholar
  44. Meissner G (1955) Häufigkeit der Resistenz für Conteben und deren Bedeutung für das Auftreten der Resistenz für Isoxyl (4–4’-Diisoamyloxythiocarbanilid) bei Tuberkelbakterien. Prax Pneumol 19:387–395Google Scholar
  45. Mitchison DA, Lloyd J (1964) Comparison of the sensitivity to thiacetazone of tubercle bacilli from patients in Britain, East Africa, South India and Hong Kong. Tubercle 45:360–369PubMedGoogle Scholar
  46. Mitchison DA (1971) The principles of intermittent chemotherapy (in Czech). Stud Pneu-mol Phtiseol Cechoslovac 31:288–296Google Scholar
  47. Moeschlin S, Demiral B (1950) Vergleich der Kombinationstherapie von Streptomycin mit TB 1 (Thiosemicarbazon) oder PAS (Paraaminosalicylsäure) sowie zwei neuen PAS-Derivaten bei der experimentellen Tuberkulose. Schweiz Med Wochenschr 80:373–374PubMedGoogle Scholar
  48. Molloy M, Hill I, Kott ThJ (1951) Sensitivity of tubercle bacilli to amithiozone (myvizone). Am Rev Tuberc 63:487–489Google Scholar
  49. Ohsato T, Tsukagoshi K, Shimizu H (1970) Studies on thiacetazone resistance of tubercle bacilli. Part I. Thiacetazone sensitivity of tubercle bacilli isolated from previously untreated tuberculous children (in Japanese). Kekkaku 46:65–70Google Scholar
  50. Ohsato T, Tsukagoshi K, Shimizu H (1971) Studies on thiacetazone resistance of tubercle bacilli. Part II. The relation between virulence in guinea pigs and thiacetazone sensitivity of tubercle bacilli isolated from previously untreated tuberculous children (in Japanese). Kekkaku 46:83–87Google Scholar
  51. Raleigh GW, Youmans GP (1948a) The use of mice in experimental chemotherapy of tuberculosis. I. Rationale and review of literature. J Infect Dis 82:197–204Google Scholar
  52. Raleigh GW, Youmans GP (1948b) The use of mice in experimental chemotherapy of tuberculosis. II. Pathology and pathogenesis. J Infect Dis 82:205–209Google Scholar
  53. Rao KP, Nair SS, Naghanathan N, Rao R (1966) An in vitro study on sensitivity of tubercle bacilli to thiacetazone (TB1). Ind J Tuberc 13:147–157Google Scholar
  54. Rees RJW, Robson JM (1951) The activity of thiosemicarbazones alone and in combina-tion with other drugs in experimental corneal tuberculosis. Br J Pharmacol 6:83–88Google Scholar
  55. Rist N (1968) Thiacetazone sensitivity and resistance: introductory remarks. Tubercle 49, suppl: 36Google Scholar
  56. Rist N, Cals S, Jullien W (1951) Aspect variés de la sensibilité du bacille tuberculeux à la para-acétylbenzaldehydethiosemicarbazone (Tb1) en milieu de Youmans. Ann Inst Pasteur 81:324–328Google Scholar
  57. Rist N, Grumbach F, Libermann D, Moyeux M, Cals S, Clavel S (1958) Un noveau médicament antituberculeux actif sur les bacilles isoniazido-résistants: le thioamide de l’acide alpha-ethylisonicotinic. Rev Tuberc 22:278–283PubMedGoogle Scholar
  58. Rist N, Grumbach F, Libermann D (1959) Experiments on the antituberculous activity of alpha-ethyl-thioisonicotinamide. Am Rev Tuberc Pulm Dis 79:1–5Google Scholar
  59. Rolle M, Mayr A (1951) Die Veränderungen der Tuberkelbakterien nach Einwirkung von Streptomycin und TB I/698. Arch Hyg Bakt 134:23–32Google Scholar
  60. Russell M, Bush D, Hurwitz C (1950) Studies on methods for determining sensitivities of tubercle bacilli to Tibione. Am Rev Tuberc 62:638–644PubMedGoogle Scholar
  61. Ruzicka O, Orth E (1950) An Tuberkelbakterien elektronoptisch dargestellte Wirkung von Thiosemicarbazonen (TB I, TB VI). Wien Med Wochenschr 100:95–102Google Scholar
  62. Shephard CC (1957) Use of HeLa cells infected with tubercle bacilli for the study of anti-tuberculous drugs. J Bacteriol 73:494–498Google Scholar
  63. Sojkovâ M, Tousek J, Trnka L (1965) Zur Frage der Kreuzresistenz zwischen Äthionamid, Thiosemikarbazonen und Thioharnstoffderivaten. Prax Pneumol 19:522–527PubMedGoogle Scholar
  64. Spain DM, Childress WG, Fishier JS (1950) The effect of 4-acetylaminobenzal thiosemicarbazone (Tibione) on experimental tuberculosis in guinea pigs. Am Rev Tuberc 62:144–148PubMedGoogle Scholar
  65. Spain DM, Childress WG (1951) The therapeutic effect on experimental tuberculosis in guinea pigs of 4-acetylaminobenzal thiosemicarbazone (Tibione) in combination with dihydrostreptomycin as compared with the effect of para-aminosalicylic acid in combination with dihydrostreptomycin. Am Rev Tuberc 63:339–345PubMedGoogle Scholar
  66. Steenken W Jr, Smith MM, Montalbine V (1958) In vitro and in vivo effect of antimicrobial agents in atypical mycobacteria. Am Rev Tuberc 78:454–461PubMedGoogle Scholar
  67. Steinbach MM, Baker H (1950) p-Anisaldehyde-thiosemicarbazone in treatment of experimental murine tuberculosis. Proc Soc Exp Biol Med 74:595–596PubMedGoogle Scholar
  68. Thomas KL, Joseph S, Subbaiah TV, Selkon JB (1961) Identification of tubercle bacilli from Indian patients with pulmonary tuberculosis. Bull WHO 25:747–758PubMedGoogle Scholar
  69. Trnka L, Havel A, Urbana R (1966) Neueste Tuberkulostatika, ihre Bedeutung und Möglichkeiten der Wertbestimmung im Reagenzglas. Chemotherapia 11:121–134Google Scholar
  70. Ulstrup JC (1950) Treatment of experimental tuberculosis of guinea pigs by a combination of PAS and TB 1/698. Acta Pathol Microbiol Scand 27:487–491PubMedGoogle Scholar
  71. Wagner WH, Vonderbank H (1951) Zur Wirkungsweise von 4-Acetylbenzaldehydthiosemicarbazon, Streptomycin und p-Aminosalicylsäure bei Tuberkelbakterien. Arb Paul Ehrlich Inst 49:98–109Google Scholar

References

  1. Bartmann K (1963) Orientierende Untersuchungen über Morphazinamid. G Ital Chemioter 10:158–160PubMedGoogle Scholar
  2. Bartmann K (1966) Discussion remark. Bull Int Union Tuberc XXXVII:215Google Scholar
  3. Basilico F (1959) Attività antitubercolare della pirazinamide nella monocito-coltura. Atti Soc Lombarda Sci Med-Biol 14:430–433Google Scholar
  4. Batten J (1968) Experimental chemotherapy of tuberculosis. Br Med J 3:75–82PubMedGoogle Scholar
  5. Bertoni Z, Brega A (1965) Effect of pyrazinamide and morpholine-methyl-pyrazinamide on the intracellular multiplication of tubercle bacilli in monocytes. Clin Medicine 72:1006–1012Google Scholar
  6. Blasi A (1963) Experimental “in vivo” results on the antimycobacterial activity of morphazinamide (in Italian). G Ital Chemioter 10:51–55PubMedGoogle Scholar
  7. Bönicke R (1963) Der ursächliche Zusammenhang zwischen der tuberkulostatischen Wirk- samkeit des Morphazinamids und seiner Instabilität. G Ital Chemioter 10:190–195Google Scholar
  8. Bonati F, Bertoni L (1962) Basic derivatives of pyrazino-2-carboxylic acid possessing antimycobacterial activity. Microbiological and pharmacological study. Min Med 53:1704–1708Google Scholar
  9. Brander E (1972) A simple way of detecting pyrazinamide resistance. Tubercle 53:128–131PubMedGoogle Scholar
  10. Butler WR, Kilburn JO (1982) Improved method for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Clin Microbiol 16:1106–1109PubMedGoogle Scholar
  11. Canetti G, Rist N, Grosset J (1963) Mesure de la sensibilité du bacille tuberculeux aux drogues antibacillaires par la méthode des proportions. Rev Tuberc Pneumol 27:217–272Google Scholar
  12. Canetti G, Fox W, Khomenko A, Mahler HT, Menon NK, Mitchison DA, Rist N, Smelev NA (1969) Advances in technique of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculous control programmes. Bull WHO 41:21–43PubMedGoogle Scholar
  13. Carlone NA, Acocella G, Cuffini AM, Forno-Pizzoglio M (1985) Killing of macrophage-ingested mycobacteria by rifampicin, pyrazinamide, and pyrazinoic acid alone and in combination. Am Rev Respir Dis 132:1274–1277PubMedGoogle Scholar
  14. Carrada Bravo T, Ellard GA, Mitchison DA, Horsfall PAL (1975) Reappraisal of the activity of morphazinamide against M. tuberculosis. Tubercle 56:211–217Google Scholar
  15. Casalone G, Ganzetti G, Mangiarotti S, Rimoldi R (1962) Ricerche sperimentali e cliniche sull’attività antitubercolare della N-(morfolino-4-metil)-amide dell’acido pirazincarbonico. Minerva Med 53:1709–1711PubMedGoogle Scholar
  16. Castelli D, Vercellino E, Vercellino A (1966) The role of formaldehyde in the antimicrobial action of morphazinamide in vitro (in Italian). G Ital Mal Torace 20:261–267PubMedGoogle Scholar
  17. Castorina S, Battaglia B, Di Stefano L (1964) La morfazinamide nella tubercolosi speri-mentale delle cavie. G Med Tisiol 13:69–82Google Scholar
  18. Catena A, Aliperta A, Rocco V (1963) Il focolaio da inoculazione in cavie in trattamento con morfazinamide. (Infezioni con ceppi sensibili e resistenti ai chemioantibiotici). Arch Tisiol Mal App Resp (Sez Sci) 18:366–377Google Scholar
  19. Chorine MV (1945) Action de l’amide nicotinique sur les bacilles du genre Mycobacterium. C R Acad Sci 220:150–156Google Scholar
  20. Citron KM (1975) Problems of drug resistance in pulmonary tuberculosis. Abstracts of World Medicine 38:1–11Google Scholar
  21. Cocciante B, Miglio M, Mori G, Piazza R (1962) Prime osservazioni cliniche e rilievi sperimentali sull’impiego della Piazofolina nei processi tubercolari. Minerva Med 53:1711–1718Google Scholar
  22. D’Alfonso G, Bariffi F, Giuliano V (1962) Indagini sperimentali sull’attività antitubercolare della morfazinamide. Arch Tisiol 17:919–928Google Scholar
  23. De Kantor IN (1985) Discussion remark. Bull Int Union Tuberc 60:66Google Scholar
  24. Dessau FI, Yeager RL, Burger FJ, Williams JH (1952) Pyrazinamide (Aldinamide) in experimental tuberculosis of the guinea pig. Am Rev Tuberc 65:519–522PubMedGoogle Scholar
  25. Dickinson JM, Mitchison DA (1970) Observations in vitro on the suitability of pyrazin-amide for intermittent chemotherapy of tuberculosis. Tubercle 51:389–396PubMedGoogle Scholar
  26. Dissmann E (1963) Erfahrungen mit Morphazinamid (MZA) (in Italian). G Ital Chemioter 10:161–163PubMedGoogle Scholar
  27. Drabkina RD, Ginzburg TS (1971) Tuberculostatic activity of the 2nd line drugs (in Russian). Probl Tuberk 49 issue 8:67–81PubMedGoogle Scholar
  28. Felder E, Pitrè D, Tiepolo U (1962) N-morpholinometilpirazinamide: caratteristiche chimio-fisiche e determinazione nei liquidi biologici. Minerva Med 53:1699–1704PubMedGoogle Scholar
  29. Felder E, Pitrè D, Tiepolo V (1964) Hydrolyse und Bildung von Morpholinomethylpyra-zinamid. Arzneimittelforsch 14:1227–1230PubMedGoogle Scholar
  30. Freerksen E, Bönicke R, Rosenfeld M (1963) Vergleichende Untersuchungen zur tuberkulostatischen Aktivität von N-morpholino-methyl-pyrazinamid und Pyrazin-2-carboxamid (Pyrazinamid) in vitro und in vivo. Arzneimittelforsch 13:722–724PubMedGoogle Scholar
  31. Grumbach F (1958) Activité antituberculeuse expérimentale du pyrazinamide (P.Z.A.). Ann Inst Pasteur 94:694–708Google Scholar
  32. Grumbach F (1965) Etudes chimiothérapiques sur la tuberculose avancée de la souris. Adv Tuberc Res 14:31–96Google Scholar
  33. Havel A, Trnka L, Kuska J (1964) Comparison of antituberculous effects of morphazinamide and pyrazinamide in chronic experimental tuberculosis. II. The emergence of resistance and its retardation in the course of treatment by single drugs and by combination of antituberculous drugs. Chemotherapia (Basel) 9:168–175Google Scholar
  34. Takschik M (1985) Discussion remark. Bull Int Union Tuberc 60:66Google Scholar
  35. Kalich R, Gerloff W, Neubert R, Ulber U (1978) Resistenzbestimmung von Mykobakte-rien gegenüber Pyrazinamid and Nikotinamid. Z Erkr Atmungsorgane 151:102–112Google Scholar
  36. Konno K, Feldmann FM, McDermott W (1967) Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 15:461–469Google Scholar
  37. Krebs A (1969) Experimentelle Chemotherapie der Tuberkulose. Z Erkr Atmungsorgane 130:417–448Google Scholar
  38. Kreis B, Fournaud S (1965) Les traitements antituberculeux de très courte durée chez la souris. II. résultats. Ann Inst Pasteur 108:117–121Google Scholar
  39. Kushner S, Dalalian H, Sanjurjo JL, Bach FL Jr, Safir SR, Smith VK Jr, Williams JH (1952) Experimental chemotherapy of tuberculosis. II. The synthesis of pyrazinamide and related compounds. J Am Chem Soc 74:3617–3621Google Scholar
  40. Lucchesi M (1963) Ricerche sperimentali sull’azione antitubercolare della morfazinamide. G Ital Chemioter 10:58–64PubMedGoogle Scholar
  41. Mackaness GB (1956) The intracellular activation of pyrazinamide and nicotinamide. Am Rev Tuberc Pulm Dis 74:718–728Google Scholar
  42. Malone L, Schurr A, Lindh H, McKenzie D, Kiser JS, Williams JH (1952) The effect of pyrazinamide (Aldinamide) on experimental tuberculosis in mice. Am Rev Tuberc 65:511–518PubMedGoogle Scholar
  43. McClatchy J, Tsang AY, Cernich M (1981) Use of pyrazinamidase activity in Mycobacterium tuberculosis as a rapid method for determination of pyrazinamide susceptibility. Antimicrob Agents Chemother 20:556–557PubMedGoogle Scholar
  44. McCune RM Jr, Tompsett R (1956) Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J Exp Med 104:737–762PubMedGoogle Scholar
  45. McCune RM Jr, Tompsett R, McDermott W (1956) The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med 104:763–802PubMedGoogle Scholar
  46. McDermott W, Tompsett R (1954) Activation of pyrazinamide and nicotinamide in acidic environments in vitro. Am Rev Tuberc 70:748–754PubMedGoogle Scholar
  47. McKenzie D, Malone L, Kushner S, Oleson JJ, SubbaRow Y (1948) The effect of nicotinic acid on experimental tuberculosis of white mice. J Lab Clin Med 33:1249–1253PubMedGoogle Scholar
  48. Mulargia A, Piccaluga A (1964) Contributo sperimentale e clinico sull’attività antituberco-lare della morfazinamide. G Pneumol 8:156–166Google Scholar
  49. Novak M, Kràtkÿ J, Feitovà F (1970) Assessment of the sensitivity and resistance of M. tuberculosis to pyrazinamide (in Czech.). Stud pneumol phtiseol cechoslovac 30:22–28Google Scholar
  50. Perry CR, Morse WC (1955) The pyrazinamide susceptibility of isoniazid-resistant mutants of tubercle bacilli. Am Rev Tuberc Pulm Dis 72:840–842Google Scholar
  51. Rist N (1962) Le pyrazinamide. Rev Tuberc Pneumol (Paris) 26:752–754Google Scholar
  52. Rist N (1964) Nature and development of resistance of tubercle bacilli to chemotherapeutic agents. In: Barry VC (ed) Chemotherapy of tuberculosis. Butterworth, London, p 199Google Scholar
  53. Solotorovsky M, Gregory FJ, Ironson EJ, Bugie EJ, O’Neill RC, Pfister K (1952) Pyrazinoic acid amide — an agent active against experimental murine tuberculosis. Proc Soc exp Biol 79:563–569PubMedGoogle Scholar
  54. Soloviev VN, Pavlov EP (1966) Significance of intracellular medium for antimycobacterial activity of some pyrazin-2-carbonic acid derivates. Chemotherapia 11:345–354Google Scholar
  55. Steenken W Jr, Wolinsky E (1954) The antituberculous activity of pyrazinamide in vitro and in the guinea pig. Am Rev Tuberc 70:367–369PubMedGoogle Scholar
  56. Steenken W Jr, Wolinsky E, Smith MM, Montalbine V (1957) Further observations on pyrazinamide alone and in combination with other drugs in experimental tuberculosis. Am Rev Tuberc Pulm Dis 76:643–659Google Scholar
  57. Stottmeier KD, Beam RE, Kubica GP (1967) Determination of drug susceptibility of Mycobacteria to pyrazinamide in 7H10 agar. Am Rev Respir Dis 96:1072–1075PubMedGoogle Scholar
  58. Tarshis MS, Weed WA Jr (1953) Lack of significant in vitro sensitivity of Mycobacterium tuberculosis to pyrazinamide on three different solid media. Am Rev Tuberc 67:391395Google Scholar
  59. Tatar J (1974) Sensitivity of tubercle bacilli to pyrazinamide determined on the basis of their sensitivity to nicotinamide (in Polish). Gruzlica 42:773–777PubMedGoogle Scholar
  60. Tellis CU, Putnam JS (1980) Pulmonary disease caused by nontuberculous mycobacteria. Med Clin North Am 64:433–446PubMedGoogle Scholar
  61. Tripathy SP, Mitchison DA, Nair NGK, Radhakrishna S, Subbammal S (1970) A comparison of various measures of sensitivity of M. tuberculosis to pyrazinamide. Tubercle 51:375–381PubMedGoogle Scholar
  62. Tripathy SP, Mitchison DA, Nair NGK, Radhakrishna S (1971) A comparison of various measures of sensitivity of M. tuberculosis to PZA. Ind J Med Res 59:175–189Google Scholar
  63. Trnka L, Kuska J, Havel A (1964) Comparison of the antituberculous activity of morphazinamide and pyrazinamide on chronic experimental tuberculosis. I. The antimycobacterial efficacy made in vitro and in vivo. Chemotherapia (Basel) 9:158–167Google Scholar
  64. Verbist L (1966) Tuberculostatic activity of N-morpholine-4’methylamide pyrazinecarbonic acid on experimental tuberculosis of mice. Acta Tuberc Pneumol Belg 57:211–217PubMedGoogle Scholar
  65. Wasz-Höckert O, McCune RM Jr, Lee SH, McDermott W, Tompsett R (1956) Resistance of tubercle bacilli to pyrazinamide in vivo. Am Rev Tuberc Pulm Dis 74:572–580Google Scholar
  66. Wayne LG (1974) Simple pyrazinamidase and urea tests for routine identification of my-cobacteria. Am Rev Respir Dis 74:147–151Google Scholar
  67. Wolinsky E (1979) “State of the Art”: Nontuberculous mycobacteria and associated disease. Am Rev Respir Dis 119:107–159PubMedGoogle Scholar

References

  1. Aitoff M (1952) Action in vitro de l’hydrazide de l’acide isonicotinique seul et combiné avec l’autres produits. Ann Inst Pasteur 83:130–134Google Scholar
  2. Aitoff M, Salas A (1952) Action combinée in vitro de l’ I.N.H. et de la streptomycine sur le bacille de Koch. Ann Inst Pasteur 83:273–275Google Scholar
  3. Andrejew A, Tacquet A (1957) Métabolisme des mycobactéries sensibles et résistantes à l’INH. Activité amino-acide oxydasique (production d’eau oxygénée). Ann Inst Pasteur 93:695–704Google Scholar
  4. Armstrong AR (1960) Time-concentration relationships of isoniazid with tubercle bacilli in vitro. Am Rev Respir Dis 81:498–503PubMedGoogle Scholar
  5. Armstrong AR (1965) Further studies on the time/concentration relationships of isoniazid and tubercle bacilli in vitro. Am Rev Respir Dis 91:440–443PubMedGoogle Scholar
  6. Aronson JD, Ehrlich SL, Flagg W (1952) Effects of isonicotinic acid derivatives on tubercle bacilli. Proc Soc Exp Biol Med 80:259–262PubMedGoogle Scholar
  7. Auersbach K, Bartmann K, Kauffmann GW, Krebs A, Schütz I, Steinbrück P (1961) Die frühe Erkennung des ungenügenden Effekts der konservativ-chemischen Behandlung bei kavernöser Lungentuberkulose. Adv Tuberc Res 11:122–192Google Scholar
  8. Awaness AM, Mitchison DA (1973) Cumulative effects of pulsed exposures of Mycobacterium tuberculosis to isoniazid. Tubercle 54:153–158PubMedGoogle Scholar
  9. Balogh A (1953) Zur Tuberkelbazillenresistenz gegenüber Isonikotinsäurehydrazid. Wien Klin Wochenschr 65:287–289PubMedGoogle Scholar
  10. Barnett M, Bushby SRM, Mitchison DA (1953a) Isoniazid-resistant strains of tubercle bacilli. Their development and stability. Lancet I:314–320Google Scholar
  11. Barnett M, Bushby SRM, Mitchison DA (1953b) Tubercle bacilli resistant to isoniazid: virulence and response to treatment with isoniazid in guinea-pigs and mice. Br J Exp Pathol 34:568–581Google Scholar
  12. Baroni V (1952) Expériences cliniques et de laboratoire avec l’ H.I.N. Schweiz Z Tuberk 9:283–292Google Scholar
  13. Barry VC, Conalty ML, Gaffney EE (1954) Amithiozone as an adjuvant to isoniazid therapy. Irish J Med Sci 1954:299–303Google Scholar
  14. Bartmann K (1954) Die wachstumshemmende Wirkung verschiedener Tuberkulostatika und ihrer Kombinationen in vitro. Tbk Arzt 8:276–282Google Scholar
  15. Bartmann K (1959) Isoniazid-prophylaxis in exposed or minimally infected animals. Bull Int Union Tuberc XXIX:214–226Google Scholar
  16. Bartmann K (1960a) Die Empfindlichkeit INH-resistenter Tuberkelbakterien gegen Thiosemicarbazon (Conteben). Tbk Arzt 14:450–452Google Scholar
  17. Bartmann K (1960b) Langfristige Einwirkung von Isonicotinsäurehydrazid und Strepto-mycin auf ruhende Tuberkelbakterien in vitro. Beitr Klin Tuberk 122:94–113Google Scholar
  18. Bartmann K (1960c) Die experimentellen Grundlagen der Chemoprophylaxe der Tuberku-lose mit Isonicotinsäurehydrazid (INH). Adv Tuberc Res 10:127–215Google Scholar
  19. Bartmann K (1960d) Tierexperimentelle Untersuchungen zu einer intermittierenden Chemotherapie und -prophylaxe der Tuberkulose. X. Mitteilung. Der Erfolg kontinuierlicher und intermittierender Gaben von INH und der Kombination INH-Streptomycin bei der Tuberkulose der Maus. Beitr Klin Tuberk 122:251–264Google Scholar
  20. Bartmann K (1963) Isoniazid. Möglichkeiten und Grenzen seiner Wirkung. Thieme, StuttgartGoogle Scholar
  21. Bartmann K, Villnow J, Schwarz C (1955) Tierexperimentelle Untersuchungen zu einer intermittierenden Chemotherapie und -prophylaxe der Tuberkulose. I. Mitteilung. Der Erfolg intermittierender Gaben von 10 mg INH je Kilogramm Körpergewicht im Simultanversuch an Meerschweinchen. Beitr Klin Tuberk 115:79–86Google Scholar
  22. Bartmann K, Villnow J, Schwarz C (1956) Tierexperimentelle Untersuchungen zu einer intermittierenden Chemotherapie und -prophylaxe der Tuberkulose. II. Mitteilung. Der Erfolg zweimal wöchentlich verabfolgter Gaben von INH in verschiedener Dosierung beim Simultanversuch an Meerschweinchen. Beitr Klin Tuberk 115:269–275Google Scholar
  23. Bartmann K, Villnow J, Schwarz C (1958) Tierexperimentelle Untersuchungen zu einer intermittierenden Chemotherapie und -prophylaxe der Tuberkulose. VII. Mitteilung. Der Erfolg kontinuierlicher und intermittierender Gaben von INH und der Tripelkombination INH, Streptomycin, PAS im therapeutischen Versuch an Meerschweinchen. Beitr Klin Tuberk 118:297–313Google Scholar
  24. Bartmann K, Freise G (1963) Mikrobiologisch bestimmte Isoniazid-Konzentrationen im Gewebe von Tier und Mensch. Beitr Klin Tuberk 127:546–560Google Scholar
  25. Bartmann K, Abel U, Hart R (1966) Die Abhängigkeit des Hemmtiters von der Bebrütungsdauer bei der Bestimmung der Resistenz von M. tuberculosis gegen Antituberkulotika auf Löwenstein-Jensen Medium. Z Bakteriol Mikrobiol Hyg (A) 201:538–548Google Scholar
  26. Bartmann K, Blisse A (1967) Kurzfristige, primäre INH-Prophylaxe mit hohen Dosen bei minimal infizierten Meerschweinchen. Beitr Klin Tuberk 135:351–356Google Scholar
  27. Batten JC (1968) Intermittent chemotherapy in murine tuberculosis. Tubercle (Lond) 49, Supp1:70Google Scholar
  28. Batten JC, Mc Cune RM Jr (1957) The influence of corticotrophin and cortisone with anti-tuberculous drugs on populations of Mycobacterium tuberculosis in tissues of mice. Br J Exp Path 38:424–437Google Scholar
  29. Beggs WH, Jenne JW (1969) Isoniazid uptake and growth inhibition of Mycobacterium tuberculosis in relation to time and concentration of pulsed drug exposures. Tubercle (Lond) 50:377–385Google Scholar
  30. Bekierkunst A, Szulga T (1954) A new method for determining the growth rate of M. tuberculosis and its application to the study of the toxic effects of streptomycin and isonicotinic hydrazide acid on tubercle bacilli. Schweiz Z Allg Path 17:47–71PubMedGoogle Scholar
  31. Bernard E, Kreis B, Le Joubioux E (1957) Evolution clinique de 31 cas de tuberculose cavitaire avec bacilles isoniazido-résistants de faible virulence expérimentale. Rev Tuberc (Paris) 21:429Google Scholar
  32. Bernstein J, Lott WA, Steinberg BA, Yale HL (1952) Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (Nydrazid) and related compounds. Am Rev Tuberc 65:357–364PubMedGoogle Scholar
  33. Besta B, Lucchesi M, Pana C, Spina G (1955) Ann Inst Forlanini 15:3–39, cited from:Google Scholar
  34. Bartmann K, Villnow J, Schwarz C (1958). Beitr Klin Tuberk 118:297–313Google Scholar
  35. Bjerkedahl T, Palmer CE (1967) Effect of isoniazid on tuberculosis in guinea pigs. Comparison of single versus multiple daily doses. Scand J Respir Dis 48:94–108Google Scholar
  36. Bloch H (1961) Intermittent isoniazid therapy for mice. Am Rev Respir Dis 84:824–836PubMedGoogle Scholar
  37. Bourgeois P, Dubois-Verlière Mlle, Maëll Mlle (1958) Étude de l’action discontinue de l’isoniazide sur le bacille de Koch par la méthode des cultures sur lames. Rev Tuberc (Paris) 22:108–111Google Scholar
  38. Briggs IL, Rochester WR, Shennan DH, Riddell RW, Fox W, Heffernan JF, Miller AB, Nunn AJ, Stott H, Tall R (1968) Streptomycin plus thiacetazone (thioacetazone) corn-pared with streptomycin plus PAS and with isoniazid plus thiacetazone in the treatment of pulmonary tuberculosis in Rhodesia. Tubercle (Lond) 49:48–69Google Scholar
  39. British Medical Research Council (1952) The treatment of pulmonary tuberculosis with isoniazid. An interim report to the Medical Research Council by their Tuberculosis Trials Committee. Br Med J II:735–746Google Scholar
  40. British Medical Research Council (1953) Isoniazid in the treatment of pulmonary tuberculosis. Second report to the Medical Research Council by their Tuberculosis Trials Committee. Br Med J I:521–536Google Scholar
  41. Brun J, Cayré RM, Viallier J (1954) Influence de la vitamine B6 sur l’activité antituberculeuse de l’isoniazide. CR Soc Biol 148:1817–1818Google Scholar
  42. Bünger P, Lass A (1953) Beitrag zur Resistenzentwicklung der Tuberkelbakterien unter Isoniazidbehandlung. Dtsch Med Wochenschr 78:1193–1194PubMedGoogle Scholar
  43. Canetti G (1965) Present aspects of bacterial resistance in tuberculosis. Am Rev Respir Dis 92:687–703PubMedGoogle Scholar
  44. Canetti G, Grumbach F, Grosset J (1960) Studies of bacillary populations in experimental tuberculosis of mice treated by isoniazid. Am Rev Respir Dis 82:295–313PubMedGoogle Scholar
  45. Canetti G, Fox W, Khomenko A, Mahler HT, Menon NK, Mitchison DA, Rist N, gmelev NA (1969) Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull WHO 41:21–43PubMedGoogle Scholar
  46. Cattaneo C, Morellini M (1952) Sulle proprietà antitubercolari dell’idrazide dell’acido isonicotinico. Minerva Med 43:1081–1086PubMedGoogle Scholar
  47. Chaulet P, Abderrahim K, Oussedik N, Amrane R, Mercer M, Si Hassen C, Bouhlabal F (1976) Résultats d’un traitement standardisé chez les tuberculeux pulmonaires porteurs d’une résistance primaire à Alger. Rev Fr Mal Resp 4:5–14Google Scholar
  48. Chicou FJ, Hétrick G, Lahlou M, Le Hir M, Mercier A, Neel R, Rist N, Vincent J (1961) Enquête contrôlée sur trois types de traitement per os de la tuberculose pulmonaire réalisée au Maroc, à Tanger (I.N.H. + éthionamide; I.N.H. + P.A.S.; I.N.H. seul). Premiers résultats après un an d’observation. Rev Tuberc (Paris) 25:1031–1056Google Scholar
  49. Claus H (1953) Beitrag zur Resistenzfrage bei INH-Therapie der Lungentuberkulose. Tbk Arzt 7:452–456Google Scholar
  50. Coates EO Jr, Meade GM, Steenken W Jr, Wolinsky E, Brinkman GL (1953) The clinical significance of the emergence of drug-resistant organisms during the therapy of chronic pulmonary tuberculosis with hydrazides of isonicotinic acid. N Engl J Med 248:1081–1087PubMedGoogle Scholar
  51. Cohn ML, Middlebrook G, Russell WF Jr (1959) Combined drug treatment of tuberculosis. I. Prevention of emergence of mutant populations of tubercle bacilli resistant to both streptomycin and isoniazid in vitro. J Clin Invest 38:1349–1355PubMedGoogle Scholar
  52. Coletsos PJ (1952) De l’association I.N.H. — streptomycine — P.A.S. Rev Tuberc (Paris) 16:670–678Google Scholar
  53. Colwell CA, Hess AR (1956) Stability and antibacterial effect of D-glucurolactone isonicotinyl hydrazone and isoniazid. Am Rev Tuberc Pulm Dis 73:892–906Google Scholar
  54. Colwell CA, Hess AR (1957) The effect of inspissation and storage on isoniazid concentrations in culture media. Am Rev Tuberc Pulm Dis 75:678–683Google Scholar
  55. Crowle M (1958) Comparison of the chemotherapeutic activities of INH, “Gatalone” and glucurolactone in tuberculous mice by the lung density technique. Tubercle (Lond) 39:41–44Google Scholar
  56. Devadatta S, Bhatia AL, Andrews RH, Fox W, Mitchison DA, Radhakrishna S, Ramakrishnan CV, Selkon JB, Velu S (1961) Response of patients infected with isoniazid-resistant tubercle bacilli to treatment with isoniazid plus PAS or isoniazid alone. Bull WHO 25:807–829PubMedGoogle Scholar
  57. Dickinson JM, Mitchison DA (1966) In vitro studies on the choice of drugs for intermittent chemotherapy of tuberculosis. Tubercle (Lond) 47:370–380Google Scholar
  58. Dickinson JM, Ellard GA, Mitchison DA (1968) Suitability of isoniazid and ethambutol for intermittent administration in the treatment of tuberculosis. Tubercle (Lond) 49:351–366Google Scholar
  59. Dickinson JM, Aber VR, Mitchison DA (1973) Studies on the treatment of experimental tuberculosis of the guinea pig with intermittent doses of isoniazid. Tubercle 54:211–224PubMedGoogle Scholar
  60. Dickinson JM, Mitchison DA (1976) Bactericidal activity in vitro and in the guinea-pig of isoniazid, rifampicin and ethambutol. Tubercle 57:251–258PubMedGoogle Scholar
  61. Dickinson JM, Aber VR, Mitchison DA (1977) Bactericidal activity of streptomycin, isoniazid, rifampin, ethambutol, and pyrazinamide alone and in combination against Mycobacterium tuberculosis. Am Rev Respir Dis 116:627–635PubMedGoogle Scholar
  62. Dickinson JM, Mitchison DA (1981) Experimental models to explain the high sterilizing activity of rifampin in the chemotherapy of tuberculosis. Am Rev Respir Dis 123:367–371PubMedGoogle Scholar
  63. Dissmann E (1954) Unterschiede der Wachstumsgeschwindigkeit und Wachstumseffekt subminimaler Hemmungsmengen von Isoniacid (INH) bei INH-resistenten und -sensiblen Tuberkelbakterienpopulationen. Naturwissenschaften 41:218–219Google Scholar
  64. Dissmann E, Iglauer E (1953a) Die normale Sensibilität gegenüber Streptomycin, Dihydrostreptomycin, PAS, TB I und Isonicotinsäurehydracid bei unbehandelten Tbb-Populationen in der Objektträgermikrokultur. Beitr Klin Tuberk 109:89–97Google Scholar
  65. Dissmann E, Iglauer E (1953b) Untersuchungen über den bakteriostatischen und bactericiden Effekt von Streptomycin, PAS, TB I und Rimifon, im Verlaufe der Behandlung der Tuberkulose. Beitr Klin Tuberk 109:8–26Google Scholar
  66. Domagk G (1953) Zu welchen Erwartungen berechtigt uns die Chemotherapie der Tuberkulose? Dtsch Med J 4:473–480PubMedGoogle Scholar
  67. Domagk G, Offe HA, Siefken W (1952) Ein weiterer Beitrag zur experimentellen Chemotherapie der Tuberkulose (Neoteben). Dtsch Med Wochenschr 77:573–578PubMedGoogle Scholar
  68. Dunbar JM (1957) L’apparition de formes non acido-résistantes de Mycobacterium tuberculosis en présence d’isoniazide, de cyclosérine et du thioamide de l’acide a-éthyl isonicotinique. Ann Inst Pasteur 92:451–458Google Scholar
  69. Dunbar FP, Mc Allister E, Jefferies MB (1959) Catalase and peroxidase activities of isoniazid-susceptible and -resistant strains of M. tuberculosis. Am Rev Tuberc Pulm Dis 79:669–671Google Scholar
  70. East African/British Medical Research Council Isoniazid Investigation (1960) Comparative trial of isoniazid alone in low and high dosage and isoniazid plus PAS in the treatment of acute pulmonary tuberculosis in East Africans. Tubercle (Lond) 41:83–102Google Scholar
  71. East African/British Medical Research Council Pretreatment Drug Resistance Report (1963) Influence of pretreatment bacterial resistance to isoniazid, thiacetazone or PAS on the response to chemotherapy of African patients with pulmonary tuberculosis. Tubercle (Lond) 44:393–416Google Scholar
  72. Eckley GM, Wilson JL (1960) Comparative study of isoniazid versus no chemotherapy in the prevention of relapse of chronic cavitary tuberculosis. Am Rev Respir Dis 82:242–243PubMedGoogle Scholar
  73. Eidus L, Lânyi MR (1953) Experimentelle Erfahrungen mit Isonikotinsäurehydrazid und anderen Hydrazidderivaten. Z Tbk 102:193–196Google Scholar
  74. Engbaek HC, Jespersen A, Rasmussen KN (1959) Isoniazid treatment of tuberculosis in guinea pigs. A study on the effect of varying dosage regimens. Acta Tuberc Scand Suppl 47:62–76Google Scholar
  75. Ferebee SH, Palmer CE (1956) Prevention of experimental tuberculosis with isoniazid. Am Rev Tuberc Pulm Dis 73:1–18Google Scholar
  76. Finkeldey W (1952) Der Ablauf der experimentellen Meerschweinchentuberkulose unter dem Einfluß des INH (Isonikotinylhydrazid) Rimifon (Roche). Z Tbk 101:166–169Google Scholar
  77. Freerksen E (1954) Grundlagen, Möglichkeiten und Grenzen einer Chemotherapie der Tu-berkulose. Arch Gynäkol 186:262–277Google Scholar
  78. Freerksen E (1957) Discussion remark. Bull Int Union Tuberc XXVII:245–247Google Scholar
  79. Freerksen E, Rosenfeld M, Matsumiya T (1969) Isoniazid-Wirkung trotz INH-Resistenz? Prax Pneumol 23:450–464PubMedGoogle Scholar
  80. Fujisawa Y (1972) Studies on treatment with isoniazid and ethambutol in experimental silicotuberculosis due to pertracheal intrapulmonary vinyl tube infusion of tubercle bacilli with free silica particles. J Nara Med Ass 23:253–277Google Scholar
  81. Fust B (1952) Orientierung über das Antituberculoticum Rimifon „Roche“. Schweiz Med Wochenschr 82:333–335PubMedGoogle Scholar
  82. Fust B (1953) Therapie der Tuberkulose mit Isoniazid (Rimifon). In: Gordonoff T (Hrsg) Hdb der Therapie in Einzeldarstellungen, Lieferung 4. Huber, Bern, pp 467–535Google Scholar
  83. Fust B, Studer A, Böhni E (1952) Experimentelle Erfahrungen mit dem Antituberculoti-cum „Rimifon“. Schweiz Z Tuberk 9:226–242Google Scholar
  84. Fust B, Böhni E (1953) Sensibilität und Resistenz von Tuberkelbazillen gegenüber Rimi-fon. Schweiz Med Wochenschr 83:377–383PubMedGoogle Scholar
  85. Gangadharam PRJ, Cohn ML, Middlebrook G (1963) Dynamic aspects of the sterilizing action of isoniazid on M. tuberculosis. Am Rev Respir Dis 88:558–562PubMedGoogle Scholar
  86. Genazzani E, Ninni A, Pacilio G (1966) Effects of isonicotinic acid hydrazide administered to tuberculous guinea-pigs at different doses and at different space intervalls. Med Thorac 23:225–239PubMedGoogle Scholar
  87. Gerloff W (1960) Entwicklung und heutiger Stand der Kultivierung des Mycobacteriums tuberculosis unter besonderer Berücksichtigung des Pyruvateffektes. Z Arztl Fortbild (Jena) 54:623–627Google Scholar
  88. Gernez-Rieux C, Tacquet A, Fabre M (1952/1953) Etude de l’action de diverses substances antibacillaires utilisées seules ou en association au cours de la tuberculose expérimentale du lapin. Ann Inst Pasteur Lille 5:32–55Google Scholar
  89. Gernez-Rieux C, Tacquet A, Voisin C, Fabre M (1953/1954) La tuberculose expérimentale du lapin peut-elle guerir définitivement par l’emploi de diverses substances antibacillaires administrées seules et en association? Ann Inst Pasteur Lille 6:145–154Google Scholar
  90. Goulding R, Robson JM (1952) Isoniazid in the control of experimental corneal tuberculosis. Lancet I1:849–853Google Scholar
  91. Goulding R, King MB, Knox R, Robson JM (1952) Relation between in-vitro and in-vivo resistance to isoniazid Lancet II:69–70Google Scholar
  92. Grosset J (1978a) The sterilizing value of rifampicin and pyrazinamide in experimental short course chemotherapy. Tubercle 59:287–297Google Scholar
  93. Grosset J (1978b) Chemotherapy of tuberculosis. In: Siegenthaler W, Lüthy R (eds) Proc 10th Intern Congr Chemother I, pp 43–44Google Scholar
  94. Grumbach F (1953) Chimiothérapie antituberculeuse expérimentale. Etude comparée des traitements prolongés par la streptomycine et par l’isoniazide Conditions d’apparition des résistants. Atti del VI ° Congresso internazionale di Microbiologia (Rome) Vol 1:553–558Google Scholar
  95. Grumbach F (1958) Activité antituberculeuse expérimentale du pyrazinamide (P.Z.A.). Ann Inst Pasteur 94:694–708Google Scholar
  96. Grumbach F (1962) Treatment of experimental murine tuberculosis with different combinations of isoniazid/streptomycin followed by isoniazid alone. Am Rev Respir Dis 86:211–215PubMedGoogle Scholar
  97. Grumbach F (1965) Etudes chimiothérapiques sur la tuberculose avancée de la souris. Adv Tuberc Res 14:31–96Google Scholar
  98. Grumbach F (1968) Chimiothérapie intermittente de longue durée dans la tuberculose expérimentale de la souris. Bull Int Union Tuberc XLI:303–308Google Scholar
  99. Grumbach F, Rist N, Riebel J (1952) Traitement discontinu de la tuberculose expérimentale de la souris par l’hydrazide isonicotinique (isoniazide). Ann Inst Pasteur 83:397–399Google Scholar
  100. Grumbach F, Grosset J, Canetti G (1960) L’inactivation de l’isoniazide chez le rat. Son incidence sur les résultats de la chimiothérapie de la tuberculose dans cette espèce. Ann Inst Pasteur 98:642–656Google Scholar
  101. Grumbach F, Canetti G, Grosset J, Le Lirzin M (1967) Late results of long-term, intermittent chemotherapy of advanced, murine tuberculosis: limits of the murine model. Tubercle (Lond) 48:11–26Google Scholar
  102. Grumbach F, Canetti G, Le Lirzin M (1969) Rifampicin in daily and intermittent treatment of experimental murine tuberculosis with emphasis on late results. Tubercle 50:280–283PubMedGoogle Scholar
  103. Grumbach F, Canetti G, Le Lirzin M (1970) Caractère durable de la stérilisation de la tuberculose expérimentale de la souris par l’association rifampicine-isoniazide. Epreuve de la cortisone. Rev Tuberc Pneumol 34:312–319Google Scholar
  104. Grumbach F, Grosset J (1975) Le pyrazinamide dans le traitement de courte durée de la tuberculose murine. Rev Fr Mal Respir 3:5–18Google Scholar
  105. Grunberg E, Schnitzer RJ (1952) Studies on the activity of hydrazine derivatives of isonicotinic acid in the experimental tuberculosis of mice. Quart Bull Sea View Hosp 13:311Google Scholar
  106. Grunberg E, Schnitzer RJ (1953) Antagonism of isoniazid and streptomycin in experimen-tal infection of mice with M. tuberculosis H37Rv. Am Rev Tuberc 68:277–279PubMedGoogle Scholar
  107. Grunberg E, Blencowe W (1955) The influence of pyridoxine on the in vitro antitubercu-lous activity of isoniazid. Am Rev Tuberc Pulm Dis 71:898–899Google Scholar
  108. Hedgecock LW, Faucher IO (1957) Relation of pyrogallol-peroxidative activity to isonia- zid resistance in Mycobacterium tuberculosis. Am Rev Tuberc Pulm Dis 75:670–674Google Scholar
  109. Heilmeyer L, Schaich W, Buchegger G, Kilchling H, Schmidt F, Walter AM (1952) Vorläufiger Bericht über Isonikotinsäurehydrazid (Rimifon, Neoteben) auf Grund experimenteller und klinischer Untersuchungen. MMW 94:1303–1308Google Scholar
  110. Herman RP, Weber MM (1980) Isoniazid interaction with tyrosine as a possible mode ofaction of the drug in mycobacteria. Antimicrob Agents Chemother 17:170–178PubMedGoogle Scholar
  111. Hobby GL, Lenert TF (1952) Resistance to isonicotinic acid hydrazide. Am Rev Tuberc 65:771–774PubMedGoogle Scholar
  112. Hobby GL, Lenert TF (1953) The control of experimental mouse tuberculosis by the intermittent administration of streptomycin, viomycin, isoniazid, and streptomycilidene isonicotinyl hydrazine Am Rev Tuberc 68:292–294PubMedGoogle Scholar
  113. Hobby GL, Lenert TF, Rivoire ZC, Donikian M, Picula D (1953) In vitro and in vivo activity of streptomycin and isoniazid singly and in combination. Am Rev Tuberc 67:808–827PubMedGoogle Scholar
  114. Hobby GL, Lenert TF (1957) The in vitro action of antituberculous agents against mul-tiplying and non-multiplying microbial cells. Am Rev Tuberc Pulm Dis 76:1031–1048Google Scholar
  115. Ilaysky J (1952) Synergistic action of isonicotinic acid hydrazide and streptomycin in vitro. Am Rev Tuberc 65:777–778Google Scholar
  116. Jackett PS, Aber VR, Lowrie DM (1978) Virulence and resistance to superoxide, low pH and hydrogen peroxide among strains of Mycobacterium tuberculosis. J Gen Microbiol 104:37–45PubMedGoogle Scholar
  117. Jancik E (1963) Comparative evaluation of the results obtained through the use of major chemotherapeutic combinations in cases discharging bacilli with low resistance and cases discharging bacilli with high resistance to the same drug. Bull Int Union Tuberc XXXIII:98–117Google Scholar
  118. Jenney FS, Landis RE (1954) A study of the development of resistance to isoniazid during the treatment of pulmonary tuberculosis. Trans 13th Conf Chemother Tuberc VAAF:231–233Google Scholar
  119. Kakimoto S, Seydel JK, Wempe E (1961) Zusammenhänge zwischen Struktur und Wirkung bei Carbothionamiden. Jber Borstel 5:233–239Google Scholar
  120. Karlson AG, Feldman WH (1953) Effective therapeutic dose of isoniazid for experimental tuberculosis of guinea pigs. Am Rev Tuberc 68:75–81PubMedGoogle Scholar
  121. Kessler R, Bartmann K (1971) Primäre Isoniazid-Resistenz bei tuberkulösen Kindern in West-Berlin. Pneumonologie 145:400–406PubMedGoogle Scholar
  122. Kimmig J (1953) Klinische und experimentelle Untersuchungen zur Therapie der Hauttuberkulose. Z Haut-Geschlechtskr 14:69–77; 103–108Google Scholar
  123. Kleeberg HH (1967) The use of chemotherapeutic agents in animal tuberculosis. The Veterinarian 4:197–211PubMedGoogle Scholar
  124. Kleeberg HH, Olivier MS (1984) A world atlas of initial drug resistance published by the Tuberculosis Research Institute of the South African Medical Research Council, 2nd revised editionGoogle Scholar
  125. Klose F, Knothe H (1952) Über die Einwirkung von Antibiotica und Chemotherapeutica auf Mycobacterium tuberculosis Typ humanus im bebrüteten Hühnerei. 3. Mitteilung: Das Verhalten von Tuberkelbakterien gegenüber Isonikotinsäurehydrazid (Rimifon, Neoteben, Sauterazid). Ärztliche Wochenschr 7:893–895Google Scholar
  126. Knox R, King MB, Woodroffe RC (1952) In-vitro action of isoniazid on Mycobacterium tuberculosis. Lancet II:854–858Google Scholar
  127. Knox R, Meadow PM, Worssam ARH (1956) The relationship between the catalase activity, hydrogen peroxide sensitivity and isoniazid resistance of mycobacteria. Am Rev Tuberc 73:726–734PubMedGoogle Scholar
  128. Koch-Weser D (1956) The usefulness of C14 labeled compound in tuberculosis research. IVth Intern Congr Chest Diseases, Cologne, p 557Google Scholar
  129. Koch-Weser D, Ebert RH (1955) The use of differential C14 labeling for the investigation of the in vitro antituberculous activity of isonicotinyl hydrazide of glucuronolactone. J Lab Clin Med 44:711–716Google Scholar
  130. Koch-Weser D, Barclay WR, RH (1955) The influence of isoniazid and streptomycin on acid-fastness, tetrazolium reduction, growth, and survival of tubercle bacilli Am Rev Tuberc Pulm Dis 71:556–565Google Scholar
  131. Kondo E, Kanai K (1977a) Studies on the relationship between the proliferation rate of infecting tubercle bacilli and the effectiveness of chemotherapy. I. Observations in a mouse experimental model using a streptomycin-dependent strain. Kekkaku 52:411–415Google Scholar
  132. Kondo E, Kanai K (1977b) Studies on the relationship between the proliferation rate of infecting tubercle bacilli and the effectiveness of chemotherapy. II. Observations in various types of infection experiment. Kekkaku 52:475–479Google Scholar
  133. Kradolfer F (1970) Rifampicin, isoniazid, ethambutol, ethionamide and streptomycin in murine tuberculosis: comparative chemotherapeutic studies. Antibiot Chemother 16:352–360PubMedGoogle Scholar
  134. Kraus P, Urbancík R,Simàné Z, Reil I (1961) A contribution to the problem of the antiisoniazid factor. Am Rev Respir Dis 84:684–689Google Scholar
  135. Krebs A (1968) Mikro-und Makroorganismus unter dem Einfluß tuberkulosewirksamer Mittel. Z Tbk 128:208–217Google Scholar
  136. Krebs A (1969) Experimentelle Chemotherapie der Tuberkulose. Z Erkr Atmungsorgane 130:417–448Google Scholar
  137. Krebs A (1970) Experimentelle Untersuchungen zur intermittierenden Chemotherapie der Tuberkulose. Z Erkr Atmungsorgane 133:411–418Google Scholar
  138. Krebs A (1975) Mykobakterielle Resistenz und Resistenzbestimmungen. In: Meissner G, Schmiedel A, Nelles A (Hrsg) Mykobakterien und mykobakterielle Krankheiten. III. Bakteriologische Grundlagen der sChemotherapie der Tuberkulose. Fischer, Jena, pp 183–250Google Scholar
  139. Krebs A, Käppler W (1956) Intoleranz INH-resistenter TBB-Stämme gegenüber Glycerin. Klin Wochenschr 34:873Google Scholar
  140. Kreis B (1958) Les déficiences enzymatiques des bacilles isoniazido-résistants. Adv Tuberc Res 9:178–247Google Scholar
  141. Krüger-Thiemer E, Kuhn RB, Lembke A (1952) Die Hemmung von Mykobakterien durch Isonicotinsäurehydrazid. Klin Wochenschr 30:613PubMedGoogle Scholar
  142. Krüger-Thiemer E, Kröger H, Nestler HJ, Seydel K (1975) In: Meissner G, Schmiedel A, Nelles A (Hrsg) Mykobakterien und mykobakterielle Krankheiten. Teil III. Bakteriologische Grundlagen der Chemotherapie der Tuberkulose. Wirkungsmodi antituberkulöser Chemotherapeutika. Isoniazid Fischer, Jena, pp 257–288Google Scholar
  143. Kubala E (1960) Beitrag zur Existenz eines Anti-INH-Faktors bei den Mykobakterien. Z Tbk 115:66–69Google Scholar
  144. Lecocq E (1952) Apparition de la résistance à l’hydrazide de l’acide isonicotinique parmi les Mycobactéries soumises à son action. CR Soc Biol 146:1447–1449Google Scholar
  145. Le Hir M, Chicou J, Hétrick G, Mercier A, Neel R, Rist N (1964) Essai clinique contrôlé de trois types de traitement oral de la tuberculose pulmonaire. Bull WHO 30:701–732Google Scholar
  146. Lembke A, Kuhn RB, Krüger-Thiemer E (1952) Über die antimikrobielle Wirkung von Isonicotinsäurehydrazid. Klin Wochenschr 30:717–718Google Scholar
  147. Lepri G, Capalbi S (1952) Studio sulla chemioterapia della tubercolosi: idrazide dell’acido isonicotinico ed associazioni chemio-antibiotiche nella tubercolosi oculare sperimentale. Minerva Med 43:1113–1118PubMedGoogle Scholar
  148. Levaditi C, Vaisman A, Chaigneau-Erhard H (1953) Effets thérapeutiques de l’isonicotinhydrazide (INH) dans l’infection tuberculeuse provoquée chez le cobaye par l’inoculation intra-névraxique de Mycobacterium tuberculosis. Ann Inst Pasteur 84:630–633Google Scholar
  149. Liebermeister K (1953) Bakteriologische Befunde mit Neoteben. Z Hyg 137:461–470Google Scholar
  150. Linz R (1952) Irréversibilité de l’action inhibitrice de l’hydrazide de l’acide isonicotinique sur Mycobacterium tuberculosis. CR Soc Biol 146:1449–1451Google Scholar
  151. Linz R, Lecocq E (1952) La sensibilité in vitro de Mycobacterium tuberculosis à l’hydrazide de l’acide isonicotinique. CR Soc Biol 146:1444–1447Google Scholar
  152. Lotte A, Poussier J (1953) Traitement de 414 tuberculeux pulmonaires par l’isoniazide Rev Tuberc (Paris) 17:1–29Google Scholar
  153. Lutz A (1952) Recherches sur l’action comparée in vitro de l’hydrazide de l’acide isonicotinique sur diverses souches de Mycobactéries pathogènes et saprophytes. CR Soc Biol 146:1368–1372Google Scholar
  154. Mackaness GB (1956) The intracellular activation of pyrazinamide and nicotinamide. Am Rev Tuberc 74:718–728PubMedGoogle Scholar
  155. Mackaness GB, Smith N (1952) The action of isoniazid (isonicotinic acid hydrazide) on intracellular tubercle bacilli. Am Rev Tuberc 66:125–133PubMedGoogle Scholar
  156. Mackaness GB, Smith N (1953) The bactericidal action of isoniazid, streptomycin, and ter-ramycin on extracellular and intracellar tubercle bacilli. Am Rev Tuberc 67:322–340PubMedGoogle Scholar
  157. Mauss H (1968) Effet de l’isoniazide sur les lésions précoces de la tuberculose de la souris. Rev Immunol (Paris) 32:357–371Google Scholar
  158. Mayer E, Salamandra IA (1967) Conversion by isoniazid of hyperacute to chronic pulmonary tuberculosis in mice. Am Rev Respir Dis 96:220–228PubMedGoogle Scholar
  159. Mc Cune RM Jr, Tompsett R (1956) Fate of Mycobacterium tuberculosis in mouse tissue as determined by the microbial enumeration technique. I. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J Exp Med 104:737–762PubMedGoogle Scholar
  160. Mc Cune RM Jr, Tompsett R, Mc Dermott W (1956) The fate of Mycobacterium tuberculosis in mouse tissue as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med 104:763–802PubMedGoogle Scholar
  161. Mc Cune R, Lee SH, Deuschle K, Mc Dermott W (1957) Ineffectiveness of isoniazid in modifying the phenomenon of microbial persistence. Am Rev Tuberc Pulm Dis 76:1106–1109Google Scholar
  162. Mc Dermott W, Tompsett R (1954) Activitation of pyrazinamide and nicotinamide in acidic environment. Am Rev Tuberc 70:748–754PubMedGoogle Scholar
  163. Meissner G (1956) Isoniazid-resistente Tuberkelbakterien. Adv Tuberc Res 7:52–100Google Scholar
  164. Meissner G (1962) Primary drug resistance of the tubercle bacillus. Bacteriological, thera-peutic and epidemiological aspects. Bull Int Union Tuberc XXXII:15–35Google Scholar
  165. Meissner G, Berg G (1954) Ein Jahr Therapie mit Isoniacid. Beitr Klin Tuberk 111:340–352Google Scholar
  166. Middlebrook G (1952) Sterilization of tubercle bacilli by isonicotinic acid hydrazide and the incidence of variants resistant to the drug in vitro. Am Rev Tuberc 65:765–767PubMedGoogle Scholar
  167. Mitchison DA (1952) Titration of strains of tubercle bacilli against isoniazid. Lancet 11:858–860Google Scholar
  168. Mitchison DA (1954) Tubercle bacilli resistant to isoniazid Virulence and response to treatment with isoniazid in guinea pigs. Br Med J I:128–131Google Scholar
  169. Mitchison DA (1962) Primary drug resistance. Bull Int Union Tuberc XXXII, No 2:8199Google Scholar
  170. Mitchison DA, Selkon JB (1956) The bactericidal activities of antituberculous drugs. Am Rev Tuberc Pulm Dis 74, Supp1:109–116Google Scholar
  171. Morelli E, Daddi G (1952) G Ital Tbc VI:117; cited from: Bartmann K. (1954) Tbk Arzt 8:276–282Google Scholar
  172. Nasta M, Algeorgi G, Arhiri M, Negulescu V (1957) Recherches sur la chimioprophylaxie de la tuberculose expérimentale du cobaye. Rev Tuberc (Paris) 21:1013–1017Google Scholar
  173. Nitti V, Ninni A (1969) In vivo bactericidal activity of rifampicin in combination with other antimycobacterial agents. Chemotherapy 14:356–365PubMedGoogle Scholar
  174. Noufflard H (1954) Traitement par l’isoniazide à différentes doses d’une tuberculose expérimentale très avancée de la souris. Influence des doses élevées. CR Soc Biol 148:1757–1759Google Scholar
  175. Noufflard H, Berteaux S (1960) An increased effect with increased dosage of isoniazid in experimental tuberculosis. Am Rev Respir Dis 82:561–563PubMedGoogle Scholar
  176. Orlowski EH, Rosenfeld M, Wolter H, Schunk R (1976) Experimentelle vergleichende Untersuchung der tuberkulostatischen Wirksamkeit und Toxizität von INH, INHG und INHG-Na. Arzneimittelforsch 26:409–416PubMedGoogle Scholar
  177. Palmer CE, Ferebee SH, Hopwood L (1956) Studies on prevention of experimental tuberculosis with isoniazid. II. Effects of different dosage regimens. Am Rev Tuberc 74:917–939PubMedGoogle Scholar
  178. Pansy F, Stander H, Donovick R (1952) In vitro studies on isonicotinic acid hydrazide. Am Rev Tuberc 65:761–764PubMedGoogle Scholar
  179. Pansy FE, Koerber WL, Stander H, Donovick R (1953) The inactivation of isoniazid by Dubos medium. Am Rev Tuberc 68:284–285PubMedGoogle Scholar
  180. Pavlov EP (1970) Some factors influencing the activity of streptomycin, kanamycin and isoniazid with respect to intracellulary seated Myco. tuberculosis. Probl Tuberk 48, issue 9:72–76 (in Russian)Google Scholar
  181. Pope H (1953) Antagonism of isoniazid by certain metabolites. Am Rev Tuberc 68:938–939PubMedGoogle Scholar
  182. Pope H (1956) The neutralization of isoniazid activity in Mycobacterium tuberculosis by certain metabolites. Am Rev Tuberc Pulm Dis 73:735–747Google Scholar
  183. Ramakrishnan CV, Bhatia AL, Devadatta S, Fox W, Narayana ASL, Selkon JB, Velu S (1962) The course of pulmonary tuberculosis in patients excreting organisms which have acquired resistance to isoniazid Bull WHO 26:1–18PubMedGoogle Scholar
  184. Rist N (1964) Nature and development of resistance of tubercle bacilli to chemotherapeutic agents. In: Barry VC (ed) Chemotherapy of tuberculosis. Butterworths, London, pp 192–227Google Scholar
  185. Rist N, Grumbach F (1952a) Sur l’activité antituberculeuse expérimentale de l’hydraside de l’acide iso-nicotinique. C R Soc Biol 146:564–566Google Scholar
  186. Rist N, Grumbach F (1952b) La résistance du bacille tuberculeux à l’hydrazide isonicotinique. Rev Tuberc (Paris) 16:665–669Google Scholar
  187. Rist N, Grumbach F, Cals S, Riebel J (1952) L’hydrazide de l’acide isonicotinique (INH). Activité antituberculeuse chez la souris. Création de souches résistants in vitro. Ann Inst Pasteur 82:757–760Google Scholar
  188. Robson JM, Sullivan FM (1959) The effect of treatment with a large dose of isoniazid on an established tuberculous infection in mice. Br J Pharmacol 14:222–228Google Scholar
  189. Robson JM, Smith JT, Thomas CGA (1960) Multiplication of Mycobacterium tuberculosis in the cornea and its modification by immunity and by isoniazid Am Rev Respir Dis 82:195–201PubMedGoogle Scholar
  190. Schaefer WB (1954) The effect of isoniazid on growing and resting tubercle bacilli. Am Rev Tuberc 69:125–127PubMedGoogle Scholar
  191. Schmidt LH (1956a) Some observations on the utility of simian pulmonary tuberculosis in defining the therapeutic potentialities of isoniazid Am Rev Tuberc Pulm Dis 74, part 2:138–159Google Scholar
  192. Schmidt LH (1956b) Studies on the therapeutic properties of cycloserine. Trans 15th Conf Chemother Tuberc VAAF:353–365Google Scholar
  193. Schmidt LH (1959) Observations on the utility of isoniazid in the prophylaxis of experimental tuberculosis. Bull Int Union Tuberc XXIX:276–284Google Scholar
  194. Schmidt LH, Grover AA, Hoffmann R, Rehm J, Sullivan R (1958) The emergence of isoniazid-sensitive bacilli in monkeys inoculated with isoniazid-resistant strains. Trans 17th Conf Chemother Tuberc VAAF:264–269Google Scholar
  195. Schmidt LH, Good RC, Mack HP, Zeek-Minning P, Schmidt IG (1963) An experimental appraisal of the therapeutic potentialities of ethambutol. Trans 22nd Research Conf Pulm Dis VAAF:262–274Google Scholar
  196. Schriever O, Hoffmann K (1953) Zur Ermittlung des Resistenzwertes von Tuberkelbakterien gegen Neoteben. Beitr Klin Tuberk 109:53–56Google Scholar
  197. Schwartz WS, Moyer RE (1954) The use of isoniazid alone in the treatment of pulmonary tuberculosis. Am Rev Tuberc 70:924–925Google Scholar
  198. Shepard CC (1957) Use of Hela cells infected with tubercle bacilli for the study of anti-tuberculous drugs. J Bacteriol 73:494–498PubMedGoogle Scholar
  199. Siebenmann CO (1953) Isoniazid in combined chemotherapy of experimental tuberculosis in mice. Am Rev Tuberc 68:411–418PubMedGoogle Scholar
  200. Simon K (1958) INH-Resistenz, ihre Auswirkung auf Prognose und Therapie beim Jugendlichen. Tbk Arzt 12:493–500Google Scholar
  201. Singh B, Mitchison DA (1954) Bactericidal activity of streptomycin and isoniazid against tubercle bacilli. Br Med J I:130–132Google Scholar
  202. Singh B, Mitchison DA (1955) The bactericidal activities of combinations of streptomycin, isoniazid, p-aminosalicylic acid (PAS), oxytetracycline (terramycin) and viomycin against Mycobacterium tuberculosis. J gen Microbiol 13:176–184PubMedGoogle Scholar
  203. Spiess H (1959) Chemoprophylaxe und präventive Chemotherapie gegen die Tuberkulose. Dtsch Med Wochenschr 84:1410–1415PubMedGoogle Scholar
  204. Steenken W Jr, Wolinsky E (1952) Antituberculous properties of hydrazines of isonicotinic acid (Rimifon, Marsilid). Am Rev Tuberc 65:365–375PubMedGoogle Scholar
  205. Steenken W Jr, Wolinsky E (1953) Virulence of tubercle bacilli recovered from patients treated with isoniazid. Am Rev Tuberc 68:548–556PubMedGoogle Scholar
  206. Stewart SM, Crofton JW (1964) The clinical significance of low degrees of drug resistance in pulmonary tuberculosis. Am Rev Respir Dis 89:811–829PubMedGoogle Scholar
  207. Stoica E, Nitzulesco G (1971) Etude comparative de l’action de l’isoniazide (INH) et de la tuberculoprotéine (PPD) sur le sort des mycobactéries phagocytées par les macrophages alvéolaires „in vitro“. Acta Tuberc Pneumol Belg 62:48–61PubMedGoogle Scholar
  208. Stonebrink B (1958) The use of pyruvate containing egg medium in the culture of isoniazid resistant strains of Mycobacterium tuberculosis var hominis Acta tuberc scand 35:67–80Google Scholar
  209. Studer A, Fust B (1952) Protrahierte und therapeutische Wirkung von Rimifon bei expe-rimenteller Mäusetuberkulose. Schweiz Z Allg Pathol Bakteriol 15:612–622Google Scholar
  210. Sugimoto J (1970) Studies on the effects of chemotherapy with streptomycin and isoniazid in experimental pneumoconiotuberculosis. J Nara Med Ass 21:253–266Google Scholar
  211. Suter E (1952) Multiplication of tubercle bacilli within phagocytes cultivated in vitro, and effect of streptomycin and isonicotinic acid hydrazide. Am Rev Tuberc 65:775–776PubMedGoogle Scholar
  212. Takahashi H (1959) Experimental tuberculous meningitis in guinea pigs. 3. The effect of the administration of SM or INH alone and of SM, INH and PAS in combination. Kekkaku 34:665–666Google Scholar
  213. Takayama K, Wang L, Merkal RS (1973) Scanning electron microscopy of the H37Ra strain of Mycobacterium tuberculosis exposed to isoniazid. Antimicrob Agents Chemother 4:62–65PubMedGoogle Scholar
  214. Tirunarayanan MO, Vischer WA (1957) Relationship of isoniazid to the metabolism of mycobacteria. Am Rev Tuberc Pulm Dis 75:62–70Google Scholar
  215. Tison F (1952a) Sensibilité de divers germes et du bacille de Koch à l’hydrazide de l’acide isonicotinique. Ann Inst Pasteur 82:760–761Google Scholar
  216. Tison F (1952b) Dissociation des pouvoirs bactériostatique et bactéricide de l’hydrazide isonicotinique in vitro. Ann Inst Pasteur 83:134–135Google Scholar
  217. Tompsett R (1954) Quantitative observations on the pattern of emergence of resistance to isoniazid. Am Rev Tuberc 70:91–101PubMedGoogle Scholar
  218. Tripathy SP, Menon NK, Mitchison DA, Narayana ASL, Somasundaram PA, Stott H, Velu S (1969) Response to treatment with isoniazid plus PAS of tuberculous patients with primary isoniazid resistance. Tubercle (Lond) 50:257–267Google Scholar
  219. Tuberculosis Chemotherapy Centre, Madras (1960) A concurrent comparison of isoniazid plus PAS with three regimens of isoniazid alone in the domiciliary treatment of pulmonary tuberculosis in South India. Bull WHO 23:535–585Google Scholar
  220. Uehlinger E, Siebenmann R, Frei H (1952) Erste Erfahrungen mit Rimifon „Roche“ bei experimenteller Meerschweinchentuberkulose. Schweiz Med Wochenschr 82:335–338PubMedGoogle Scholar
  221. Ungar J, Tomich EG, Parkin KR, Muggleton PW (1954) Effect of pyridoxine on the action of isoniazid. Lancet I1:220–221Google Scholar
  222. United States Public Health Service Cooperative Investigation (1953) The effect of streptomycin on the emergence of bacterial resistance to isoniazid. Am Rev Tuberc 67:553567Google Scholar
  223. Urbanzík R, Trnka L (1962) Preliminary observations on the increase in isoniazid resistance of M. tuberculosis H37Rv after exposure to an extract of tuberculous tissue. Am Rev Respir Dis 85:596–598Google Scholar
  224. Urbanczik R, Trnka L (1963) Report on the antimicrobial activity of Isoxyl on M. tuberculosis “in vitro” and “in vivo”. Acta Tuberc Pneumol Belg 54:66–86Google Scholar
  225. Veltman G (1955) Experimentelle Untersuchungen zur Chemotherapie der Tuberkulose. 1. Mitteilung. Z Bakteriol Mikrobiol Hyg (A) 63:177–209Google Scholar
  226. Vischer WA, Roulet FC (1963) Kombinierte Chemotherapie bei der Maustuberkulose. Beitr Klin Tuberk 126:253–270Google Scholar
  227. Wagner WH (1964) Experimentelle Infektionen mit Tuberkelbakterien. In: Eichler O (Hrsg) Erzeugung von Krankheitszuständen durch das Experiment. Springer, Berlin Göttingen Heidelberg, pp 354–430 (Handbook of Experimental Pharmacology, vol 16, Teil 9)Google Scholar
  228. Wagner WH, Saar G (1953) Untersuchungen über die Wirkung von Isonicotinsäurehydrazid in vitro. Beitr Klin Tuberk 110:236–241Google Scholar
  229. Waksman SA, Lechevalier HA (1953) Sensitivity of actinomycetales to isonicotinic acid hydrazide, compared to other synthetic and antibiotic antituberculosis agents. Am Rev Tuberc 67:261–264PubMedGoogle Scholar
  230. Wallace A (1964) The stability of some antituberculosis drugs. Bull Int Union Tuberc XXXIV:191Google Scholar
  231. Wasz-Höckert O, Mc Cune RM Jr, Tompsett R (1956) Concurrent administration of pyridoxine and isoniazid Am Rev Tuberc Pulm Dis 74:471–473Google Scholar
  232. Werner E, Drobny H, Ziesché K (1963) Ergebnisse einer fünfjährigen ambulanten INHLangzeitbehandlung. Beitr Klin Tuberk 126:329–338Google Scholar
  233. Wolinsky E, Pratt P, Steenken W Jr (1954) Experimental tuberculous meningitis in guinea pigs: results of treatment with isoniazid, iproniazid, streptomycin, and isoniazid-streptomycin. Am Rev Tuberc 70:714–727PubMedGoogle Scholar
  234. Youatt J (1969) A review of the action of isoniazid. Am Rev Respir Dis 99:729–749PubMedGoogle Scholar
  235. Youmans AS, Youmans GP (1955) The inactivation of isoniazid by filtrates and extracts of mycobacteria. Am Rev Tuberc Pulm Dis 72:196–203Google Scholar
  236. Youmans AS, Youmans GP (1956) The effect of the „anti-isoniazid“ substance produced by mycobacteria on the chemotherapeutic activity of isoniazid in vivo. Am Rev Tuberc Pulm Dis 73:764–767Google Scholar
  237. Youmans AS, Youmans GP (1960) The production of „anti-isoniazid“ substance by isoniazid-susceptible, isoniazid-resistant, and unclassified strains of mycobacteria. Am Rev Respir Dis 81:929–931PubMedGoogle Scholar
  238. Zebrowski T, Pieniazek K, Borowiecka A (1954) Die Behandlung der chronischen Experimentaltuberkulose der Meerschweinchen mit Isoniazid jeden Tag und jeden dritten Tag. Beitr Klin Tuberk 111:335–339Google Scholar
  239. Zierski M, Rotermund C (1984) Isoniazid — Wesentliches und Neues. Prax Klin Pneumol 38:201–216PubMedGoogle Scholar
  240. Zintz R, Wegner W (1953) Über die Behandlung der tierexperimentellen und menschlichen Augentuberkulose mit Neoteben. Dtsch Med Wochenschr 78:433–435PubMedGoogle Scholar

References

  1. Finlay AC, Hobby GL, P’an SY, Regna PP, Routien JB, Seeley DB, Shull GM, Sobin BA, Solomons IA, Vinson JW, Kane JH (1950) Terramycin, a new antibiotic. Science 111:85PubMedGoogle Scholar
  2. Fussgänger R (1958) Vergleichende mikrobiologische Untersuchungen von Pyrrolidino-methyl-tetracyclin (Reverin®) mit Tetracyclin-hydrochlorid. MMW 100:665–670Google Scholar
  3. Guy LR, Chapman JS (1961) Susceptibility in vitro of unclassified mycobacteria to com-monly used antimicrobials. Am Rev Resp Dis 84:746–749PubMedGoogle Scholar
  4. Hlavka JJ, Boothe JH (1985) The tetracyclines. Handbook of experimental pharmacology, vol 78. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  5. Hobby GL, Dougherty N, Lenert TF, Hidders E, Kiseluk M (1950) Antimicrobial action of terramycin in vitro and in vivo. Proc Soc Exp Biol Med 73:503–511Google Scholar
  6. Hobby GL, Lenert TF, Donikian M, Pikula D (1951) The tuberculostatic activity of terramycin. Am Rev Tub 61:434–440Google Scholar
  7. Hobby GL, Lenert TF (1955) Antituberculous activity of tetracycline and related compounds. Am Rev Tub 72:367–372Google Scholar
  8. Jawetz E, Gunnison JB, Speck RS (1951) Interference of aureomycin, chloramphenicol and terramycin with the action of streptomycin. Am J Med Sci 222:404–410PubMedGoogle Scholar
  9. Mackaness GB, Smith N (1953) The bactericidal action of isoniazid, streptomycin and ter- ramycin on extracellular and intracelluar tubercle bacilli. Am Rev Tub 67:322–340Google Scholar
  10. Miller FL, Sands JH, Walker R, Dye WE, Tempel CW (1952) Combined daily terramycin and intermittent streptomycin in the treatment of pulmonary tuberculosis. Am Rev Tub 66:534–542Google Scholar
  11. Miller FL, Sands JH, Gregory LJ, Hightower JA, Weisser OL, Tempel CW (1954) Daily oxytetracycline (terramycin) and intermittent streptomycin in the treatment of pulmonary tuberculosis. Am Rev Tub 69:58–67Google Scholar
  12. Modr Z (1962) Antibiotics their use in therapy (in Czech). Spofa, PragueGoogle Scholar
  13. Modr Z, Hermanskÿ M, Vlèek V (1964) Antibiotics and their pharmaceutical products (in Czech). Avicenum, PragueGoogle Scholar
  14. Perry TL (1949) Failure of aureomycin in the treatment of experimental tuberculosis. Proc Soc Exp Biol Med 72:45–46PubMedGoogle Scholar
  15. Pfefer LM, Hughes FJ, Dye WE (1952) Terramycin in the treatment of pulmonary tuberculosis: a pilot study. Dis Chest 21:123–124PubMedGoogle Scholar
  16. Rake G, Donovick R (1949) Tuberculostatic activity of aureomycin in vitro and in vivo. Am Rev Tub 60:143Google Scholar
  17. Redin GS (1967) Antibacterial activity in mice of minocycline, a new tetracycline. Antimicrob Agents Chemother 1966:371–376Google Scholar
  18. Rothstein E, Johnson M (1954) Streptomycin and oxytetracycline (terramycin) in the treatment of pulmonary tuberculosis. Am Rev Tub Pulm Dis 69:65–70Google Scholar
  19. Singh B, Mitchison DA (1955) The bactericidal activities of combinations of streptomycin, isoniazid, p-aminosalicylic acid (PAS), oxytetracycline (terramycin) and viomycin against Mycobacterium tuberculosis. J Gen Microbiol 13:176–184PubMedGoogle Scholar
  20. Söderholm B (1952) Clinical experiments with terramycin in the treatment of pulmonary tuberculosis. Acta Tub Scand 27:109–116Google Scholar
  21. Steenken W Jr, Wolinsky E (1949) Tuberculostatic activity of aureomycin in vitro and in vivo. Am Rev Tub 59:221–223Google Scholar
  22. Steenken W Jr, Wolinsky E (1950) The tuberculostatic action of terramycin in vitro and in the experimental animal. Ann NY Acad Sci 53:309–318PubMedGoogle Scholar
  23. Steinbach MM, Baker H, Duca CHJ (1950) A comparative study of susceptibility of tubercle bacillus (H37Rv) to aureomycin, streptomycin and para-aminosalicyclic acid. Proc Soc Exp Biol Med 74:596–598PubMedGoogle Scholar
  24. Stewart S, Turnbull FWA, Crofton JW (1954) The use of oxytetracycline in preventing and delaying isoniazid resistance in pulmonary tuberculosis. Br Med J II:1508Google Scholar

References

  1. Aoyagi T, Kawai T, Yamada Y, Fujino T, Kaneko K, Aizawa Y (1975) Basic studies on viomycin and tuberactinomycin (in Japanese). Kekkaku 50:295–301PubMedGoogle Scholar
  2. Bartmann K (1970) Discussion remark. Antibiotica et Chemotherapia 16:81–82Google Scholar
  3. Bartmann K, Blisse A, Zander I (1956) Bakteriologische Untersuchungen über die Wirkung von Viomycin auf Tuberkelbakterien. Beitr Klin Tuberk 115:211–222Google Scholar
  4. Bartmann K, Abel U, Hart R (1966) Die Abhängigkeit des Hemmtiters von der Bebrütungsdauer bei der Bestimmung der Resistenz von M. tuberculosis gegen Antituberkulotika auf Löwenstein-Jensen Medium. Zentralbl Bakteriol Mikrobiol Hyg (A) 201:538–548Google Scholar
  5. Bartz QR, Ehrlich J, Mold JD, Penner MA, Smith RM (1951) Viomycin, a new tuberculostatic antibiotic. Am Rev Tuberc 63:4–6PubMedGoogle Scholar
  6. Caltrider PG (1967) Viomycin. In: Gottlieb D, Shaw PD (eds) Antibiotics, vol I, Mechanism of action. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. Canetti G, Fox W, Khomenko A, Mahler HT, Menon NK, Mitchison DA, Rist N, gmelev NA (1969) Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull WHO 41:21–43PubMedGoogle Scholar
  8. Carr DT, Karlson AG (1961) Optimal regimens of antituberculous drugs. Am Rev Resp Dis 84:90–92PubMedGoogle Scholar
  9. Coletsos P (1951) L’action synergique in vitro sur Mycobacterium tuberculosis de streptomycine-P.A.S.-viomycine-neomycine dans 11 types d’association. Rev Tuberc (Paris) 15:957–965Google Scholar
  10. Ehrlich J, Smith RM, Penner MA, Anderson LE, Bratton AC Jr (1951) Antimicrobial activity of streptomyces floridae and of viomycin. Am Rev Tuberc 63:7–16PubMedGoogle Scholar
  11. Finlay AC, Hobby GL, Hochstein F, Lees TM, Lenert TF, Means JA, P’an SY, Regna PP, Routien JB, Sobin BA, Tate KB, Kane JH (1951) Viomycin, a new antibiotic active against mycobacteria. Am Rev Tuberc 63:1–3PubMedGoogle Scholar
  12. Gernez-Rieux CH, Tacquet A, Chenet C (1951) Etude expérimentale du pouvoir tuberculostatique de la viomycine. Rev Tuberc (Paris) 15:665–668Google Scholar
  13. Grosset J, Canetti G (1962) Teneur des souches sauvages de Mycobacterium tuberculosisen variants résistants aux antibiotiques mineurs. Ann Inst Pasteur 103:163–184Google Scholar
  14. Grumbach F (1965) Etudes chimiothérapiques sur la tuberculose avancée de la souris. Adv Tuberc Res 14:31–96Google Scholar
  15. Hobby GL, Lenert TF (1953) The control of experimental mouse tuberculosis by the intermittent administration of streptomycin, viomycin, isoniazid and streptomycilidene isonicotinyl hydrazide. Am Rev Tuberc 68:292–306PubMedGoogle Scholar
  16. Hobby GL, Lenert TF (1957) The in vitro action of antituberculous agents against multiplying and non-multiplying microbial cells. Am Rev Tuberc Pulm Dis 76:1031–1048Google Scholar
  17. Hobby GL, Lenert TF, Donikian M, Pikula D (1951) The activity of viomycin against Mycobacterium tuberculosis and other microorganisms in vitro and in vivo. Am Rev Tuberc 63:17–24PubMedGoogle Scholar
  18. Hobby GL, Lenert TF, Rivoire ZC, Donikian M, Pikula D (1953) In vitro and in vivo activity of streptomycin and isoniazid singly and in combination. Am Rev Tuberc 67:808–827PubMedGoogle Scholar
  19. Hok TT, Seng TK (1964) A comparative study of the susceptibility to streptomycin, cycloserine, viomycin and kanamycin of tubercle bacilli from 100 patients never treated with cycloserine, viomycin and kanamycin. Am Rev resp Dis 94:961–962Google Scholar
  20. Karlson AG, Gainer JH (1951) The effect of viomycin in tuberculosis of guinea pigs, including in vitro effects against tubercle bacilli resistant to certain drugs. Am Rev Tuberc 63:36–43PubMedGoogle Scholar
  21. Kohout J (1973) Chemotherapie der Tuberkulose. Facultas, WienGoogle Scholar
  22. Levaditi C (1951) La viomycine, nouvel antibiotique tuberculostatique. Rev Immunol (Paris) 15:297–302Google Scholar
  23. Mackaness GB (1952) The action of drugs on intracellular tubercle bacilli. J Pathol Bacteriol LXIV:429–445Google Scholar
  24. Mac Kenzie CR, Jordan DC (1970) Cell wall phospholipid and viomycin resistance in Rhizobium meliloti. Biochem Biophys Res Comm 40:1008–1012PubMedGoogle Scholar
  25. Mc Clatchy JK, Kanes W, Davidson PT, Moulding TS (1977) Cross-resistance in M. tuberculosis to kanamycin, capreomycin and viomycin. Tubercle 58:29–34PubMedGoogle Scholar
  26. Plichet A (1951) Un nouvel antibiotic contre la tuberculose. La viomycine. Presse Méd 59:219–221PubMedGoogle Scholar
  27. Shepard CS (1957) Use of He La cells infected with tubercle bacilli for the study of anti-tuberculous drugs. J Bacteriol 73:494–498PubMedGoogle Scholar
  28. Simârié Z, Kraus P, Krausovd. E (1966) Antituberculotics (in Czech). Spofa, Prague, p 112Google Scholar
  29. Singh B, Mitchison DA (1955) The bactericidal activities of combinations of streptomycin, isoniazid, p-aminosalicylic acid (PAS), oxytetracycline (terramycin) and viomycin against Mycobacterium tuberculosis. J gen Microbiol 13:176–184PubMedGoogle Scholar
  30. Steenken W Jr, Wolinsky E (1951) Viomycin in experimental tuberculosis. Am Rev Tuberc 63:30–35PubMedGoogle Scholar
  31. Tacquet A, Chenet C (1951) La viomycine. Rev Tuberc (Paris) 15:665–669Google Scholar
  32. Tsukamura M (1961) Variation and heredity of mycobacteria with special reference to drug resistance. Jpn J Tuberc 9:43–64PubMedGoogle Scholar
  33. Tsukamura M, Mizuno S, Murata H, Oshima T (1975) Critical concentrations for resistances of tubercle bacilli to tuberactinomycin-N, viomycin, capreomycin, and lividomycin in patients treated with these agents (cross-resistance relationship among resistances to aminoglycoside antibiotics found during chemotherapy for tuberculosis) (in Japanese). Kekkaku 50:123–130PubMedGoogle Scholar
  34. Yamada T, Masuda K, Shoji K, Hori M (1972) Analysis of ribosomes from viomycin-sensitive and resistant strains of Mycobacterium smegmatis. J Bacteriol 112:1–6PubMedGoogle Scholar
  35. Yamada T, Mizuguchi Y, Suga K (1976) Localization of co-resistance to streptomycin, kanamycin, capreomycin and tuberactinomycin, in core particles derived from ribosomes of viomycin-resistant Mycobacterium smegmatis. J Antib A29:1124–1126Google Scholar
  36. Youmans GP, Youmans AS (1951) The effect of viomycin in vitro and in vivo on Mycobacterium tuberculosis. Am Rev Tuberc 63:25–29PubMedGoogle Scholar

References

  1. Adàmek L, Trnka L (1972) Comparison of the antituberculotic efficiency of terizidone (Terivalidin, Bracco) and that of D-cycloserine both in vitro and in vivo. Giorn It Mal Tor XXVI:241–247Google Scholar
  2. Barclay WR, Russe H (1955) The in vitro action of cycloserine on M. tuberculosis. Am Rev Tuberc 72:236–241PubMedGoogle Scholar
  3. Bönicke R, Lisboa BP (1963) Zur Problematik der Resistenzbestimmung bei D-Cycloserin. Beitr Klin Tuberk 126:212–221Google Scholar
  4. Bonati F, Bertoni L, Rosati G, Zanichelli V (1965) Caratteristiche biologiche ed attività antibatterica del Terizidone. Il Farmaco 20:381–395Google Scholar
  5. Bondi A, Kornblum J, Forte C (1957) Inhibition of antibacterial activity of cycloserine by alpha-alanine. Proc Soc Exp Biol Med 96:270–272PubMedGoogle Scholar
  6. Catena E (1969) Primi rilievi anatomo-istologici sull’attività antitubercolare del Terizidone nel coniglio. Riv Pat Clin Tuberc 42:164–169Google Scholar
  7. Ciak J, Hahn FE (1959) Mechanisms of action of antibiotics. II. Studies on the modes of action of cycloserine and its L-stereo-isomer. Antibiot Chemother (Washington) 9:47–50Google Scholar
  8. Coletsos P, Oriot E, Regel N de (1957) Étude de la sensibilité de Mycobacterium tubercu-losis à la cycloserine et méthode de titrage in vitro. Ann Inst Pasteur 93:21–29Google Scholar
  9. Conzelman GM Jr, Jones RK (1956) On the physiologic disposition of cycloserine in ex-perimental animals. Am Rev Tub Pulm Dis 74:802–806Google Scholar
  10. Cuckler AC, Frost BM, McClelland L, Solotorovsky M (1955) The antimicrobial evaluation of oxamycin (3–4-amino-3-isoxazolidone) a new broad spectrum antibiotic. Antibiot Chemother (Washington) 5:191–197Google Scholar
  11. Cummings MM, Patnode RA, Hudgins PC (1955) Effects of cycloserine on Mycobacterium tuberculosis in vitro. Antibiot Chemother (Washington) 5:198–203Google Scholar
  12. Curtiss R, Charamella LJ, Berg C, Harris PE (1965) Kinetic and genetic analysis of D-cycloserine inhibition and resistance in Escherichia coli. J Bacteriol 90:1238–1250PubMedGoogle Scholar
  13. David HL (1971) Resistance to D-cycloserine in the tubercle bacilli: mutation rate and transport of alanine in parenteral cells and drug-resistant mutants. Appl Microbiology 21:888–892Google Scholar
  14. Dickinson JM (1968) In vitro and in vivo studies to assess the suitability of anti-tuberculous drugs for use in intermittent chemotherapy regimens. Bull Int Union Tuberc XLI:309315Google Scholar
  15. Di Perna A (1969) Ricerche sperimentali sull’attività antimicobatterica del Terizidone. Riv Pat Clin Tuberc 42:158–163Google Scholar
  16. Di Perna A, Vinciguerra E, Valente S (1967) Effetti de Terizidone sulla tubercolosi sperimentale della camera anteriore dell’occhio dell coniglio. G Ital Mal Tor 21:57–73 SupplGoogle Scholar
  17. Freerksen E, Bönicke R, Lisboa B (1958) Über das Verhalten von Cycloserin in vivo. Tuberk Arzt 12:39–49Google Scholar
  18. Freerksen E, Krüger-Thiemer E, Rosenfeld M (1959) Cycloserin. Antibiot Chemother (Basel) 6:303–396Google Scholar
  19. Fust B (1958a) D-Cycloserin. Medizinische 12:470–478Google Scholar
  20. Fust B (1958b) Experimentelle Grundlagen zur Wirkung von D-Cycloserin. In: Walter AM (Hrsg) Neue Tuberkulostatika und Tuberkulostatika-Resistenz von Tuberkelbakterien. Thieme, Stuttgart, pp 106–112Google Scholar
  21. Fust B, Böhni E, Pellmont B, Zbinden G, Studer A (1958) Experimentelle Untersuchungen mit D-Cycloserin. Schweiz Z Tuberk 15:129–157PubMedGoogle Scholar
  22. Gernez-Rieux CH, Tacquet A (1956) Action de la cyclosérine sur la tuberculose expérimentale du cobaye et du lapin. Ann Inst Pasteur 91:623–630Google Scholar
  23. Gordon FB, Quan AL (1972) Susceptibility of Chlamydia to antibacterial drugs: test in cell cultures. Antimicrob Agents Chemother 2:242–244PubMedGoogle Scholar
  24. Grula MM, Grula EA (1965) Action of cycloserine on a species of Erwinia with reference to cell division. Can J Microbiol 11:453–455PubMedGoogle Scholar
  25. Grumbach F (1965) Etudes chimiothérapiques sur la tuberculose avancée de la souris. Adv Tuberc Res 14:31–96Google Scholar
  26. Harris DA, Ruger M, Reagan MA, Wolf FJ, Peck RL, Wallick H, Woodruff HB (1955) Discovery, development, and antimicrobial properties of D-4-amino-3-isoxazolidone (oxamycin), a new antibiotic produced by Streptomyces garyphalus n.sp. Antibiot Chemother (Washington) 5:183–190Google Scholar
  27. Hawkins JE, McClean VR (1966) Comparative studies of cycloserine inhibition of mycobacteria. Am Rev Respir Dis 93:594–602PubMedGoogle Scholar
  28. Hoeprich PD (1963) Alanine: cycloserine antagonism. III. Quantitative aspects and relations to heating of culture media. J Lab Clin Med 62:657–662PubMedGoogle Scholar
  29. Hoeprich PD (1965) Alanine• cycloserine antagonism. IV. Demonstration of D-alanine in the serum of guinea pigs and mice. J Biol Chem 240:1654–1660PubMedGoogle Scholar
  30. Howe WB, Melson GL, Meredith CH, Morrison JR, Platt MH, Strominger JL (1964) Stepwise development of resistance to D-cycloserine in Staphylococcus aureus. J Pharmacol Exp Ther 143:282–285PubMedGoogle Scholar
  31. Kreis B (1970) Resistance of cycloserine. Scand J Respir Dis Suppl 71:266–268PubMedGoogle Scholar
  32. Kreis B, Fournaud S (1965) Les traitements antituberculeux de très courte durée chez la souris II. Résultates. Ann Inst Pasteur 108:117–120Google Scholar
  33. Lucchesi M (1970) Antimicrobial effect of cycloserine. Scand J Respir Dis Suppl 71:1321Google Scholar
  34. Lucchesi M, Mancini P, Matzen M (1968) Su alcuni aspetti dell’ attività antimicobatterica in vitro della cycloserina e del terizidone. Inn Ist Forlanini 28:105–115Google Scholar
  35. Manten A, Klingern B vaan, Voogd CE, Meertens MGP (1968) D-cycloserine as a bactericidal drug. Antagonisms between D-cycloserine and the bacteriostatic antibiotics chloramphenicol and tetracycline. Chemotherapy 13:242–248PubMedGoogle Scholar
  36. Mariani B, Bisetti A, Velluti G (1968) Ricerche sperimentali e clinico-therapeutiche mediante terizidone nella tubercolosi. Minerva Med 59:2445–2458PubMedGoogle Scholar
  37. Meier KE (1962) Beitrag zur Wirksamkeit des D-Cycloserin. Beitr Klin Tuberk 125:222240Google Scholar
  38. Meissner G (1957) Persönliche Mitteilung: Cycloserin-Stabilität im Ei-Medium. Kolloquium Neue Antituberkulotika Forschungsinstitut Borstel, November 1957Google Scholar
  39. Moulder JW, Novosel DL, Officer JE (1963) Inhibition of the growth of agents of the psittacosis group by D-cycloserine and its specific reversal by D-alanine. J Bacteriol 85:707–710PubMedGoogle Scholar
  40. Nakamura M (1957) Amebicidal action of cycloserine. Experientia 13:29Google Scholar
  41. Neilands JB (1956) Metal and hydrogen-ion binding properties of cycloserine. Arch Biochem Biophys 62:151–162PubMedGoogle Scholar
  42. Neuhaus FC (1967) D-Cycloserine and O-carbamyl-D-serine. In: Gottlieb D, Shaw PD (eds) Antibiotics, vol I: Mechanism of action. Springer, Berlin Heidelberg New York, pp 40–83Google Scholar
  43. Nitti V, Tanzi PL (1957) Sull’attività battericida della cicloserina in vitro. Arch Tisiol Sz Sci 12:42–49Google Scholar
  44. Nitti V, Catena E, Ninni A, Marsico SA (1969) L’attività del terizidone nella tubercolosi sperimentale del coniglio. Arch Tisiol Mal App Resp (Sz Sci) 24:667–698Google Scholar
  45. Patnode RA, Hudgins PC, Cummings MM (1955a) Effect of cycloserine on experimental tuberculosis in guinea pigs. Am Rev Tuberc Pulm Dis 72:117–118Google Scholar
  46. Patnode RA, Hudgins PC, Cummings MM (1955b) Further observation on the effect of cycloserine on tuberculosis in guinea pigs. Am Rev Tuberc Pulm Dis 72:856–858Google Scholar
  47. Ratnam S, Chandrasekhar S (1976) The pathogenicity of spheroplasts of Mycobacterium tuberculosis. Am Rev Respir Dis 114:549–554PubMedGoogle Scholar
  48. Reiss J, Townsend SM, Gables C (1960) Cycloserine: Growth enhancement phenomen found during sensitivity studies: clinical implications. J Lab Clin Med 56:607–612Google Scholar
  49. Shepard CC (1957) Use of Hela cells infected with tubercle bacilli for the study of antituber-culous drugs. J Bacteriol 73:494–498PubMedGoogle Scholar
  50. Smith JL, Weinberg ED (1962) Mechanisms of antibacterial action of bacitracin. J Gen Microbiol 28:559–569PubMedGoogle Scholar
  51. Smrt J, Beranek J, Sicher J, Skoda J, Hess VF, Sorm F (1957) Synthesis of L-4-amino-isoxazolidone, the unnatural stereoisomer of cycloserine and its antibiotic activity. Experientia 13:291–293PubMedGoogle Scholar
  52. Schmidt LH (1956) Studies on the therapeutic properties of cycloserine. Transact 15th Conf Chemother Tuberc VAAF:353–365Google Scholar
  53. Steenken W Jr, Wolinsky E (1956) Cycloserine: antituberculous activity in vitro and in the experimental animal. Am Rev Tuberc Pulm Dis 73:539–546Google Scholar
  54. Tanaka N, Umezawa H (1964) Synergism of D-4-amino-3-isoxazolidone and 0-carbamylD-serine. J Antibiotics Ser A 17:8–11Google Scholar
  55. Trivellato E, Concilio C (1958) Stereoisomers of cycloserine. I. Bacteriostatic activity towards some microorganisms. Arch Int Pharmacodyn Ther 117:313–316PubMedGoogle Scholar
  56. Viallier J, Cayré RM (1956) Action bactériostatique sur Mycobacterium tuberculosis exercée par l’association cycloserine - isoniazide. Compt Rend Soc Biol Paris 150:1970–1971Google Scholar
  57. Virgilio R, Gonzales C, Munoz N, Cabezon T, Mendoza S (1970) Staphylococcus aureus protoplasting induced by D-cycloserine. J Bacteriol 104:1386–1387PubMedGoogle Scholar
  58. Wargel RJ, Shadur CA, Neuhaus FC (1970) Mechanism of D-cycloserine action: transport systems for D-alanine, D-cycloserine, L-alanine, and glycine. J Bacteriol 103:778–788PubMedGoogle Scholar
  59. Wargel RJ, Shadur CA, Neuhaus FC (1971) Mechanism of D-cycloserine action: transport mutants for D-alanine, D-cycloserine, and glycine. J Bacteriol 105:1028–1035PubMedGoogle Scholar
  60. Wilson DE, Williams TW Jr (1966) In vitro susceptibility of nocardia to antimicrobial agents. Antimicrob Agents Chemother 1965:408–411Google Scholar
  61. Yamada K, Sawaki S, Hayami S (1957) Inhibitory effect of cycloserine on some enzymic activities related to vitamin B6. J Vitaminol (Osaka) 3:68–71Google Scholar
  62. Zygmut WA (1962) Reversal of D-cycloserine inhibition of bacterial growth by alanine. J Bacteriol 84:154–156Google Scholar
  63. Zygmut WA (1963) Antagonism of D-cycloserine inhibition of mycobacterial growth by D-alanine. J Bacteriol 85:1217–1220Google Scholar

References

  1. Bartmann K (1960) Kreuzresistenz zwischen a-Äthylthioisonicotinamid (1314 Th) und Thiosemicarbazon (Conteben). Tuberk Arzt 14:525–529Google Scholar
  2. Bönicke R (1965) Vergleichende In-vitro-Untersuchungen zur tuberkulostatischen Wirk-samkeit des Aethionamids und seines Sulfoxyds. Beitr Klin Tuberk 132:311–314Google Scholar
  3. Clini V, Grassi L (1970) The action of new antituberculous drugs on intracellular tuberclebacilli. Antibiot Chemother 16:20–26PubMedGoogle Scholar
  4. Dickinson JM (1968) In vitro and in vivo studies to assess the suitability of anti-tuberculous drugs for use in intermittent chemotherapy regimens. Bull Int Union Tuberc XLI:309315Google Scholar
  5. Dickinson JM, Mitchison DA (1966a) In vitro studies on the choice of drugs for intermittent chemotherapy of tuberculosis. Tubercle 47:370–380Google Scholar
  6. Dickinson JM, Mitchison DA (1966b) Short-term intermittent chemotherapy of experimental tuberculosis in the guinea pig. Tubercle 47:381–393Google Scholar
  7. Eule H (1965) Ethionamid-und Thiosemicarbazon-Kreuzresistenz und ihre Bedeutung für die Klinik. Z Tuberk 123:36–41PubMedGoogle Scholar
  8. Eule H, Werner E (1967) Die Resistenz des Mycobacterium tuberculosis gegen Ethionamid, Thiosemicarbazon und Isoxyl und ihre Beziehung zueinander. Beitr Klin Tuberk 134:247–258Google Scholar
  9. Gialdroni-Grassi G, Grassi C (1966) Chemotherapy of infections caused by atypical mycobacteria. Antimicrobial Agents Chemother 1965:1074–1078Google Scholar
  10. Grumbach F (1961) Le traitement de la tuberculose expérimentale de la souris, par l’association isoniazide-éthionamide à différentes doses. Application des résultats à la posologie clinique. Rev Tuberc (Paris) 25:1365–1385Google Scholar
  11. Grumbach F (1965) Etudes chimiothérapiques sur la tuberculose avancée de la souris. Adv Tuberc Res 14:31–96Google Scholar
  12. Grunert M, Werner E, Iwainsky H, Eule H (1968) Veränderungen des Äthionamides und seines Sulfoxydes in vitro. Beitr Klin Tuberk 138:68–82Google Scholar
  13. Hamilton EJ, Eidus L, Little E (1962) A comparative study in vivo of isoniazid and alphaethylthioisonicotinamide. Am Rev Respir Dis 85:407–412PubMedGoogle Scholar
  14. Hilson GRF (1967) Accurate testing of sensitivity to ethionamide. V Congr Chemoth Wien 1967 Vol 1I/2 541–548Google Scholar
  15. Krebs A (1967) The action of antituberculous drugs. Tuberkuloza 19:328–337PubMedGoogle Scholar
  16. Krebs A, Noack K (1968) Die Wirkungsweise antituberkulöser Medikamente bei konti-nuierlicher und intermittierender Anwendung. Jahreskongr Ges Seuchenschutz Leipzig 11.-14. Sept. 1968Google Scholar
  17. Lefford MJ (1969) The ethionamide sensitivity of East African strains of Mycobacterium tuberculosis resistant to thioacetazone. Tubercle 50:7–13PubMedGoogle Scholar
  18. Nitti V (1959) La thioamide dell’acido-a-etilisonicotinico e le sua attività antimicobatterica in vitro. Arch Tisiol 14:819–841PubMedGoogle Scholar
  19. Noufflard-Guy-Loé H, Berteaux S (1962) Etude expérimentale de l’activité antituberculeuse d’un thioamide isonicotinique voisin de l’éthionamide: le 1321 Th (9778 R.P.) Rev Tub Pneumol 26:1204–1215Google Scholar
  20. Otten H (1971) Continuous and intermittent therapy of murine tuberculosis with ethionamide and other antituberculosis drugs. 20th Conf Int Union Tuberc New York Sept 1969 — Symposion: les thioamides. Theraplix-Press Paris 75–79Google Scholar
  21. Putter J (1964) Photometrische Bestimmung des 2-Äthyl-isothio-nicotinylamid in Organen und Körperflüssigkeiten. Arzneimittelforschung 14:1198–1203Google Scholar
  22. Rist N (1956) Etude expérimentale d’un nouveau médicament antituberculeux, le thioami-de de l’acide a-éthylisonicotinique. Atti Soc Lomb Sci Med Biol 11:388–394Google Scholar
  23. Rist N (1960) L’activité antituberculeuse de l’éthionamide (l’alpha-éthyl-thioisonicotin-amide ou 1314 Th). Etude expérimentale et clinique. Adv Tuberc Res 10:69–126Google Scholar
  24. Rist N (1964) Die experimentellen Grundlagen der klinischen Anwendung von Ätina bei chronischer Lungentuberkulose. Z Tuberk 122:116–121PubMedGoogle Scholar
  25. Rist N, Grumbach F, Libermann D, Moyeux M, Cals S, Clavel S (1958) Un nouveau médicament antituberculeux actif sur les bacilles isoniazido-résistants: le thioamide de l’acide a-éthylisonicotinique. Etude expérimentale. Rev Tuberc (Paris) 22:278–283Google Scholar
  26. Sojkovâ M, Tousek J, Trnka L (1965) Zur Frage der Kreuzresistenz zwischen Ethionamid, Thiosemikarbazonen und Thioharnstoffderivaten. Praxis Pneumol 19:522–527Google Scholar
  27. Schmelev MA, Korotaev DA, Kozoulitsina TJ (1971) Etude comparative expérimentale et clinique du prothionamide et de l’éthionamide. 20th Conf Int Union Tuberc New York Sept 1969 – Symposion: les thioamides. Theraplix-Press Paris 85–88Google Scholar
  28. Schmidt LH (1966) Studies on the antituberculous activity of ethambutol in monkeys. Ann NY Acad Sci 135:747–758PubMedGoogle Scholar
  29. Schütz I, Bartmann K, Radenbach KL, Siegler W (1969) Vergleich der Verträglichkeit von Prothionamid und Ethionamid im Doppelblindversuch. Beitr Klin Tuberk 140:296–303Google Scholar
  30. Steenken W, Montalbine V (1960) The antituberculous activity of thioamide in vitro and in the experimental animal (mouse and guinea pig). Am Rev Respir Dis 81:761–763PubMedGoogle Scholar
  31. Stottmeier KD, Woodley CL, Kubica GP, Beam RE (1967) A simple biological method for determination of small amounts of tuberculostatic agents in fluids. Bull WHO 37:961–966PubMedGoogle Scholar
  32. Tsukamura M, Tsukamura S (1967) On the instability of ethionamide resistance and on the stability of other drug resistances in tubercle bacilli (five to nine year’s in vitro observation). Kekkaku 42:23–27PubMedGoogle Scholar
  33. Urbancik R, Burjanova B (1967) Beitrag zum Problem der Empfindlichkeitsbestimmung von Tuberkelbakterien gegen Athionamid Beitr Klin Tuberk 131:339–346Google Scholar
  34. Verbist L (1966) Susceptibility of mycobacteria to 4,4’-diisoamyloxythiocarbanilide. Antimicrobial Agents Chemother 1965:298–305Google Scholar
  35. Walter AM, Otten H, Yamamura Y, Bloch H (1960) Bacterial populations in experimental murine tuberculosis. III. Chemotherapeutic studies. J Infect Dis 107:213–223PubMedGoogle Scholar

References

  1. Allen BW, Mitchison DA, Chan YC, Yew WW, Allan WGL, Girling DJ (1983) Amikacin in the treatment of pulmonary tuberculosis. Tubercle 64:111–118PubMedGoogle Scholar
  2. Ariji F (1971) Electron microscopic studies on tubercle bacilli treated with Kanamycin (in Japanese). Kekkaku 46:53–57PubMedGoogle Scholar
  3. Bartmann K (1970) Discussion remark. Antibiotica et Chemotherapia 16:81–82Google Scholar
  4. Bartmann K, Abel U, Hart R (1966) Die Abhängigkeit des Hemmtiters von der Bebrütungsdauer bei der Bestimmung der Resistenz von M. tuberculosis gegen Antituberkulotika auf Löwenstein-Jensen-Medium. Zentralbl Bakteriol Mikrobiol Hyg (A) 201:538–548Google Scholar
  5. Benveniste R, Davies J (1973) Mechanism of antibiotic resistance in bacteria. Annu Rev Biochem 42:471–493PubMedGoogle Scholar
  6. Brouet G, Marche J, Chevalier J, Liot F, Meur Le G, Bergogne F (1959) Etude expérimentale et clinique de la kanamycine dans l’infection tuberculeuse. Rev Tuberc 23:949–988Google Scholar
  7. Burjanovâ B, Dornetzhuber V (1975) Empfindlichkeit der Stämme des M. kansasii auf verschiedene Antibiotika und Chemotherapeutika in vitro und in vivo. Z Erkr Atmungsorg 142:68–77Google Scholar
  8. Canetti G, Fox W, Khomenko A, Mahler HT, Menon NK, Mitchison DA, Rist N, Smelev NA (1969) Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull WHO 41:21–43PubMedGoogle Scholar
  9. Daddi G, Basilico F, Grassi G (1959) Use of cultures of monocytes for the assessment of activity of antituberculosis drugs (in Italian). G Ital Tuberc 13:123–128Google Scholar
  10. Del Bene VE, Farrar E Jr (1972) Tobramycin: in vitro activity and comparison with kanamycin and gentamycin. Antimicrob Agents Chemother 1:340–342Google Scholar
  11. Funatsu G, Wittman HG (1972) Location of aminoacid replacements in protein S12 iso-lated from Escherichia coli mutants resistant to streptomycin. J Mol Biol 68:547–556PubMedGoogle Scholar
  12. Gâlvez-Brandon J, Bartmann K (1969) Statistical aspects of the proportion method for de-termining the drug resistance of tubercle bacilli. Scand J Respir Dis 50:1–18PubMedGoogle Scholar
  13. Grosset J, Canetti G (1962) Teneur des souches sauvages de Mycobacterium tuberculosis en variants résistants aux antibiotiques mineurs. Ann Inst Pasteur 103:163–184Google Scholar
  14. Grumbach F (1965) Etudes chimiothérapiques sur la tuberculose avancée de la souris. Adv Tuberc Res 14:31–96Google Scholar
  15. Hejnÿ J (1978) Mycobacteriological aspects of the treatment of mycobacterioses. I. In vitro studies (in Czech.). Stud pneumol phtiseol cechoslovac 38:579–583Google Scholar
  16. Iwasaki T (1960) Experimental pathologic study on the effects of kanamycin on tuberculosis. Ann Rep Jap Soc Tuberc No 5:27–50Google Scholar
  17. Kondo S, Akanishi M, Utahara R, Maeda K, Umezawa H (1968) Isolation of kanamycin and paromamine inactivated by E. coli carrying R factor. J Antibiot 21 A:22–29Google Scholar
  18. Kopanoff DE, Kilburn JO, Glassroth JL, Snider DE Jr, Farer LS, Good RC (1978) A continuing survey of tuberculosis primary drug resistance in the United States: March 1975 to November 1977. Am Rev Respir Dis 118:835–843PubMedGoogle Scholar
  19. Kubica GP, Dye WE (1967) Laboratory methods for clinical and public health mycobac-teriology. Public Health Service Publications Nr 1547. US Govt Printing OfficeGoogle Scholar
  20. McClatchy JK, Kanes W, Davidson PT, Moulding TS (1977) Cross-resistance in M. tuber-culosis to kanamycin, capreomycin and viomycin. Tubercle 58:29–34PubMedGoogle Scholar
  21. Modr Z, Hermanskÿ M, Vlcek V (1964) Antibiotics and their pharmaceutical products (in Czech.). Avicenum PragueGoogle Scholar
  22. Morellini M, Avegno P (1959) Antimicrobial activity of kanamycin both in vitro and in vivo (in Italian). Ann Inst Forlanini 19:195–201Google Scholar
  23. Patnode RA, Hudgins PC (1958) Effect of kanamycin on Mycobacterium tuberculosis in vitro. Am Rev Tuberc Pulm Dis 78:138–139Google Scholar
  24. Pavlov EP (1970) Several factors influencing the activity of streptomycin, kanamycin and isoniazid in intracellularly located tubercle bacilli (in Russian). Probl Tuberk 48, issue 9:72–76PubMedGoogle Scholar
  25. Sanders WE Jr, Hartwig C, Schneider N, Cacciatore R, Valdez H (1982) Activity of ami-kacin against Mycobacteria in vitro and in murine tuberculosis. Tubercle 63:201–208PubMedGoogle Scholar
  26. Sato N, Murohashi T, Yanagisawa K (1960) Antimycobacterial activity of kanamycin de-rivates in vitro and in vivo. J Antibiot 13 A:177–179Google Scholar
  27. Sgimané Z, Kraus P (1966) Antituberculous drugs (in Czech) Spofa, PragueGoogle Scholar
  28. Steenken W Jr, Montalbine V, Thurston JR (1958) The antituberculosis activity of kanamycin in vitro and in the experimental animal (guinea pig). Ann NY Acad Sci 76:103–110PubMedGoogle Scholar
  29. Steenken W Jr, Montalbine V, Thurston JR (1959) The antituberculous activity of kanamycin in vitro and in the experimental animal (guinea pig). Am Rev Tuberc Pulm Dis 79:66–71Google Scholar
  30. Taber H, Halfenger GM (1976) Multiple-aminoglycoside-resistant mutants of Bacillus subtilis deficient in accumulation of kanamycin. Antimicrob Agents Chemother 9:251259Google Scholar
  31. Takahashi H (1960) Experimental tuberculosis meningitis in guinea pigs. 4. Effect of the administration of kanamycin (in Japanese). Kekkaku 35:216–218Google Scholar
  32. Tsukamura M (1959a) One-way cross resistance of Mycobacterium avium between kanamycin and viomycin. Jpn J gen Microb 34:268–273Google Scholar
  33. Tsukamura M (1959b) Further studies on the one-way cross resistance in Mycobacterium tuberculosis with special reference to streptomycin resistance, kanamycin resistance and viomycin resistance. Jpn J gen Microb 34:275–281Google Scholar
  34. Tsukamura M (1969) Cross-resistance relatonships between capreomycin, kanamycin, and viomycin resistances in tubercle bacilli from patients. Am Rev Respir Dis 99:780–782PubMedGoogle Scholar
  35. Tsukamura M (1977a) Cross-resistance of tubercle bacilli (a review II) (in Japanese). Kek-kaku 52:47–49Google Scholar
  36. Tsukamura M (1977b) Cross-resistance of tubercle bacilli (a review III) (in Japanese) Kekkaku 52:171–175Google Scholar
  37. Tsukamura M, Noda Y, Yamamoto M (1959) Studies on the kanamycin resistance in Mycobacterium tuberculosis. V. Sensitivity of kanamycin-resistant mutants to various antituberculosis drugs and mutation frequency to various drug resistance in kanamycinresistant mutants. J Antib 12 A:323–324Google Scholar
  38. Tsukamura M, Noda Y, Hayashi M, Torii F (1960a) Studies on the kanamycin-resistance in Mycobacterium tuberculosis. I. J Antib 13A:70–73Google Scholar
  39. Tsukamura M, Noda Y, Torii F (1960b) Relationship between antibacterial action of kanamycin and growth phase of Mycobacterium avium. J Antib 13A:406–409Google Scholar
  40. Tsukamura M, Yamamoto M, Haashi M, Noda Y, Torii F (1962) Further studies on cross resistance in Mycobacterium tuberculosis, with special reference to streptomycin-, kanamycin-, and viomycin resistance. Am Rev Respir Dis 85:427–431PubMedGoogle Scholar
  41. Tsukamura M, Mizuno S (1980) A comparative study on the relationship between the growth rate of tubercle bacilli and the concentration of antituberculous agents (in Japanese). Kekkaku 55:365–370PubMedGoogle Scholar
  42. Waitz JA, Moss EL Jr, Drube CG, Weinstein MJ (1972) Comparative activity of sisomicin, gentamicin, kanamycin, and tobramycin. Antimicrob Agents Chemother 2:431–437PubMedGoogle Scholar
  43. Wright KW, Renzetti AD, Lunn J, Bunn PA (1958) Observations on the use of kanamycin in patients in a tuberculosis hospital. Ann NY Acad Sci 76:157–165PubMedGoogle Scholar
  44. Yamadori H (1981a) In vitro effects of several kinds of gas exposure on the antimicrobial activities of antituberculous agents. II. Bactericidal effects (in Japanese). Kekkaku 56:465–470Google Scholar
  45. Yamadori H (1981b) In vitro effects of several kinds of gas exposure on the antimicrobial activities of antituberculous agents. III. The development of drug resistance (in Japanese). Kekkaku 56:521–524Google Scholar
  46. Yamagisawa K, Sato N (1957) Studies on kanamycin, a new antibiotic against tubercle ba- cilli. I. Effect on virulent tubercle bacilli in vitro and in mice. J Antib 10 A:233–242Google Scholar
  47. Yamagisawa K, Konai K (1958) Studies on kanamycin. IV. Effect of kanamycin on experimental tuberculosis of guinea pigs infected with the strain resistant to various drugs. Jpn J Bact 13:95–103Google Scholar
  48. Yamamoto K, Sakurai H, Inoue I, Yamagami K (1975) Experimental studies on the anti-tuberculous effect of BB-K8 (in Japanese). Kekkaku 50:235–239PubMedGoogle Scholar

References

  1. Buu-Hoï NP, Xuong ND (1953) Sur les composes tuberculostatiques du groupe de la thiourée et leur mécanisme d’ action. C R Acad Sci (Paris) 237:498–500Google Scholar
  2. Crowle AJ, Mitchell RS, Petty TL (1963) The efectiveness of a thiocarbanilide (Isoxyl) as a therapeutic drug in mouse tuberculosis. Am Rev Resp Dis 88:716–717PubMedGoogle Scholar
  3. Dickinson JM, Mitchison DA (1966) In vitro studies on the choice of drugs for intermittent chemotherapy of tuberculosis. Tubercle 47:370–380Google Scholar
  4. Eidus L, Hamilton EJ (1964) In vitro tests with 4,4’-diisoamyloxythiocarbanilide. Am Rev Resp Dis 90:258–260PubMedGoogle Scholar
  5. Emerson PA, Lacey BW, Breach MR (1969) A bacteriological study of thiocarlide mono-therapy. Tubercle (Lond) 50:273–279Google Scholar
  6. Eule H, Werner E (1967) Die Resistenz des M. tuberculosis gegen Ethionamid, Thiosemi-carbazon und Isoxyl und ihre Beziehungen zueinander. Beitr Klin Tuberk 134:247–258Google Scholar
  7. Favez G, Vulliemoz P, Breaud P (1963) Tuberculostatic properties of 4,4’-diisoamyloxyt-hiocarbanilide (Isoxyl) (in German) Schweiz Med Wochenschr 93:1208–1210Google Scholar
  8. Freerksen E (1963) Experimental experiences with 4,4’-diisoamyloxythiocarbanilide (Iso-xyl). Acta Tub Pneumol Belg 54:12–34Google Scholar
  9. Freerksen E, Rosenfeld M (1962) Experimentelle Therapie mit 4,4’-Diisoamyloxythiocarbanilid. Arzneimittelforsch 12:280–282PubMedGoogle Scholar
  10. Freerksen E, Rosenfeld M (1963) Zur experimentellen Wertermittlung des Tuberkulostaticum Isoxyl. Beitr Klin Tuberk 127:386–397Google Scholar
  11. Gubler HV, Friedrich T (1965) Sensitivity testing of tubercle bacilli to Diisoamyloxythiocarbanilid (in German). Schweiz Med Wochenschr 95:1691–1693PubMedGoogle Scholar
  12. Grumbach F (1965) Etudes chimiothérapiques sur la tuberculose avancée de la souris. Adv Tuberc Res 14:31–96Google Scholar
  13. Kubala E, Kubala J (1970) Discussion remark. Antibiotica et Chemotherapia 16:196–198 Lucchesi M (1963) Recherches expérimentales sur le 4,4’-diisoamyloxythiocarbanilide (Isoxyl). Acta Tub Pneumol Belg 54:42–58Google Scholar
  14. Meissner G (1965) Häufigkeit der Resistenz für Conteben und deren Bedeutung für das Auftreten der Resistenz für Isoxyl (4,4’-Diisoamyloxythiocarbanilid) bei Tuberkelbakterien. Prax Pneumol 19:387–395PubMedGoogle Scholar
  15. Meissner G, Stottmeier D (1965) Die Empfindlichkeit der Mycobakterien für 4,4’-Diisoamyloxythiocarbanilid (Isoxyl) und ihre Bestimmung auf Löwenstein-Jensen Nährböden. Beitr Klin Tuberk 130:289–295Google Scholar
  16. Meissner G, Meissner J (1970) Untersuchungen an Kaninchen über Resorption und Verteilung von 35S-3H markiertem 4,4’-Disisoamyloxythiocarbanilid (Thiocarlid). Nuklearmedizin Suppl 8:177–182Google Scholar
  17. Murohashi I,.Yanagisawa I (1963) Experimental study on Isoxyl (Disoxyl). Acta Tub Pneumol Belg 54:35–41Google Scholar
  18. Muzikravié T (1970) Chemoresistance to Isoxyl. Antibiotica et Chemotherapia 16:177–181Google Scholar
  19. Rosenfeld M (1970) Discussion remark. Antibiotica et Chemotherapia 16:201Google Scholar
  20. gimâné Z, Kraus P, Krausovâ E (1966) Antituberculotic drugs (in Czech.). Spofa, Prague pp 112Google Scholar
  21. Sojkovâ M, Tousek J, Trnka L (1965) Zur Frage der Kreuzresistenz zwischen Ethionamid, Thiosemicarbazonen und Thioharnstoffderivaten. Prax Pneumol 19:522–527PubMedGoogle Scholar
  22. Tacquet A, Gernez-Rieux C, Macquet V, Buu-Hoï NP, Xuong ND (1959) Etude in vitro et in vivo de l’activité antituberculeuse de la 4,4’-diisoamyloxythiocarbanilide. Ann Inst Pasteur Lille 10:43–50Google Scholar
  23. Tacquet A, Guillaume J, Macquet V (1963) Etude expérimentale du métabolisme de la 4,4’diisoamyloxythiocarbanilide marquée au soufre radioactif. Acta Tub Pneumol Belg 54:59–65Google Scholar
  24. Tacquet A, Devulder B, Tison F, Martin JC (1970) Activité de l’Isoxyl sur Mycobacterium kansasii: etudes in vitro et chez le cobaye pneumoconiotique. Antib Chemother 16:160–176Google Scholar
  25. Trnka L, Urbancik R, Polenskâ H (1963a) Antimicrobial activity of isoxyl (4,4’-diisoamy-loxythiocarbanilide) in vitro and in vivo (in Czech.). Rozhl Tub 23:147–151Google Scholar
  26. Trnka L, Urbancik R, Polenskâ H (1963b) Antimykobakterielle Aktivität von Isoxyl. I. In Vitro-und Mäuseversuche. Path Microb 26:817–833Google Scholar
  27. Trnka L, Urbancik R, Polenskâ H (1963c) Experimental results in animals with new anti-tuberculous drugs (in Roumanian). Ftisiologia (Bucuresti) 12:215–216Google Scholar
  28. Urbancik R, Trnka L (1963) Report on the antimicrobial activity of Isoxyl on M. tuberculosis “in vitro” and “in vivo”. Acta Tub Pneum Belg 54:66–86Google Scholar
  29. Urbancik R, Trnka L, Polenskâ H (1963) The suitability of intracutaneous infection in guinea pigs induced by virulent tubercle bacilli for the use in chemotherapeutic trials. Experientia 19:23PubMedGoogle Scholar
  30. Urbancik R, Trnka L, Kruml J, Polenskâ H (1964) Antimykobakterielle Aktivität von Is-oxyl. II. Versuche an Meerschweinchen und Kaninchen. Path Microb 27:79–87Google Scholar
  31. Verbist L (1966) Susceptibility of mycobacteria to 4,4’-diisoamyloxythiocarbanilide. Anti-microbial Agents Chemother 1965:298–305Google Scholar
  32. Verbist L (1970) Discussion remark. Antibiotica et Chemotherapia 16:190–192Google Scholar
  33. Viallier J, Cayré RM, Lanéry R (1962) Activité bactériostatique exercée in vitro sur les My-cobactéries par la 4,4’-diisoamyloxythiocarbanilide. CR Soc Bio1156:854–856Google Scholar
  34. Virtanen S (1963) Determination of the sensitivity of Mycobacteria to Isoxyl in vitro. Ann Med exp Fenn 41:430PubMedGoogle Scholar
  35. Wagner WH, Winkelmann E (1969) Tuberkulostatisch wirksame N,N’-Diarylthioharnstoffe, 2. Mitteilung. Arzneimittelforsch 19:719–730PubMedGoogle Scholar
  36. Winkelmann E, Wagner WH, Hilmer H (1969) Tuberkulostatisch wirksame N,N’-Diarylthioharnstoffe, 1. Mitteilung. Arzneimittelforsch 19:543–558PubMedGoogle Scholar

References

  1. Algeorge G, Petre A (1970) Some experimental aspects of cross-resistance between capreomycin and viomycin. Antibiot Chemother 16:32–35PubMedGoogle Scholar
  2. Black HR, Griffith RS, Brickler JF (1964) Preliminary laboratory studies with capreomycin. Antimicrob Agents Chemother 1963:522–529Google Scholar
  3. Bloom C (1970) Capreomycin laboratory studies. Antibiot Chemother 16:1–9PubMedGoogle Scholar
  4. Chang YT (1965) Effects of capreomycin, ethambutol, vadrine, neovadrine, tapazole, griseofulvin and five long-acting sulfonamides in murine leprosy. Antimicrob Agents Chemother 1964:777–782Google Scholar
  5. Clini V, Grassi C (1970) The action of new antituberculous drugs on intracellular tubercle bacilli. Antibiot Chemother 16:20–26PubMedGoogle Scholar
  6. Coletsos PJ, Oriot E (1964 a) Action de la capréomycine sur Mycobacterium tuberculosis en milieux de culture liquides, seule ou associée à la streptomycine, à l’INH et au PAS Ann Inst Pasteur 107:215–231Google Scholar
  7. Coletsos PJ, Oriot E (1964b) Etude de l’activité antibacillaire in vitro de la capréomycine. Rev Tuberc (Paris) 28:413–432Google Scholar
  8. Gaugas JM (1967) Antimicrobial therapy of experimental human leprosy (Myco. leprae) infection in the mouse foot pad. Lepr Rev 38:225–230PubMedGoogle Scholar
  9. Grumbach F (1965) Etudes chimiothérapiques sur la tuberculose avancée de la souris. Adv Tuberc Res 14:31–96Google Scholar
  10. Gunella G (1965) Microbiological, histological and clinical results following the use of capreomycin. Symposium on capreomycin held by Royal Society of Medicine London 15th Jan 1965, Eli Lilly and Comp Press 51–55Google Scholar
  11. Havel A, gimonova S (1970) The effect of capreomycin on “atypical” and avian mycobacterial strains in vitro. Antibiot Chemother 16:17–19PubMedGoogle Scholar
  12. Herr EB Jr, Sutton WB, Stark WM (1962) Chemical and biological studies of capreomycin. Trans 21th Res Conf Pulm Dis VAAF:367–369Google Scholar
  13. Kubala E, Kubala J (1970) Experimental and clinical evaluation of the tuberculostatics - discussion on capreomycin. Antibiot Chemother 16:75–77Google Scholar
  14. Lucchesi M (1970) The antimicrobial activity of capreomycin. Antibiot Chemother 16:27–31PubMedGoogle Scholar
  15. Morse WC, Sproat EF, Arrington CW, Hawkins JA (1966) M. tuberculosis in vitro suscep-tibility and serum level experiences with capreomycin. Ann NY Acad Sci 135:983–988PubMedGoogle Scholar
  16. Nakamura RM, Kanai K, Murohashi T (1964) Effectiveness of capreomycin against ex-perimental tuberculosis of mice and guinea pigs. Kekkaku 39:161–165PubMedGoogle Scholar
  17. Rist N, Grumbach F (1965) Antituberculous activity of capreomycin in vitro and in mice and cross-resistance against capreomycin, viomycin and kanamycin in in vitro and clinical studies. Symposium on capreomycin held by Royal Society of Medicine London 15th Jan 1965, Eli Lilly and Comp Press 19–25Google Scholar
  18. Shepard CC (1964) Capreomycin: activity against experimental infection with Mycobacterium leprae. Science 146:403–404PubMedGoogle Scholar
  19. Sutton WB, Gordee RS, Wick WE (1966) In vitro and in vivo laboratory studies on the antituberculous activity of capreomycin. Ann NY Acad Sci 135:947–959PubMedGoogle Scholar
  20. Schröder KH, Hensel I (1970) The determination of resistance of M. tuberculosis to ca-preomycin. Antibiot Chemother 16:69–72PubMedGoogle Scholar
  21. Stark WM, Higgens CE, Wolfe RN, Hoehn MM, McGuire JM (1963) Capreomycin, a new antimycobacterial agent produced by Streptomyces capreolus sp. n. Antimicrob Agents Chemother 1962:596–606Google Scholar
  22. Verbist L (1970) Experimental and clinical evaluation of the tuberculostatics - discussion on capreomycin. Antibiot Chemother 16:73–75Google Scholar
  23. Welles JS, Harris PN, Small RM, Worth HM, Anderson RC (1966) The toxicity of capreomycin in laboratory animals. Ann NY Acad Sci 135:960–973PubMedGoogle Scholar
  24. Wilson DE, Williams TW Jr (1966) In vitro susceptibility of Nocardia to antimicrobial agents. Antimicrob Agents Chemother 1965:408–411Google Scholar

References

  1. Beggs WH, Jenne JW (1970) Growth inhibition of Mycobacterium tuberculosis after single-pulsed exposures to streptomycin, ethambutol, and rifampin. Infect Immun 2:479–483Google Scholar
  2. Bönicke R (1962) In vitro-Untersuchungen über die tuberkulostatische Aktivität von Dex-tro-2,2’-(Athylendiimino)-di-l-Butanol (Dadibutol). Beitr Klin Tuberk 126:108–117Google Scholar
  3. Buyske DA, Sterling W, Peets E (1966) Pharmacological and biochemical studies on eth-ambutol in laboratory animals. Ann NY Acad Sci 135:715–725Google Scholar
  4. Chang YT (1965) Effects of capreomycin, ethambutol, vadrine, neovadrine, tapazole, griseofulvin and five long-acting sulfonamides in murine leprosy. Antimicrob Agents Chemother 1964:777–782Google Scholar
  5. Clini V, Grassi C (1970) The action of new antituberculous drugs on intracellular tubercle bacilli. Antibiot Chemother 16:20–26PubMedGoogle Scholar
  6. Crowle AJ, Sbarbaro JA, Judson FN, May MH (1985) The effect of ethambutol on tubercle bacilli within cultured human macrophages. Am Rev Respir Dis 132:742745Google Scholar
  7. Diaconiä G (1971) Die Dynamik der experimentellen tuberkulösen Entzündung des Meer-schweinchens unter Einwirkung der Ethambutol-Therapie. Pneumonologie 144:69–81Google Scholar
  8. Dickinson JM (1968) In vitro and in vivo studies to assess the suitability of anti-tuberculous drugs for use in intermittent chemotherapy regimens. Bull Int Union Tuberc XLI:309–315Google Scholar
  9. Donomae J, Yamamoto K (1966) Clinical evaluation of ethambutol in pulmonary tuberculosis. Ann NY Acad Sci 135:849–881PubMedGoogle Scholar
  10. Forbes M, Kuck NA, Peets EA (1962) Mode of action of ethambutol. J Bacteriol 84:1099–1103PubMedGoogle Scholar
  11. Forbes M, Peets EA, Kuck NA (1966) Effect of ethambutol on mycobacteria. Ann NY Acad Sci 135:726–731PubMedGoogle Scholar
  12. Freerksen E, Rosenfeld M (1962) Dextro-2,2’-(Aethylendiimino)-di-1 butanol-dihydroch-lorid in der experimentellen Tuberkulose-Therapie. Arzneimittelforsch 12:359–360PubMedGoogle Scholar
  13. Gialdroni-Grassi G, Grassi C (1966) Chemotherapy of infections caused by atypical my-cobacteria. Antimicrob Agents Chemother 1965:1074–1078Google Scholar
  14. Grumbach F (1966) Activité antituberculeux chez la souris de l’éthambutol (dextro-2,2’éthylènediimino-di-1-butanol) en association avec d’isoniazide ou l’éthionamide. Ann Inst Pasteur 110:69–85Google Scholar
  15. Gupta SK (1964) Combined effect of d-2,2’-(ethylenediimino)-di-l-butanol (ethambutol) with other tuberculostatic agents against different strains of mycobacteria. Indian J Exp Biol 2:81–85Google Scholar
  16. Kalich R (1969) Sensibilitätsprüfung von Mykobakterien gegenüber Ethambutol mit dem Vertikaldiffusionstest. Z Erkr Atmungsorgane 131:107–111Google Scholar
  17. Karlson AG (1961a) Therapeutic effect of ethambutol (dextro-2–2’-(ethylenediimino)di-lbutanol) on experimental tuberculosis in guinea pigs. Am Rev Respir Dis 84:902–904Google Scholar
  18. Karlson AG (1961b) The in vitro activity of ethambutol (dextro-2,2’-(ethylenediimino)di1-butanol) against tubercle bacilli and other microorganisms. Am Rev Respir Dis 84:905–906Google Scholar
  19. Karlson AG (1962) The combined use of ethambutol (dextro-2,2’-(ethylenediimino)-di-1butanol) and isoniazid in experimental tuberculosis of guinea pigs. Am Rev Respir Dis 86:439–441Google Scholar
  20. Krebs A, Noack K (1968) Die Wirkungsweise antituberkulöser Medikamente bei kontinuierlicher und intermitterender Anwendung. Jahreskongr Ges für Seuchenschutz Leipzig 11.-14.9.1968Google Scholar
  21. Kubala E, Kubala J (1970) Experimental and clinical evaluation of the tuberculostatics. Antibiot Chemother 16:75–77Google Scholar
  22. Kuck NA, Peets EA, Forbes M (1963) Mode of action of ethambutol on Mycobacterium tuberculosis strain H37Rv. Am Rev Respir Dis 87:905–906PubMedGoogle Scholar
  23. Lal HM, Robson JM (1963) Ethambutol in experimental murine tuberculosis. Relation of effectiveness of antimicrobial drugs to immunity. Am Rev Respir Dis 87:870–876PubMedGoogle Scholar
  24. Liss RH (1982) Bactericidal activity of ethambutol against extracellular Mycobacterium tuberculosis and bacilli phagocytized by human alveolar macrophages. S Afr Med J 62:15–19Google Scholar
  25. Lucchesi M, Mancini P (1970) The anti-mycobacterial activity of ethambutol. Antibiot Chemother 16:230–238PubMedGoogle Scholar
  26. Lutz A, Berger MA (1962) Données expérimentales sur l’action antituberculeuse in vitro et in vivo du d-2,2’-(éthylènediimino)-di-l-butanol. Ann Inst Pasteur 103:216–221Google Scholar
  27. Mostardini G, Saletti M, Barnabe R (1968) Stability of d-2,2’-(ethylenediimino)di-1-butanoi (ethambutol) in I.U.T.M. medium. Quad Sclav Diagn Clin Lab 4:515–519Google Scholar
  28. Otten H (1971) Continuous and intermittent therapy of murine tuberculosis with ethionamide and other antituberculosis drugs. 20th Conf Int Union Tuberc New York Sept 1969 - Symposium: les thioamides. Theraplix-Press Paris: 75–79Google Scholar
  29. Portaels F, Pattyn SR (1970) Resistance to ethambutol as an aid to the identification of Mycobacterium friedmannii (abscessus) and M. borstelense. J Med Microbiol 3:674676Google Scholar
  30. Pyle MM (1966) Ethambutol in the retreatment and primary treatment of tuberculosis: a four year clinical investigation. Ann NY Acad Sci 135:835–845PubMedGoogle Scholar
  31. Reutgen H, Iwainsky H (1970) Wirkungsmechanismus des Ethambutol. Z Erkr Atmungsorgane 133:457–459Google Scholar
  32. Schmidt LH (1966) Studies on the antituberculous activity of ethambutol in monkeys. Ann NY Acad Sci 135:747–758PubMedGoogle Scholar
  33. Schmidt LH, Lang J, Good RC, Hoffman R (1962) Experimental studies on the toxicity and antituberculosis activity of ethambutol. Trans 21th Conf Pulm Dis VAAF: 355366Google Scholar
  34. Schröder KH, Hensel I (1970) Determination of resistance of M. tuberculosis to ethambutol. Antibiot Chemother 16:302–304PubMedGoogle Scholar
  35. Shepard CC, Chang YT (1964) Activity of antituberculosis drugs against Mycobacterium leprae. Studies with experimental infection of mouse footpads. Int J Lepr 32:260–271PubMedGoogle Scholar
  36. Shepherd RG, Baughn CO, Cantrall ML, Goodstein B, Thomas JP, Wilkinson RG (1966) Structure activity studies leading to ethambutol, a new type of antituberculous compound. Ann NY Acad Sci 135:686–710PubMedGoogle Scholar
  37. Tacquet A, Tison F (1963) Activité in vitro et in vivo du dextro 2–2’ (éthylènediimino)di1-butanol, utilisé seul ou en association sur les mycobactéries atypiques. Rev Tuberc (Paris) 27:431–443Google Scholar
  38. Tacquet A, Devulder B, Pochart E (1970) L’èthambutol dans le traitement de la tuberculose pulmonaire. Antibiot Chemother 16:257–277PubMedGoogle Scholar
  39. Thomas JP, Baughn CO, Wilkinson RG, Shepherd RG (1961) A new synthetic compound with antituberculous activity in mice: ethambutol (dextro-2,2’-(ethylenediimino)-di-lbutanol). Am Rev Respir Dis 83:891–893PubMedGoogle Scholar
  40. Tsukamura M (1965) Resistance pattern of Mycobacterium tuberculosis and Mycobacterium bovis to ethambutol. Act Tuberc Scand 46:89–92Google Scholar
  41. Tsukamura M (1970) Differentiation between pathogenic and nonpathogenic mycobac- teria of group II and group III by susceptibility to ethambutol. Kekkaku 45:237–240PubMedGoogle Scholar
  42. Tsukamura M, Tsukamura S (1967) On the instability of ethionamide resistance and on the stability of other drug resistance in tubercle bacilli (five to nine year’s in vitro observation). Kekkaku 42:23–27PubMedGoogle Scholar
  43. Wilkinson RG, Shepherd RG, Thomas JP, Baughn CO (1961) Stereospecificity in a new type of synthetic antituberculous agent. J Am Chem Soc 83:2212–2213Google Scholar

References

  1. Acocella G, Carlone NA, Cuffini AM, Cavallo G (1985) The penetration of rifampicin, pyrazinamide, and pyrazinoic acid into mouse macrophages. Am Rev Respir Dis 132:1268–1273PubMedGoogle Scholar
  2. Algeorge G, Sibilla A, Rudesco D, Stoian M (1971) Recherches sur l’action protectrice de la rifampicine en administration intermittente dans la tuberculose expérimentale du cobaye. Ftiziologia (Bucuresti) 20 Supp1:69–74Google Scholar
  3. Algeorge G, Rudescu D (1973) Rifampicin effect on tuberculin hypersensitivity and hu- moral antibody response in tuberculous guinea pigs Z Immun Forsch 144:459–466Google Scholar
  4. Aoyagi T, Izumi T, Toyohara M, Kawai T, Shima K, Umeda H (1979) Immunological, pharmacological and dynamic action of rifampicin (in Japanese). Kekkaku 54:573–582Google Scholar
  5. Arioli V, Pallanza R, Furesz S, Carniti G (1967) Rifampicin: a new rifamycin. I. Bacteriological studies. Arzneimittelforsch 17:523–527PubMedGoogle Scholar
  6. Atlas E, Turck M (1968) Laboratory and clinical evaluation of rifampicin. Am J Med Sci 256:247–254Google Scholar
  7. Baba H, Azuma Y (1976) The clinical significance of the critical drug concentration of rifampicin. Report I. Studies on the MIC of rifampicin to tubercle bacilli isolated from the rifampicin untreated patients using 1% Ogawa medium (in Japanese). Kekkaku 51:1–5PubMedGoogle Scholar
  8. Bartmann K, Radenbach KL, Zierski M (1985) Wandlungen in den Auffassungen und der Durchführung der antituberkulösen Chemotherapie. Eine Ubersicht mit praktischen Schlußfolgerungen. Prax Klin Pneumol 39:397–420PubMedGoogle Scholar
  9. Batten J (1968) Experimental chemotherapy of tuberculosis. Brit Med J 3:75–82PubMedGoogle Scholar
  10. Batten J (1969) Rifampicin in treatment of experimental tuberculosis in mice. Tubercle 50:294–298PubMedGoogle Scholar
  11. Batten J (1970) Rifampicin in the treatment of experimental tuberculosis in mice: sterilization of tubercle bacilli in the tissues. Tubercle 51:95–99PubMedGoogle Scholar
  12. Bellahsene A, Forsgren A (1980) Effect of rifampicin on the immune response in mice. Infect Immun 27:15–20PubMedGoogle Scholar
  13. Bibik HF (1972) Frequency and clinical importance of primary drug resistance of Mycobacterium tuberculosis in patients with pulmonary tuberculosis (in Russian). Probi Tuberk 50, issue 8, 20–25