Skip to main content

The Nature and Significance of ATP-Induced Contraction of Microtubule Gels

  • Chapter
Cytomechanics

Abstract

Among the most essential, and dramatic, events in the life of a cell are the processes of cell motility. Cytoplasmic microtubules (we will not consider flagella and cilia microtubules in the present discussion) are a key element in cellular motility (for a review, see Hyams and Stebbings 1979). They appear to be involved in such diverse phenomena as chromosome movement during mitosis, transport of vesicles in axons (Allen et al. 1985) and other cells (Hayden et al. 1983), and elongation of retina cells (Warren and Burnside 1978). Although extensively investigated little is known about either the process controlling microtubule organization in cells, or about the mechanism by which they produce movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen RD, Allen NS, Travis JL (1981) Video-enhanced contrast, differential contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromina latic collaris. Cell Motil 1:291–302

    Article  PubMed  CAS  Google Scholar 

  • Allen RD, Weiss DG, Hayden JH, Brown DT, Fugiwake H, Simpson M (1985) Gliding movement of an bidirectional organelle transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J Cell Biol 100:1736–1752

    Article  PubMed  CAS  Google Scholar 

  • Black M, Lasek RJ (1980) Slow component of axonal transport: two cytoskeletal networks. J Cell Biol 86:616–621

    Article  PubMed  CAS  Google Scholar 

  • Brady ST (1985) A novel ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75

    Article  PubMed  CAS  Google Scholar 

  • Brady ST, Tytell M, Lasek RJ (1984) Axonal tubulin and axonal microtubules: biochemical evidence for cold stability. J Cell Biol 99:1716–1724

    Article  PubMed  CAS  Google Scholar 

  • Elam JS, Cancalon P (1984) Advances in neurochemistry, vol 6. Axonal transport in neuronal growth and regeneration. Plenum, New York

    Google Scholar 

  • Ellisman MH, Porter KR (1980) Microtrabecular structure of the axoplasmic matrix: visualization of cross-linking structures and their distribution. J Cell Biol 87:464–479

    Article  PubMed  CAS  Google Scholar 

  • Hayden JH, Allen RD, Goldman RD (1983) Cytoplasmic transport in keratocytes: direct visualization of particle translocation along microtubules. Cell Motil 3:1–19

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N (1982) Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol 94:129–142

    Article  PubMed  CAS  Google Scholar 

  • Hyams JS, Stebbings H (1979) Microtubule associated cytoplasmic transport. In: Roberts K, Hyams JS (eds) Microtubules. Academic Press, London, pp 487–530

    Google Scholar 

  • Lasek RJ, Garner JA, Brady ST (1984) Axonal transport of the cytoplasmic matrix. J Cell Biol 99:212–221

    Article  CAS  Google Scholar 

  • Lorenz T, Willard M (1978) Subcellular fractionation of intra-axonally transported poly-peptides in the rabbit visual system. Proc Natl Acad Sci USA 75:505–509

    Article  PubMed  CAS  Google Scholar 

  • Medori R, Autilio-Gambetti L, Monaco S, Gambetti P (1985) Experimental diabetic neuropathy: impairment of slow transport with changes in axon cross-sectional area. Proc Natl Acad Sci USA 82:7716–7720

    Article  PubMed  CAS  Google Scholar 

  • Mitchison T, Kirschner M (1984) Microtubule assembly nucleated by isolated centrosomes. Nature 312:232–237

    Article  PubMed  CAS  Google Scholar 

  • Nixon RA, Logvinenko KB (1986) Multiple fates of newly synthesized neurofilament proteins: evidence for a stationary neurofilament network distribution nonuniformly along axons of retinal ganglion cell neurons. J Cell Biol 101:647–659

    Article  Google Scholar 

  • Ochs S (1982) Axoplasmic transport and relation to other nerve functions. Wiley, New York

    Google Scholar 

  • Spiegelman BM, Lopata MA, Kirschner M (1979) Aggregation of microtubule initiation sites preceding neurite outgrowth in mouse neuroblastoma cells. Cell 16:253–263

    Article  PubMed  CAS  Google Scholar 

  • Tashiro T, Kurokawa M, Komiya Y (1984) Two populations of axonally transported tubulin differentiated by their interactions with neurofilaments. J Neurochem 43:1220–1225

    Article  PubMed  CAS  Google Scholar 

  • Telzer BR, Rosenbaum J (1979) Cell cycle-dependent in vitro assembly of microtubules onto the pericentriolar material of HeLa cells. J Cell Biol 81:484–497

    Article  PubMed  CAS  Google Scholar 

  • Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, Kinesin, involved in microtubule motility. Cell 42:39–50

    Article  PubMed  CAS  Google Scholar 

  • Vitadello M, Filliatreau G, Dupont JL, Hassig R, Gorio A, Di Giamberardino L (1985) Altered axonal transport of cytoskeletal proteins in the mutant diabetic mouse. J Neurochem 45:860–868

    Article  PubMed  CAS  Google Scholar 

  • Warren RH, Burnside B (1978) Microtubules in cone myiod elongation in teleost retina. J Cell Biol 78:247–258

    Article  PubMed  CAS  Google Scholar 

  • Weisenberg RC, Cianci C (1984) ATP-dependent gelation-contraction of microtubules assembled in vitro. J Cell Biol 99:1527–1533

    Article  PubMed  CAS  Google Scholar 

  • Weisenberg RC, Rosenfield AC (1975) In vitro polymerization of microtubules into asters and spindles in homogenates of surf clam eggs. J Cell Biol 64:146–158

    Article  PubMed  CAS  Google Scholar 

  • Weisenberg RC, Allen RD, Inoue S (1986) ATP-induced formation and motility of aster-like structures in vitro. Proc Natl Acad Sci USA 83:1728–1732

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weisenberg, R.C. (1987). The Nature and Significance of ATP-Induced Contraction of Microtubule Gels. In: Bereiter-Hahn, J., Anderson, O.R., Reif, WE. (eds) Cytomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72863-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72863-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72865-5

  • Online ISBN: 978-3-642-72863-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics