Skip to main content

Hydrostatic Pressure in Metazoan Cells in Culture: Its Involvement in Locomotion and Shape Generation

  • Chapter
Cytomechanics

Abstract

Internal hydrostatic pressure in bacteria and in plant cells is a main factor determining shape and growth of individual cells and multicellular organisms (cf. Chap. IV.1). The question whether osmotic pressure in animal cells also differs from that of the extracellular fluid is still unresolved. While a difference is obvious for freshwater protists, it is doubtful for cells of multicellular organisms. Erythrocytes of various species and eggs of some marine invertebrates, chick heart fibroblasts, and frog muscle cells all seem to behave roughly like osmometers (Dick 1959, 1966; Olmstead 1966). Doerner (1967) has postulated the occurrence of an internal pressure linked with the uniformly varying modulus of elasticity from the periphery of a cell toward its center. This pressure may vary from point to point on a cell surface and could well be involved in modeling cell shape. More recently, experimental evidence has accumulated showing that cellular behavior in hypotonic media differs considerably from that of an ideal osmometer (i.e. Skalak and Shu Chien 1982; Roti Roti and Rothstein 1973; Raaphorst and Kruuv 1979). Any volume change which is not in accord with Boylè-van’t Hoff s law (deviation from an ideal osmometer) can be due to one of the following factors acting either alone or in accord with each other:

  1. 1.

    presence of an osmotically inactive part of the volume;

  2. 2.

    restricted mobility of the cell water;

  3. 3.

    release or uptake of ions, or other solutes;

  4. 4.

    osmotic activity of cytogel;

  5. 5.

    presence of an active force adding to osmotic pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht-Buehler G (1982) Does blebbing reveal the convulsive flow of liquid and solutes through the cytoplasmic meshwork? Cold Spring Harbor Symp Quant Biol 66:45–59

    Google Scholar 

  • Auersperg N (1972) Microfilaments in epithelial morphogenesis. J Cell Biol 52:206–211

    Article  PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J (1967) Dissoziation and Reaggregation von Epidermiszellen der Larven von Xenopus laevis (Daudin) in vitro. Z Zellforsch Mikrosk Anat 79:118–156

    Article  PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J (1985) Architecture of tissue cells. The structural basis which determines shape and locomotion of cells. Acta Biotheor 34:139–148

    CAS  Google Scholar 

  • Bereiter-Hahn J (1986) Epidermal cell migration and wound repair. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument. Springer, Berlin Heidelberg New York, vol 2. pp 463–470

    Google Scholar 

  • Bereiter-Hahn J (1987) Scanning acoustic microscopy visualized cytomechanical responses to cytochalasin D. J Microsc 146:29–39

    Article  PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J, Strohmeier R (1987) Biophysical aspects of motive force generation in tissue culture cells and protozoa. Fortschritte Zool (in press)

    Google Scholar 

  • Bereiter-Hahn J, Strohmeier R, Kunzenbacher I, Beck K, Vöth M (1981) Locomotion of Xenopus epidermis cells in primary culture. J Cell Sci 52:289–311

    PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J, Strohmeier R, Beck K (1983) Determination of the thickness profile of cells with the reflection contrast microscope. Scientific Tech Inf Process 8:125–128

    Google Scholar 

  • Briggs A (1985) An introduction to scanning acoustic microscopy. Microscopy handbooks 12 Oxford Univ Press, R Micros Soc

    Google Scholar 

  • Clegg JS (1984) Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol 246:133–151

    Google Scholar 

  • Cooper MS, Schliwa M (1986) Transmembrane Ca2+-fluxes in the forward and reversed gal-vanotaxis of fish epidermal cells. In: Ionic currents in Development 311–318. Alan R. Liss Inc. New York

    Google Scholar 

  • Dick DAT (1959) Osmotic properties of living cells. Int Rev Cytol 8:387–448

    Article  PubMed  CAS  Google Scholar 

  • Dick DAT (1966) Cell water. Butterworths, London, 155 pp

    Google Scholar 

  • Dipasquale A (1975) Locomotion of epithelial cells. Factors involved in extension of the leading edge. Exp Cell Res 95:425–439

    CAS  Google Scholar 

  • Doerner K (1967) Pressure gradients in cells. J Theor Biol 14:284–292

    Article  Google Scholar 

  • Dunn GA (1980) Mechanisms of fibroblast locomotion. In: Curtis ASG, Pitts JD (eds) Cell adhesion and motility. pp 409–423 Cambridge Univ press

    Google Scholar 

  • Faulstich H, Trischmann H, Mayer D (1983) Preparation of tetramethylrhodaminyl-phal-loidin and uptake of the toxin into short-term cultured hepatocytes by endocytosis. Exp Cell Res 144:73–82

    Article  PubMed  CAS  Google Scholar 

  • Fujinami N (1976) Studies on the mechanism of circus movement in dissociated embryonic. J Cell Sci 22:133–147

    PubMed  CAS  Google Scholar 

  • Fung YC (1984) Structure and stress-strain relationship of soft tissues. Am Zool 24:13–22

    Google Scholar 

  • Gary-Bobo CM, Solomon AK (1967) Properties of hemoglobin solutions in red cells. J Gen Physiol 52:825–853

    Article  Google Scholar 

  • Harris AK (1973) Cell surface movement related to cell locomotion. Locomotion of tissue cells. Ciba Found Symp 14:3–26

    CAS  Google Scholar 

  • Harvey EN (1933) The flattening of marine eggs under the influence of gravity. J Cell Comp Physiol 4:35

    Article  Google Scholar 

  • Hildebrand JA (1985) Observation of cell-substrate attachment with the acoustic microscope. IEEE Trans Sonics Ultrasonics SU 32:332–340

    Google Scholar 

  • Hildebrand JA, Rugar D (1984) Measurement of cellular elastic properties by acoustic microscopy. J Microsc 134:245–260

    Article  PubMed  CAS  Google Scholar 

  • Hiramoto Y (1982) Rheological properties of echinoderm eggs during cell division. Biorheolo-gy 19:71–78

    CAS  Google Scholar 

  • Hoppe M, Bereiter-Hahn J (1985) Applications of scanning acoustic microscopy — survey and new aspects. IEEE Trans Sonics Ultrasonics SU-32:289–301

    Google Scholar 

  • Ingber DE, Jamieson JD (1985) Cells as tensegrity structures: architectural regulation of his-todifferentiation by physical forces transduced over basement membrane. In: Anderson LC, Gahmberg CG, Explom P (eds) Gene expression during normal and malignant differentiation. Academic Press, London

    Google Scholar 

  • Inouye K, Takeuchi I (1980) Motive force of the migrating pseudoplasmodium of the cellular slime mould Dictyostelium discoideum. J Cell Sci 41:53–64

    PubMed  CAS  Google Scholar 

  • Iwig M, Glaesser D, Bethge M (1981) Cell shape-mediated growth control of lens epithelial cells grown in culture. Exp Cell Res 131:47–55

    Article  PubMed  CAS  Google Scholar 

  • Johnston RN, Atalar A, Heiserman J, Jipson V, Quate CF (1979) Acoustic microscopy: resolution of subcellular detail. Proc Natl Acad Sci USA 76:3325–3329

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N (1964) The motive force of endoplasmic streaming in the ameba. In: Allen RD, Kamiya N (eds) Primitive motile systems in cell biology. Academic Press, London, pp 257–277

    Google Scholar 

  • Kao CJ, Chambers PV, Chambers EL (1954) Internal hydrostatic pressure of the fundulus egg. J Cell Comp Physiol 44:447–461

    Article  CAS  Google Scholar 

  • Kolega J (1986) Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J Cell Biol 102:1400–1411

    Article  PubMed  CAS  Google Scholar 

  • Komnick H, Stockem W, Wohlfarth-Bottermann KE (1972) Ursachen, Begleitphänomene und Steuerung zellulärer Bewegungserscheinungen. Fortschritte d Zool 21:3–60

    Google Scholar 

  • Kunzenbacher I, Bereiter-Hahn J, Osborn M, Weber K (1982) Dynamics of the cytoskeleton of epidermal cells in situ and in culture. Cell Tiss Res 222:445–457

    Article  CAS  Google Scholar 

  • Layrand DB, Matveeva NB, Teplov VA, Beylina SI (1972) The role of elastoosmotic parameters in locomotion of myxomycete plasmodia. Acta Protozool 11:339–354

    Google Scholar 

  • Lee HC, Auersperg N (1980) The use of lanthanum for intracellular calcium measurements in cultured cells. Cell Biol Int Rep 4:675–684

    Article  PubMed  CAS  Google Scholar 

  • Lücke B, McCutcheon (1932) The living cell as an osmotic system and its permeability to water. Physiol Rev 12, 68

    Google Scholar 

  • Olmstead EG (1966) Mammalian cell water. Physiologic and Clinical aspects. H Kimpton, London 199 pp

    Google Scholar 

  • Olson JE, Sankar R, Holtzman D, James A, Fleischhacker D (1986) Energy-dependent volume regulation in primary cultured cerebral astrocytes. J Cell Physiol 128:209–215

    Article  PubMed  CAS  Google Scholar 

  • Oster G (1984) On the crawling of cells. J Embryol Exp Morphol 83:329–364

    PubMed  Google Scholar 

  • Parsegian VA, Fuller N, Rand RP (1979) Measured work of deformation and repulsion of lecithin bilayers. Proc Natl Acad Sci USA 76:2750–2754

    Article  PubMed  CAS  Google Scholar 

  • Phillips HM (1984) Physical analysis of tissue mechanics in amphibian gastrulation. Am Zool 24:657–672

    Google Scholar 

  • Ponder E (1948) Hemolysis and related phenomena. Churchill, London

    Google Scholar 

  • Quate CF, Ash EA (1982) Ultrasonic microscopy in medicine and biology. In: von Bally G, Greguss P (eds) kOptics in biomédical sciences. Springer, Berlin Heidelberg New York, PP 25–33

    Google Scholar 

  • Raaphorst P, Kruuv J (1979) Effects of salt, sucrose, and dimethyl-sulfoxide solutions on the water content and water structure of tissues and cultured cells. In: Keith AD (ed) The aqueous cytoplasm. Dekker, New York, pp 91–136

    Google Scholar 

  • Rand RP, Burton AC (1964) Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure. Biophys J 4:115

    Article  PubMed  CAS  Google Scholar 

  • Rapaport E (1980) Compartmentalized ATP pools produced from adenosine are nuclear pools. J Cell Physiol 105:267–274

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg MD (1963) The relative extensibility of cell surfaces. J Cell Biol 17:289–297

    Article  PubMed  CAS  Google Scholar 

  • Roti Roti LW, Rothstein A (1973) Adaptation of mouse leukemic cells (L5178Y). I. Cell volume regulation. Exp Cell Res 79:295–310

    CAS  Google Scholar 

  • Skalak R, Shu Chien (1982) Fourth international congress of biorheology symposium on mechanical properties of living tissues. Biorheology 19:453–461

    PubMed  CAS  Google Scholar 

  • Spring K, Ericson AC (1982) Epithelial cell volume modulation and regulation. J Membr Biol 69:167–176

    Article  PubMed  CAS  Google Scholar 

  • Strohmeier R, Bereiter-Hahn J (1984) Control of cell shape and locomotion by external calcium. Exp Cell Res 154:412–420

    Article  PubMed  CAS  Google Scholar 

  • Vasiliev JM (1982) Spreading and locomotion of tissue cells: factors controlling the distribution of pseudopodia. Phil Trans R Soc Lond B Biol Sci 299:159–167

    Article  CAS  Google Scholar 

  • Wehland J, Stockem W, Weber K (1978) Cytoplasmic streaming in Amoeba proteus is inhibited by the actin-specific drug phalloidin. Exp Cell Res 115:451–454

    Article  PubMed  CAS  Google Scholar 

  • Wolfe S, Steponkus PL (1983) Tension in the plasma membrane during osmotic contraction. Cryo Lett 4:315–322

    Google Scholar 

  • Wolpert L (1971) The effect of high hydrostatic pressure on the mechanical properties of the surface of the sea-urchin egg. J Cell Sci 8:87–92

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bereiter-Hahn, J., Strohmeier, R. (1987). Hydrostatic Pressure in Metazoan Cells in Culture: Its Involvement in Locomotion and Shape Generation. In: Bereiter-Hahn, J., Anderson, O.R., Reif, WE. (eds) Cytomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72863-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72863-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72865-5

  • Online ISBN: 978-3-642-72863-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics