Cytomechanics pp 154-166 | Cite as

Dynamic Organization and Force Production in Cytoplasmic Strands

  • Karl-Ernst Wohlfarth-Bottermann


The multinuclear plasmodia of acellular slime molds can reach a size of several m2 and are able to migrate with a velocity of up to 1 cm hr−1. The basis of this rapid locomotion is a permanent translocation of cytoplasm plus nuclei in the form of a shuttle streaming: the endoplasm flows back and forth with a periodicity of ½ to 2 min, especially visible in plasmodial strands which characterize the rear part of a plasmodium. The frontal part of a plasmodium consists of a more or less continuous protoplasmic sheet which also encloses the pathways of an endoplasmic shuttle streaming. This migration polarity of a plasmodium is subject to changes due to, e.g., chemical stimuli.


Contraction Phase Physarum Polycephalum Contraction Cycle Sinus Endothelium Cell Cytoplasmic Strand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achenbach U, Wohlfarth-Bottermann KE (1981) Synchronization and signal transmission in protoplasmic strands of Physarum. The endoplasmic streaming as a pacemaker and the importance of phase deviations for the control of streaming reversal. Planta (Berl) 151:584–594Google Scholar
  2. Baranowski Z (1985) Consequences of impeding in mitochondrial functions in Physarum poly-cephalum. III. Reversible cessation of the contraction-relaxation cycle and the temperature sensitivity of the alternate respiratory pathway. Eur J Cell Biol 39:283–289Google Scholar
  3. Beck R, Hinssen H, Komnick H, Stockem W, Wohlfarth-Bottermann KE (1970) Weitreichende, fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. V. Kontraktion, ATPase-Aktivität und Feinstruktur isolierter Actomyosin-Fäden von Physarum polycephalum. Cytobiologie 2:259–274Google Scholar
  4. Bereiter-Hahn J (1985) Architecture of tissue cells. The structural basis which determines shape and locomotion of cells. Acta Biotheor 34:139–148Google Scholar
  5. Fleischer M, Wohlfarth-Bottermann KE (1975) Correlation between tension force generation., Flbrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands. Cytobiologie 10:339–365Google Scholar
  6. Gassner D, Shraideh Z, Woħlfarth-Bottermann KE (1985) A giant titin-like protein in Physarum polycephalum: evidence for its candidacy as a major component of an elastic cy-toskeletal superthin filament lattice. Eur J Cell Biol 37:44–62Google Scholar
  7. Götz von Olenhusen K, Wohlfarth-Bottermann KE (1979) Evidence for actin transformation during the contraction-relaxation cycle of cytoplasmic actomyosin: cycle blockage by Phal-loidin injection. Cell Tissue Res 196:455–470Google Scholar
  8. Greenspan HP, Folkman J (1977) Hypotheses on Cell Adhesion and Actin Cables. J Theor Biol 65:397–398PubMedCrossRefGoogle Scholar
  9. Hasegawa T, Takahashi S, Hatano S (1980) Fragmin: a calcium ion-sensitive regulatory factor on the formation of actin filaments. Biochemistry 19:2677–2683PubMedCrossRefGoogle Scholar
  10. Hinssen H (1980) The regulation of actin transformation by a calcium-dependent actin-modulating protein from the slime mould Physarum polycephalum. Eur J Cell Biol 22:327Google Scholar
  11. Hinssen H (1981) An actin-modulating protein from Physarum polycephalum. II. Ca++-de-pendence and other properties. Eur J Cell Biol 23:234–240PubMedGoogle Scholar
  12. Isenberg G, Wohlfarth-Bottermann KE (1976) Transformation of Cytoplasmic Actin. Importance of the organization of the contractile gel reticulum and the contraction-relaxation cycle of cytoplasmic actomyosin. Cell Tissue Res 173:495–528Google Scholar
  13. Isenberg G, Rathke PC, Hülsmann N, Franke WW, Wohlfarth-Bottermann KE (1976) Cytoplasmic actomyosin fibrils in tissue culture cells. Direct proof of contractility by visualization of ATP-induced contraction in fibrils isolated by laser microbeam dessection. Cell Tissue Res 166:427–443Google Scholar
  14. Kamiya N (1959) Protoplasmic streaming. In: Heilbrunn LV, Weber F (eds) Pro-toplasmatologie VII. 3 a. Springer, WienGoogle Scholar
  15. Kessler D, Eisenlohr LC, Lathwell MJ, Huang G, Taylor HC, Godfrey SD, Spady ML (1980) Physarum myosin light chain binds calcium. Cell Motil 1:63–71PubMedCrossRefGoogle Scholar
  16. Korohoda W, Shraideh Z, Baranowski Z, Wohlfarth-Bottermann KE (1983) Energy metabolic regulation of oscillatory contraction activity in Physarum polycephalum. Cell Tissue Res 231:675–691PubMedCrossRefGoogle Scholar
  17. Naib-Majani W, Achenbach F, Weber K, Wohlfarth-Bottermann KE, Stockem W (1984) Im-munocytochemistry of the acellular slime mold Physarum polycephalum IV. Differentiation and dynamics of the polygonal actomyosin system. Differentiation 26:11–22Google Scholar
  18. Wohlfarth-Bottermann KE (1975 a) Weitreichende fibrilläre Protoplamadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung X. Die Anordnung der Actomyosin-Fi-brillen in experimentell unbeeinflußten Protoplasmaadern. Protistologica 11:19–30Google Scholar
  19. Wohlfarth-Bottermann KE (1975 b) Tensiometric demonstration of endogenous, oscillating contractions in plasmodia of Physarum polycephalum. Z Pflanzenphysiol 76:14–27Google Scholar
  20. Wohlfarth-Bottermann KE (1979) Oscillatory-contraction activity in Physarum. J Exp Biol 81:15–32PubMedGoogle Scholar
  21. Wohlfarth-Bottermann KE (1983) Dynamic cellular phenomena in Physarum possibly accessible to laser techniques. In: Earnshaw JC, Steer MW (eds) The application of laser light scattering to the study of biological motion. NATO ASI Ser A: Life Sciences, vol 59. Plenum, New York, pp 501–517Google Scholar
  22. Wohlfarth-Bottermann KE, Achenbach F (1982) Lateral apertures as passage-ways between ectoplasm and endoplasm in plasmodial strands of Physarum. Cell Biol Int Rpts 6:57–61CrossRefGoogle Scholar
  23. Wohlfarth-Bottermann KE, Block I (1981) The pathway of photo-sensory transduction in Physarum polycephalum. Cell Biol Int Rpts 5:365–373CrossRefGoogle Scholar
  24. Wohlfarth-Bottermann KE, Fleischer M (1976) Cycling Aggregation Patterns of cytoplasmic F-Actin coordinated with oscillating tension force generation. Cell Tissue Res 165:327–344CrossRefGoogle Scholar
  25. Wohlfarth-Bottermann KE, Stockem W (1970) Die Regeneration des Plasmalemms von Physarum polycephalum. Wilhelm Roux’ Arch 164:321–340CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Karl-Ernst Wohlfarth-Bottermann
    • 1
  1. 1.Institute of CytologyUniversity of BonnBonn 1Germany

Personalised recommendations