Skip to main content

Dynamic Organization and Force Production in Cytoplasmic Strands

  • Chapter
Cytomechanics

Abstract

The multinuclear plasmodia of acellular slime molds can reach a size of several m2 and are able to migrate with a velocity of up to 1 cm hr−1. The basis of this rapid locomotion is a permanent translocation of cytoplasm plus nuclei in the form of a shuttle streaming: the endoplasm flows back and forth with a periodicity of ½ to 2 min, especially visible in plasmodial strands which characterize the rear part of a plasmodium. The frontal part of a plasmodium consists of a more or less continuous protoplasmic sheet which also encloses the pathways of an endoplasmic shuttle streaming. This migration polarity of a plasmodium is subject to changes due to, e.g., chemical stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach U, Wohlfarth-Bottermann KE (1981) Synchronization and signal transmission in protoplasmic strands of Physarum. The endoplasmic streaming as a pacemaker and the importance of phase deviations for the control of streaming reversal. Planta (Berl) 151:584–594

    Google Scholar 

  • Baranowski Z (1985) Consequences of impeding in mitochondrial functions in Physarum poly-cephalum. III. Reversible cessation of the contraction-relaxation cycle and the temperature sensitivity of the alternate respiratory pathway. Eur J Cell Biol 39:283–289

    Google Scholar 

  • Beck R, Hinssen H, Komnick H, Stockem W, Wohlfarth-Bottermann KE (1970) Weitreichende, fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. V. Kontraktion, ATPase-Aktivität und Feinstruktur isolierter Actomyosin-Fäden von Physarum polycephalum. Cytobiologie 2:259–274

    Google Scholar 

  • Bereiter-Hahn J (1985) Architecture of tissue cells. The structural basis which determines shape and locomotion of cells. Acta Biotheor 34:139–148

    CAS  Google Scholar 

  • Fleischer M, Wohlfarth-Bottermann KE (1975) Correlation between tension force generation., Flbrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands. Cytobiologie 10:339–365

    Google Scholar 

  • Gassner D, Shraideh Z, Woħlfarth-Bottermann KE (1985) A giant titin-like protein in Physarum polycephalum: evidence for its candidacy as a major component of an elastic cy-toskeletal superthin filament lattice. Eur J Cell Biol 37:44–62

    CAS  Google Scholar 

  • Götz von Olenhusen K, Wohlfarth-Bottermann KE (1979) Evidence for actin transformation during the contraction-relaxation cycle of cytoplasmic actomyosin: cycle blockage by Phal-loidin injection. Cell Tissue Res 196:455–470

    Google Scholar 

  • Greenspan HP, Folkman J (1977) Hypotheses on Cell Adhesion and Actin Cables. J Theor Biol 65:397–398

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa T, Takahashi S, Hatano S (1980) Fragmin: a calcium ion-sensitive regulatory factor on the formation of actin filaments. Biochemistry 19:2677–2683

    Article  PubMed  CAS  Google Scholar 

  • Hinssen H (1980) The regulation of actin transformation by a calcium-dependent actin-modulating protein from the slime mould Physarum polycephalum. Eur J Cell Biol 22:327

    Google Scholar 

  • Hinssen H (1981) An actin-modulating protein from Physarum polycephalum. II. Ca++-de-pendence and other properties. Eur J Cell Biol 23:234–240

    PubMed  CAS  Google Scholar 

  • Isenberg G, Wohlfarth-Bottermann KE (1976) Transformation of Cytoplasmic Actin. Importance of the organization of the contractile gel reticulum and the contraction-relaxation cycle of cytoplasmic actomyosin. Cell Tissue Res 173:495–528

    CAS  Google Scholar 

  • Isenberg G, Rathke PC, Hülsmann N, Franke WW, Wohlfarth-Bottermann KE (1976) Cytoplasmic actomyosin fibrils in tissue culture cells. Direct proof of contractility by visualization of ATP-induced contraction in fibrils isolated by laser microbeam dessection. Cell Tissue Res 166:427–443

    CAS  Google Scholar 

  • Kamiya N (1959) Protoplasmic streaming. In: Heilbrunn LV, Weber F (eds) Pro-toplasmatologie VII. 3 a. Springer, Wien

    Google Scholar 

  • Kessler D, Eisenlohr LC, Lathwell MJ, Huang G, Taylor HC, Godfrey SD, Spady ML (1980) Physarum myosin light chain binds calcium. Cell Motil 1:63–71

    Article  PubMed  CAS  Google Scholar 

  • Korohoda W, Shraideh Z, Baranowski Z, Wohlfarth-Bottermann KE (1983) Energy metabolic regulation of oscillatory contraction activity in Physarum polycephalum. Cell Tissue Res 231:675–691

    Article  PubMed  CAS  Google Scholar 

  • Naib-Majani W, Achenbach F, Weber K, Wohlfarth-Bottermann KE, Stockem W (1984) Im-munocytochemistry of the acellular slime mold Physarum polycephalum IV. Differentiation and dynamics of the polygonal actomyosin system. Differentiation 26:11–22

    CAS  Google Scholar 

  • Wohlfarth-Bottermann KE (1975 a) Weitreichende fibrilläre Protoplamadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung X. Die Anordnung der Actomyosin-Fi-brillen in experimentell unbeeinflußten Protoplasmaadern. Protistologica 11:19–30

    Google Scholar 

  • Wohlfarth-Bottermann KE (1975 b) Tensiometric demonstration of endogenous, oscillating contractions in plasmodia of Physarum polycephalum. Z Pflanzenphysiol 76:14–27

    Google Scholar 

  • Wohlfarth-Bottermann KE (1979) Oscillatory-contraction activity in Physarum. J Exp Biol 81:15–32

    PubMed  CAS  Google Scholar 

  • Wohlfarth-Bottermann KE (1983) Dynamic cellular phenomena in Physarum possibly accessible to laser techniques. In: Earnshaw JC, Steer MW (eds) The application of laser light scattering to the study of biological motion. NATO ASI Ser A: Life Sciences, vol 59. Plenum, New York, pp 501–517

    Google Scholar 

  • Wohlfarth-Bottermann KE, Achenbach F (1982) Lateral apertures as passage-ways between ectoplasm and endoplasm in plasmodial strands of Physarum. Cell Biol Int Rpts 6:57–61

    Article  CAS  Google Scholar 

  • Wohlfarth-Bottermann KE, Block I (1981) The pathway of photo-sensory transduction in Physarum polycephalum. Cell Biol Int Rpts 5:365–373

    Article  CAS  Google Scholar 

  • Wohlfarth-Bottermann KE, Fleischer M (1976) Cycling Aggregation Patterns of cytoplasmic F-Actin coordinated with oscillating tension force generation. Cell Tissue Res 165:327–344

    Article  Google Scholar 

  • Wohlfarth-Bottermann KE, Stockem W (1970) Die Regeneration des Plasmalemms von Physarum polycephalum. Wilhelm Roux’ Arch 164:321–340

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wohlfarth-Bottermann, KE. (1987). Dynamic Organization and Force Production in Cytoplasmic Strands. In: Bereiter-Hahn, J., Anderson, O.R., Reif, WE. (eds) Cytomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72863-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72863-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72865-5

  • Online ISBN: 978-3-642-72863-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics