Effect of Calcium Antagonist Diltiazem on Acute Renal Failure: Experiments on Animals and Clinical Studies

  • K. Wagner
  • H. H. Neumayer


Influx of calcium ions into the cell represents a ubiquitous second messenger system [1] which is involved in a number of physiologic and pathophysiologic processes [2]. Apart from its role in the pathogenesis of arterial hypertension the contribution made by abnormal calcium homeostasis to cellular damage is more and more clearly appreciated [3]. It should be remembered that the resting extracellular calcium concentration is greater than the intracellular by a factor of 104. One of the principal consequences of damage to the cell membrane is a massive influx of calcium into the cell. The deleterious role of intracellular calcium accumulation following an ischemic insult has been well documented in the case of cardiac muscle and liver [3–5]. In the hope that they would also inhibit calcium influx into the damaged cell, calcium antagonists, which block socalled slow channels, have been studied in animal experiments on myocardial infarction and ischemic or toxic hepatocellular insults [5. 6]. Schrier [7] was the first to draw attention to the pathophysiologic significance of intracellular and intramitochondrial calcium accumulation for the development of acute renal failure (ARF). Animal experiments undertaken by the same research group demonstrated a protective effect of the calcium antagonist verapamil in norepinephrine induced renal failure. These experiments do not. however, exclude that the protection arose entirely from a direct effect on the vasculature with consequent improved perfusion, since simultaneous administration of norepinephrine and verapamil results in a minimal residual blood flow through the kidney [9].


Acute Renal Failure Calcium Antagonist Plasma Renin Activity Renal Blood Flow Mean Arterial Blood Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rasmussen H (1986) The calcium messenger system. N Engl J Med 314: 1094–1101PubMedCrossRefGoogle Scholar
  2. 2.
    Rasmussen H, Zawalich W, Kojima I (1985) Ca and cAMP in the regulation of cell function. In: Marme D (ed) Calcium and cell physiology. Springer, Berlin Heidelberg New York Tokyo, pp 1–17CrossRefGoogle Scholar
  3. 3.
    Fleckenstein A (1971) Pathophysiologische Kausalfaktoren bei Myokardnekrose und Infarkt. Z f Inn Med 52: 133–143Google Scholar
  4. 4.
    Farber JL, Mofty EL (1975) The biochemical pathology in liver cell necrosis. Am J Pathol 79: 237–250Google Scholar
  5. 5.
    Fleckenstein A, Fleckenstein-Grün G, Frey M, Zorn J (1987) Future directions in the use of calcium antagonists. Am J Cardiol 59: 177B–187BPubMedCrossRefGoogle Scholar
  6. 6.
    Chien KR, Abrams J, Pfau RG, Farber JL (1977) Prevention by chlorpromazine of ischemic liver cell death. Am J Pathol 88: 539–557PubMedGoogle Scholar
  7. 7.
    Schrier RW (1982) Acute renal failure. Jama 247: 2518–2525PubMedCrossRefGoogle Scholar
  8. 8.
    Burke ThJ, Arnold PE, Schrier RW (1982) Effect of calcium inhibition on norepinephrine induced acute renal failure. In: Eliahou HE (ed) Acute renal failure. Sibbley, LondonGoogle Scholar
  9. 9.
    Malis ChD, Cheung JY, Leaf A, Bonventre JV (1983) Effects of verapamil in models of ischemic acute renal failure in the rat. Am J Physiol 245: F735–742PubMedGoogle Scholar
  10. 10.
    Applegate CW, Gutman RA (1976) Renal intracortical blood flow distribution, function and sodium excretion in response to saline loading of anesthetized and unanesthetized dogs. Pflügers Arch 366: 125–130PubMedCrossRefGoogle Scholar
  11. 11.
    Henry PD (1980) Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem. Ann J Cardiol 46: 1047–1057CrossRefGoogle Scholar
  12. 12.
    Pozet N. Brazier JL, Hadji Aissa A. Kenfer D (1983) Pharmacokinetics of diltiazem in severe renal failure. Eur J Clin Pharmacol 24: 635–638PubMedCrossRefGoogle Scholar
  13. 13.
    Borchard U (1986) Neue therapeutische Ansätze zur Behandlung der arteriellen Hypertonie. In: Rosenthal J (Hrsg) Arterielle Hvpertonie. Springer. Berlin Heidelberg New York Tokyo, S 766–796Google Scholar
  14. 14.
    Hall JE, Guyton AC, Farr BM (1977) A single-injection method for measuring glomerular filtration rate. Am J Physiol F 232: 72–76Google Scholar
  15. 15.
    Sachs L (1975) Angewandte Statistik. Springer, Berl in HeidelbergGoogle Scholar
  16. 16.
    Wagner K, Neumayer HH, Schultze G. Schwietzer G, Schudrowitsch L, Ruf W, Molzahn M (1983) Influence of prostaglandin Al on renal filtration, hemodynamics and excretion. Renal Physiol 6: 186–196PubMedGoogle Scholar
  17. 17.
    Balint P, Szöcs E (1976) Intrarenal hemodynamics following temporary occlusion of the renal artery in the dog. Kidney Int 10: 128–134Google Scholar
  18. 18.
    Finn WF (1980) Enhanced recovery from postischemic acute renal failure. Micropuncture studies in the rat. Circ Res 46: 440PubMedGoogle Scholar
  19. 19.
    Vatner SF (1974) Effect of hemorrhage on regional blood flow distribution in dogs and primates. J Clin Invest 54: 225–230PubMedCrossRefGoogle Scholar
  20. 20.
    Wait RB, White G, Davis JH (1983) Beneficial effect of verapamil on postischaemic renal failure. Surgery 94: 276–282PubMedGoogle Scholar
  21. 21.
    Farber JL (1982) The role of calcium in cell death. Life Sci 29: 1289–1295CrossRefGoogle Scholar
  22. 22.
    Chun SP, Dae SH, Fray J (1981) Calcium in the control of renin secretion, Ca influx as an inhibitory signal. Am J Physiol 240: F70–F74Google Scholar
  23. 23.
    Neumaver HH, Wagner K, Groll J, Schudrowitsch L, Schultze G, Molzahn M (1985) Beneficial effect of long-term prostaglandin E2 infusion on the course of postischemic acute renal failure. Renal Physiol 8: 159–168Google Scholar
  24. 24.
    Burke Th, Arnold PE, Gordon JA, Bulger RE, Dobyan DC, Schrier RW (1984) Protective effect of intrarenal calcium membrane blockers before and after renal ischemia. J Clin Invest 74: 1830–1840PubMedCrossRefGoogle Scholar
  25. 25.
    Goldfarb D, Iaina A, Eliahou HE (1983) Beneficial effect of verapamil in ischemic acute renal failure in the rat. Proc Soc Exp Biol Med 172: 389–392PubMedGoogle Scholar
  26. 26.
    Wilson DR, Arnold P, Burke Th. Schrier RW (1984) Mitochondrial calcium accumulation and respiration in ischemic acute renal failure in the rat. Kidney Int 25:519–526PubMedCrossRefGoogle Scholar
  27. 27.
    Van Neuten JM, Manhoutte PM (1980) Improvement of tissue perfusion with inhibitors of calcium ion influx. Biochem Pharmacol 29: 479–485CrossRefGoogle Scholar
  28. 28.
    Ichikawa I, Miele JF, Brenner BM (1979) Reversal of renal cortical actions of angiotensin II by verapamil and manganese. Kidney Int 16: 137–147PubMedCrossRefGoogle Scholar
  29. 29.
    Martin-Dupont L, Cambar J, Brothier JP (1984) Effects of verapamil - a calcium inhibitor - on the vasomotor response of cortical and juxtamedullary glomeruli of human kidney. Renal Physiol 7: 71–77Google Scholar
  30. 30.
    McCord JM. Roy RS (1982) The pathophysiology of superoxide: roles in inflammation and ischemia. Can J Physiol Pharmacol 60: 1346–1352PubMedCrossRefGoogle Scholar
  31. 31.
    DeMartino GN, Kuers K (1981) Two calcium-dependent, calmodulin-stimulated proteases from rat liver. Fed Proc Am Soc Exp Biol 40: 1738Google Scholar
  32. 32.
    Schrier RW, Arnold PE, Burke ThJ (1982) Alterations in mitochondrial respiration and calcium movements in norepinephrine induced acute renal failure. In: Eliahou HE (ed) Acute renal failure. LondonGoogle Scholar
  33. 33.
    Burke ThJ. Schrier RW (1983) Ischemic acute renal failure: pathogenetic steps leading to acute tubular necrosis. Circ Shock 11: 255–259PubMedGoogle Scholar
  34. 34.
    Wagner K, Schultze G, Molzahn M, Neumayer HH (1986) The influence of long-term in-fusion of the calcium antagonist Diltiazem on postischemic acute renal failure in conscious dogs. Clin Wochenschr 64: 135–140CrossRefGoogle Scholar
  35. 35.
    Neumayer HH, Wagner K (1986) Neue Aspekte zur Pathogenese des akuten Nierenversa-gens und mögliche therapeutische Konsequenzen. Niere und Hochdruckkrankheiten 15: 235–250Google Scholar
  36. 36.
    Schwertschlag U, Schrier RW, Wilson P (1986) Beneficial effects of calcium channel blockers and calmodulin binding drugs on in vitro renal cell anoxia. J Pharm Exper Ther 238: 119–124Google Scholar
  37. 37.
    Cao SI, Zalneraitis BP, Franklin C, Bradley JW (1985) The influence of acute tubular necrosis on kidney transplant survival. Transplant Proc 27: 16–17Google Scholar
  38. 38.
    Keown PA. Stiller CR, Wallace AC, McKenzie FN, Wall W (1985) Ciclosporine nephrotox-icity: exploration of the risk factors and prognosis of the renal injury. Transplant Proc 17: 247–253PubMedGoogle Scholar
  39. 39.
    Pichlmayr R. Wonigeit K, Ringe B, Neuhaus P, Frei V, Offner G, Brodehl J, Mihatsch J (1985) Sandimmun in renal transplantation. BaselGoogle Scholar
  40. 40.
    Eurotransplant Report 1985 (1986) Eurotransplant Foundation, LeydenGoogle Scholar
  41. 41.
    Opelz G, Najarian JS, Terasaki PI (1978) Prediction of long-term kidney transplant survival rates by monitoring early graft function and clinical grades. Transplantation 29: 245–253Google Scholar
  42. 42.
    Weimar W, Geerling W, Bijnen AB, Obertrop H, van Urk H, Lameijer LDF, Wolff ED, Jeekel J (1983) A controlled study on the influence of mannitol on immediate renal function after cadaver donor kidney transplantation. Transplantation 35: 99–104PubMedGoogle Scholar
  43. 43.
    Kaplan MP, Toledo-Pereyra LH, Pietroski R, Rosenberg JC, Allaban RD (1986) Effect of furosemide and/or mannitol on the immediate function of preserved cadaver kidneys. Transplant Proc 17 /3: 504–505Google Scholar
  44. 44.
    Huland H. Bause HW, Clausen C, Doehn N (1983) The influence of an angiotensin II an-tagonist, saralasin, given before donor nephrectomy, on kidney function after transplantation. Transplantation 36: 139–143PubMedCrossRefGoogle Scholar
  45. 45.
    Donatsch P, Abisch E, Homberger M, Traber R, Trapp M, Voges R (1981) A radioimmunoassay to measure cyclosporin-A in plasma and serum samples. J Immunoassay 2: 19–32PubMedCrossRefGoogle Scholar
  46. 46.
    Hull RW, Hasbargen JA (1985) No clinical evidence for protective effects of calcium-channel blockers against acute renal failure. N Engl J Med 313: 1477–1478PubMedCrossRefGoogle Scholar
  47. 47.
    Duggan VA, MacDonald GJ, Charlesworth JA, Pussel BA (1985) Verapamil prevents post-transplant oliguric renal failure. Clin Nephr 24: 289–291CrossRefGoogle Scholar
  48. 48.
    Atuk NO, Mihindu J, Sturgill BC, Teates CD, Westervelt FB, Rudolf L (1982) Protection of perfused human kidney for transplantation by verapamil. Clin Res 30: 440AGoogle Scholar
  49. 49.
    Pochet JM, Pirson Y (1986) Cyclosporin-diltiazem interaction. Lancet 1: 979PubMedCrossRefGoogle Scholar
  50. 50.
    Grino JM, Castelao AM, Alsina J (1986) Influence of diltiazem on cyclosporin clearance. Lancet I: 1387Google Scholar
  51. 51.
    Sugihara J, Sugawara Y, Ando H, Harigaya S, Etoh A, Kohno K (1984) Studies on the metabolism of diltiazem in man. J Pharmacobio Dynamics 7: 24–32CrossRefGoogle Scholar
  52. 52.
    Freeman DJ, Laupacis A, Keown P, Stiller C, Carruthers G (1984) The effect of agents that alter drug metabolizing enzyme activity on the pharmacokinetics of cyclosporin-A. Ann R Coll Physns Surg Can 17: 301–310Google Scholar
  53. 53.
    Neumayer HH, Wagner K (1986) Diltiazem and economic use of cyclosporin. Lancet II: 523CrossRefGoogle Scholar
  54. 54.
    Whiting PH, Cunningham CH, Thomson AW, Simpson BG (1984) Enhancement of high dose Cyclosporin-A toxicity by frusemide Biochem Pharm 33: 1075–1078PubMedCrossRefGoogle Scholar
  55. 55.
    Whiting PH, Simpson BG, Thomson AW (1983) Nephrotoxicity of cyclosporin in combination with aminoglycoside and cephalosporin antibiotics. Transplant Proc 15: 2702–2703Google Scholar
  56. 56.
    Devineni R, McKenzie N, Duplan J, Keown P, Stiller C, Wallace AC (1983) Renal effects of cyclosporins clinical and experimental observations. Transplant Proc 15: 2695–2698Google Scholar
  57. 57.
    Mihatsch MJ, Thiel G, Spichtin HP, Oberholzer M, Brunner FP, Zollinger HU, Loertscher R (1983) Morphological findings in kidney transplants after treatment with cyclosporine. Transplant Proc 15: 2821–2835Google Scholar
  58. 58.
    Gutsche H (1986) personal communicationGoogle Scholar
  59. 59.
    Naginemi Ch, Yanagawa N, Misra B, Lee D (1987) Cyclosporin-A - calcium channel interaction: a possible mechanism for nephrotoxicity. Transplant Proc (in press)Google Scholar
  60. 60.
    van Es A, Hermans J, van Bockel JH (1983) Effect of warm ischemia time and HLA(A,B) matching on renal cadaveric graft survival and rejection episodes. Transplantation 36: 255–258PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • K. Wagner
    • 1
  • H. H. Neumayer
    • 1
  1. 1.Department of General Medicine and NephrologyKlinikum SteglitzGermany

Personalised recommendations