Neue Erkenntnisse über die Pathogenese des allergischen Kontaktekzems

  • L. Polak

Zusammenfassung

Aufgrund von Literaturangaben und eigener experimenteller Arbeit wird der Entstehungsmechanismus des experimentellen Kontaktekzems wie folgt dargestellt:

Spezifische antigen-reaktive T-Lymphocyten werden durch einen antigenen Komplex, welcher durch Applikation des Haptens auf die Haut gebildet wird, stimuliert. Dabei spielen die Langerhans-Zellen in der Haut eine ausschlaggebende Rolle.

Aktivierte Lymphocyten proliferieren in der Thymus-abhängigen Zone des regionalen Lymph knotens, wodurch Effektor- und Memoryzellen entstehen. Nach einem wiederholten Kontakt mit dem Hapten setzen die Effektorzellen Mediatoren frei, die eine Entzündungsreaktion induzieren. Aus den Memoryzellen bilden sich weitere Effektorzellen, die den Kontaktüberempfindlichkeits- grad verstärken (booster effect).

Summary

On the basis of literature and experimental work the mechanism of the development of experimental allergic dermatitis is reviewed.

Specific antigen-reactive T-lymphocytes are stimulated by the antigenic complex formed upon the application of the hapten to the skin. Langerhans cells in the skin play in this process a decisive role. Activated lymphocytes proliferate in thymus dependent area of the draining lymphnode and differentiate into effector and memory cells. The former react to a repeated application of the hapten with release of mediators inducing an inflammatory skin reaction. The latter produce further effector cells thus enhancing the degree of contact sensitivity (booster effect).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Contact dermatitis with spongiosis and intraepidermal vesiculation in the acanthotic skin of guinea pigs: Baer, RL, Rosenthai, SA, Sims, C. J. invest. Derm. 27, 249 (1956).PubMedGoogle Scholar
  2. 2.
    Experimental studies in contact sensitivity: Balfour, BM, McFarlin, DE, Sumerska, T, Parker, D. Monogr. Allergy 8, 27 (1974).PubMedGoogle Scholar
  3. 3.
    Induction of delayed hypersensitivity by dini-trophenylated lymphocytes: Baumgarten, A, Geczy, A F. Immunology 19, 205 (1970).PubMedGoogle Scholar
  4. 4.
    Die Sensibilisierung des Meerschweinchens gegen Primeln: Bloch, B, Steiner-Wour-lisch, A. Arch. Derm. Syph. Berlin 162, 349 (1930).CrossRefGoogle Scholar
  5. 5.
    Mechanism of reaction in vitro associated with delayed-type hypersensitivity: Bloom, B R, Bennett, B. Science 153, 80 (1966).PubMedCrossRefGoogle Scholar
  6. 6.
    Products of activated lymphocytes (PALs) and the virus plaque assay: Bloom, B R, Stoner, G, Fischetti,V, Nowakowski, M, Muschel, R, Rubinstein, A. In Brent and Holborow, Progress in immunology II, Vol. 3, 133 (1974).Google Scholar
  7. 7.
    Specificity of virus-immune effector T cells for H-2K or H-2D compatible interaction: Doherty, P C, Blanden, R V, Zinkernagel, R M. Transplant. Rev. 29, 89 (1976).PubMedGoogle Scholar
  8. 8.
    Lymphokines: non-antibody mediators of cellular immunity generated by lymphocyte activation: Dumonde, DC, Wol-stencroft, R A, Panayi, G S, Matthew, M, Morley, J, Howson, W T. Nature (Lond.) 224, 38 (1969).CrossRefGoogle Scholar
  9. 9.
    Cutaneous basophil hypersensitivity. III. Participation of the basophil hypersensitivity to antigen and contact allergy, passive transfer: Dvorak, H F, Simpson, B A, Bast, R C, Leskowitz, S. J. Immun. 107, 138 (1971).PubMedGoogle Scholar
  10. 10.
    Elicitation of delayed allergic skin reactions with haptens: the dependence of elicitation on hapten combination with protein: Eisen, H N, Orris, L, Beiman, S. J. exp. Med. 95, 473 (1952).PubMedCrossRefGoogle Scholar
  11. 11.
    Experimentelle Untersuchungen zur Pathogenese des Kontaktekzems: Frey, J R, Wenk, P. Dermatologica 112, 265 (1956).PubMedCrossRefGoogle Scholar
  12. 12.
    Course and duration of hypersensitivity and immunological tolerance to simple chemical compounds in guinea pigs: Frey, J R, de Weck, AL, Geleick, H. Int. Arch. Allergy 27, 370 (1965).Google Scholar
  13. 13.
    The role of the regional lymphnode in sensitization and tolerance to simple chemicals: Friedlaender, M H, Baer, H. J. Immun. 109, 1122 (1972).PubMedGoogle Scholar
  14. 14.
    Studies on hypersensitivity. IV. The relationship between contact and delayed sensitivity: a study on the specificity of cellular immune reactions: Gell, P G H, Benacerraf, B. J. exp. Med. 113, 571 (1961).PubMedCrossRefGoogle Scholar
  15. 15.
    The effect of physical and chemical properties of the sensitizing substance on the induction and elicitation of delayed contact sensitivity: Godfrey, H P, Baer, H. J. Immun. 106, 431 (1971).PubMedGoogle Scholar
  16. 16.
    Generation, function and disposition of chemical mediators of the mast cell in immediate hypersensitivity: Goetzl, E J, Austen, K F. In Hadden, Coffey and Spreafico, Immunopharmacology 113 (1977).Google Scholar
  17. 17.
    Recovery of prostaglandins in human cutaneous inflammation: Greaves, M W, Sondergaard, J, McDonald-Gibson, W. Brit. med. J. II, 258 (1971).CrossRefGoogle Scholar
  18. 18.
    The epidermal infiltration of lymphoid cells in allergic contact dermatitis: Groth, O. Acta derm.-vener. (Stockh.) 44, 1 (1964).Google Scholar
  19. 19.
    Plasma kinins in dini-trochlorobenzene contact dermatitis of guinea pigs: Henningsen, S J, Mickell, J, Za-chariae, H. Acta allerg. 25, 327 (1979).Google Scholar
  20. 20.
    Cell populations in experimental contact dermatitis: Hunziker, N, Winkelmann, RK. Arch. Derm. (Chicago) 113, 1543 (1977).Google Scholar
  21. 21.
    Zur Kenntnis der medikamentösen Dermatosen: Jadassohn, J. Verhandlungen der Deutschen Dermatologischen Gesellschaft, 5. Congress, Graz 1895. S. 103 (1896).Google Scholar
  22. 22.
    Sensibilisierung der Haut des Meerschweinchens auf Phenylnydrazin: Jadassohn W. Klin. Wschr. 12, 551 (1930).CrossRefGoogle Scholar
  23. 23.
    Epidermal Langerhans cells express la antigens: Klareskog, L, Tjernlund, U, M, Forsum,U, Peterson, P A. Nature 268, 248 (1977).PubMedCrossRefGoogle Scholar
  24. 24.
    Studies on the sensitization of animals with simple chemical compounds: Landsteiner, K, Jacobs, E. J. exp. Med. 61, 643 (1935).PubMedCrossRefGoogle Scholar
  25. 25.
    Experiments of transfer of cutaneous sensitivity to simple compounds: Landsteiner, K, Chase, M W. Proc. Soc. exp. biol. Med. 49, 688 (1942).Google Scholar
  26. 26.
    Delayed hypersensitivity: bone marrow as the source of cells in delayed skin reaktions: Lu-baroff, D M, Waksman, BH, Science 157, 322 (1967).CrossRefGoogle Scholar
  27. 27.
    Elicitation of delayed hypersensitivity (DNCB contact dermatitis) in markedly panleucopenic guinea pigs: Maibach, H I, Maguire, H C. J. invest. Derm. 41, 123 (1963).PubMedGoogle Scholar
  28. 28.
    Contact sensitivity in the pig: McFar-lin, D E, Balfour, B. Immunology 25, 995 (1973).Google Scholar
  29. 29.
    Specificity of passively transferred delayed hypersensitivity: Najarian, J S, Feldman, JD. J. exp. Med. 118, 341 (1963).PubMedCrossRefGoogle Scholar
  30. 30.
    DNP conjugates in guinea-pig lymph nodes during contact sensitization: Parker, D, Turk, J L. Immunology 18, 855 (1970).PubMedGoogle Scholar
  31. 31.
    In vivo action of soluble mediators associated with cell-mediated immunity: Pick, E, Krejci, J, Turk, J L. Int. Archs. Allergy appl. Immun. 41, 18 (1971).CrossRefGoogle Scholar
  32. 32.
    The effect of antihypertensive agents on the peripheral manifestation of allergic and other inflammatory reactions in the skin: Polak, L, Turk, J L Int. Archs. Allergy appl. Immun. 36, 442 (1969).CrossRefGoogle Scholar
  33. 33.
    The development of contact sensitivity to DNFB in guinea pigs, genetically differing in their response to DNP-skin protein conjugate: Polak, L, Polak, A M, Frey, J R. Int. Archs. Allergy appl. Immun. 46, 417 (1974).CrossRefGoogle Scholar
  34. 34.
    Effect of elimination of suppressor cells on the development of DNCB contact sensitivity in guinea pigs: Polak, L, Rinck, C. Immunology 33, 305 (1977).PubMedGoogle Scholar
  35. 35.
    Experimentelle Modelle der zellvermittelten Reaktionen (Typ IV): Polak, L. Immunität und Infektion 8, 19 (1980).PubMedGoogle Scholar
  36. 36.
    Immunological aspects of contact sensitivity: Polak, L. Monogr. Allergy 15, 14 (1980).Google Scholar
  37. 37.
    Genetische Kontrolle bei. der. Kontaktüberempfindlichkeit des Meerschweinchens: Polak, L. Hautarzt (in Vorbereitung).Google Scholar
  38. 38.
    Role of mast cells in allergy of delayed type: Raab, W P. Nature (Lond.) 206, 518 (1965).CrossRefGoogle Scholar
  39. 39.
    Absolute macrophage dependency of T lymphocyte activation by mitogens: Rosen-streich, D L, Farrar, J J, Dougherty, S. J. Immun. 116, 131 (1976).Google Scholar
  40. 40.
    Langerhans cells form a reticuloepithelial trap for external contact antigens: Shelley, W B, Juhlin, L. Nature 261, 46 (1976).PubMedCrossRefGoogle Scholar
  41. 41.
    The role of Langerhans cells in contact allergy. I. An ultrastructural study in actively induced contact dermatitis in guinea pigs: Silberberg, I, Baer, R L, Ro-senthal, S A. Acta derm.-vener. (Stockh.) 54, 321 (1974).Google Scholar
  42. 42.
    Langerhans cells in skin, lymphatic-like vessels and draining lymph nodes in allergic contact sensitivity: Silberberg, I, Baer, R L, Rosenthal, SA, Thorbecke, G J, Berezowsky, V. Clin. Res. 23, 231A (1975).Google Scholar
  43. 43.
    Langerhans cells: role in contact hypersensitivity and relationship to lymphoid dendritic cells and to macrophages: Silberberg-Sinakin, I, Gigli, I, Baer, R L, Thorbecke, G J. Immunological Rev. 53, 203 (1980).CrossRefGoogle Scholar
  44. 44.
    Nature of the antigenic complex recognized by T lymphocytes. I. Analysis with an in vitro primary response to soluble protein antigens: Thomas, D W, Shevach, E M. J. exp. Med. 144, 1263 (1976).PubMedCrossRefGoogle Scholar
  45. 45.
    The role of the macrophage as the stimulator cell in contact sensitivity: Thomas, D W, Borni, G, She-vach, E M, Green, I. J. Immun. 118, 1677 (1977).PubMedGoogle Scholar
  46. 46.
    Nature of the antigenic complex recognized by T lymphocytes. VII. Evidence for an association between TNP-conjugated macrophage membrane compounds and la antigens: Thomas, DW, Shevach, E M. J. Immun. 121, 1152 (1978).PubMedGoogle Scholar
  47. 47.
    “Cell-bound antibodies” implications of the cellular changes in lymph nodes during the development and inhibition of delayed type hypersensitivity: Turk, JL, Stone, S H. Wistar Inst. Press. Phil., 51, (1963).Google Scholar
  48. 48.
    Studies on the origin and reactive ability in vivo of peritoneal exudate cells in delayed hypersensitivity: Turk, JL, Polak, L. Int. Archs. Allergy appl. Immun. 31, 403 (1967).CrossRefGoogle Scholar
  49. 49.
    Delayed hypersensitivity; 3rd edition: Turk, J L. (1980).Google Scholar
  50. 50.
    Chemotaxis of basophils by lymphocyte-dependent and lymphocyte-independent mechanisms: Ward, P A, Dvorak, H F, Cohen, S, Yoshida, T, Dara, R, Selvag-gio, S S. J. Immun. 114, 1523 (1975).PubMedGoogle Scholar
  51. 51.
    Über die spezifische Sensibilität der Haut einfachen chemischen Stoffen gegenüber: Wedroff, N S, Dolgoff, A P. Arch. Derm. Syph. Berl. 171, 647 (1935).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • L. Polak
    • 1
  1. 1.Abt. für Pharmazeutische ForschungF. Hoffmann-La Roche & Co. AGBaselGermany

Personalised recommendations