Skip to main content

Abstract

Freeze-substitution (FS) and freeze-drying (FD) are dehydration techniques by which the water is gently removed from a frozen specimen. Both techniques can serve as a link between cryofixation and conventional thin sectioning at room temperature (Fig. 1). They are, therefore, hybrid techniques combining the advantages of the low temperature and the room temperature specimen preparation. With respect to the danger of artefacts, these procedures are much more obscure than “pure” cryotechniques, such as freeze-etching or cryosectioning. Both, FS and FD, are known from light microscopy and have been used in electron microscopy since its early days (for refs. of the older literature see Bullivant 1970; Rebhun 1972; Robards and Sleytr 1985), but only during the last dozen years a breakthrough can be noticed, which is mainly due to improved cryofixation. As for any other cryotechnique in biological electron microscopy, for successful FS and FD the main prerequisite is also good cryofixation with as little freezing damage as possible (see Bachmann and Mayer, Chap. 1; Sitte et al., Chap. 4; Dubochet et al., Chap. 5; Moor, Chap. 8; this Vol.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akisaka T, Shigenaga Y (1983) Ultrastructure of growing epiphyseal cartilage processed by rapid freezing and freeze-substitution. J Electron Microsc 32:305–320.

    CAS  Google Scholar 

  2. Armbruster BL, Kellenberger E, Carlemalm E, Villiger W, Garavito RM, Hobot JA, Chiovetti R, Acetarin J-D (1984) Lowicryl resins — present and future applications. In: Revel J-P, Barnard T, Haggis GH (eds) The science of biological specimen preparation. SEM, AMF O’Hare, IL 60666, pp 77-81.

    Google Scholar 

  3. Bank H (1973) Visualization of freezing damage. II. Structural alterations during warming. Cryobiology 10:157–170.

    Article  PubMed  CAS  Google Scholar 

  4. Barlow DI, Sleigh MA (1979) Freeze substitution for preservation of ciliated surfaces for scanning electron microscopy. J Microsc (Oxford) 115:81–95.

    Article  CAS  Google Scholar 

  5. Benshalom G, Reese TS (1985) Ultrastructural observations on the cytoarchitecture of axons processed by rapid-freezing and freeze-substitution. J Neurocytol 14:943–960.

    Article  PubMed  CAS  Google Scholar 

  6. Boyde A, Franc F (1981) Freeze-drying shrinkage of glutaraldehyde fixed liver. J Microsc (Oxford) 122:75–86.

    Article  CAS  Google Scholar 

  7. Boyde A, Maconnachie E (1979) Freon 113 freeze-drying for scanning electron microscopy. Scanning 2:164–166.

    Article  CAS  Google Scholar 

  8. Boyde A, Wood C (1969) Preparation of animal tissues for surface-scanning electron microscopy. J Microsc (Oxford) 90:221–249.

    Article  CAS  Google Scholar 

  9. Boyde A, Bailey E, Jones SJ, Tamarin A (1977) Dimensional changes during specimen preparation for scanning electron microscopy. Scanning Electron Microsc 1977/I:507–518.

    Google Scholar 

  10. Brand N, Arnold C-G (1986) Improved structural preservation of the mature zygote of Chlamydomonas reinhardii by freeze-substitution fixation compared with chemical fixation with special attention to the mitochondria. Endocyt C Res 3:79–95.

    Google Scholar 

  11. Bridgman PC, Reese TS (1984) The structure of cytoplasm in directly frozen cultured cells. I. Filamentous meshworks and the cytoplasmie ground substance. J Cell Biol 99:1655–1668.

    Article  PubMed  CAS  Google Scholar 

  12. Browning AJ, Gunning BES (1977) An ultrastructural and cytochemical study of the wall-membrane apparatus of transfer cells using freeze-substitution. Protoplasma 93:7–26.

    Article  Google Scholar 

  13. Bullivant S (1970) Present status of freezing techniques. In: Parsons DF (ed) Some biological techniques in electron microscopy. Academic Press, London New York, pp 101–146.

    Google Scholar 

  14. Carlemalm E, Garavito RM, Villiger W (1982) Resin development for electron microscopy and an analysis of embedding at low temperature. J Microsc (Oxford) 126:123–143.

    Article  CAS  Google Scholar 

  15. Carlemalm E, Villiger W, Acetarin J-D, Kellenberger E (1986) Low temperature embedding. In: Müller M, Becker RP, Boyde A, Wolosewick JJ (eds) The science of biological specimen preparation 1985. SEM, AMF O’Hare, IL 60666, pp 147-154.

    Google Scholar 

  16. Chiovetti R, Little SA, Brass Dale J, McGuffee LJ (1986) A new approach to low temperature embedding: quick freezing, freeze-drying and direct infiltration in Lowicryl K4M. In: Müller M, Becker RP, Boyde A, Wolosewick JJ (eds) The science of biological specimen preparation 1985. SEM, AMF O’Hare, IL60666, pp 155-164.

    Google Scholar 

  17. Clegg JS (1979) Metabolism and the intracellular environment: the vicinal-water network model. In: Drost-Hansen W, Clegg JS (eds) Cell-associated water. Academic Press, London New York, pp 363–413.

    Google Scholar 

  18. Colwell DD, Kokko EG (1986) Preparation of dipteran larvae for scanning electron microscopy using a freeze-substitution technique. Can J Zool 64:797–799.

    Article  Google Scholar 

  19. Coulter HD, Terracio L (1977) Preparation of biological tissues for electron microscopy by freeze-drying. Anat Rec 187:477–494.

    Article  PubMed  CAS  Google Scholar 

  20. Dempsey GP, Bullivant S (1976a) A copper block method for freezing non-cryoprotected tissue to produce ice-crystal-free regions for electron microscopy. I. Evaluation using freeze-substitution. J Microsc (Oxford) 106:251–260.

    Article  CAS  Google Scholar 

  21. Dempsey GP, Bullivant S (1976 b) A copper block method for freezing non-cryoprotected tissue to produce ice-crystal-free regions for electron microscopy. II. Evaluation using freeze-frac-turing with a cryo-ultramicrotome. J Microsc (Oxford) 106:261–271.

    Article  CAS  Google Scholar 

  22. Ebersold HR, Lüthy P, Cordier JL, Müller M (1981) A freeze-substitution and freeze-fracture study of bacterial spore structures. J Ultrastruct Res 76:71–81.

    Article  PubMed  CAS  Google Scholar 

  23. Echlin P (ed) (1978) Specimen preparation techniques (Round table discussion). In: Echlin P, Kaufmann R (eds) Microprobe analysis in biology and medicine. Microsc Acta Suppl 2. Hirzel, Stuttgart, pp 11–45.

    Google Scholar 

  24. Edelmann L (1978) A simple freeze-drying technique for preparing biological tissue without chemical fixation for electron microscopy. J Microsc (Oxford) 112:243–248.

    Article  CAS  Google Scholar 

  25. Edelmann L (1986 a) Two opposing theories of the cell: experimental testing by cryomethods and electron microscopy. In: Müller M, Becker RP, Boyde A, Wolosewick JJ (eds) The science of biological specimen preparation 1985. SEM, AMF O’Hare, IL 60666, pp 33-42.

    Google Scholar 

  26. Edelmann L (1986b) Freeze-dried embedded specimens for biological microanalysis. Scanning Electron Microsc 1986/IV:1337–1356.

    Google Scholar 

  27. Engfeldt B, Hultenby K, Müller M (1986) Ultrastructure of hyaline cartilage. Acta Pathol Microbiol Immunol Scand Sect A 94:313–323.

    CAS  Google Scholar 

  28. Fain GL, Schröder WH (1985) Calcium content and calcium exchange in dark-adapted toad rods. J Physiol 368:641–665.

    PubMed  CAS  Google Scholar 

  29. Franzini-Armstrong C, Heuser JE, Reese TS, Somlyo AP, Somlyo AV (1978) T-tubule swelling in hypertonic solutions: a freeze substitution study. J Physiol 283:133–140.

    PubMed  CAS  Google Scholar 

  30. Frederik PM, Busing WM, Hax WMA (1984) Observations on frozen hydrated and drying thin cryosections. In: Csanády A, Röhlich P, Szabó D (eds) Electron microscopy 1984, vol II. Proc 8th Eur Congr Electron Microsc, Budapest, pp 1411–1412.

    Google Scholar 

  31. Gnatzy W, Mohren W, Steinbrecht RA (1984) Pheromone receptors in Bombyx mori and Antheraea pernyi. II. Morphometric analysis. Cell Tissue Res 235:35–42.

    CAS  Google Scholar 

  32. Harvey DMR (1982) Freeze-substitution. J Microsc (Oxford) 127:209–221.

    Article  CAS  Google Scholar 

  33. Heath B, Rethoret K, Arsenault AL, Ottensmeyer FP (1985) Improved preservation of the form and contents of wall vesicles and the Golgi apparatus in freeze substituted hyphae of Saprolegnia. Protoplasma 128:81–93.

    Article  Google Scholar 

  34. Hereward FV, Northcote DH (1972) A simple freeze-substitution method for the study of ultrastructure of plant tissues. Exp Cell Res 70:73–80.

    Article  PubMed  CAS  Google Scholar 

  35. Hippe S (1985) Ultrastructure of Haustoria of Erysiphe graminis f. sp. hordei preserved by freeze-substitution. Protoplasma 129:52–61.

    Article  Google Scholar 

  36. Howard RJ, Aist JR (1979) Hyphal tip cell ultrastructure of the fungus Fusarium: improved preservation by freeze-substitution. J Ultrastruct Res 66:224–234.

    Article  PubMed  CAS  Google Scholar 

  37. Humbel BM (1984) Gefriersubstitution — Ein Weg zur Verbesserung der morphologischen und zytochemischen Untersuchung biologischer Proben im Elektronenmikroskop. Diss, Eidgen Tech Hochschule Zürich.

    Google Scholar 

  38. Humbel BM, Müller M (1986). In: Müller M, Becker RP, Boyde A, Wolosewick JJ (eds) The science of biological specimen preparation 1985. SEM, AMF O’Hare, IL 60666, pp 175-183.

    Google Scholar 

  39. Humbel BM, Marti T, Müller M (1983) Improved structural preservation by combining freeze substitution and low temperature embedding. Beitr Elektronenmikrosk Direktabb Oberfl 16:585–594.

    Google Scholar 

  40. Hunziker EB, Herrmann W, Schenk RK, Mueller M, Moor H (1984) Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. I. Chondrocyte ultrastructure — implications for the theories of mineralization and vascular invasion. J Cell Biol 98:267–276.

    Article  PubMed  CAS  Google Scholar 

  41. Ikeda H (1985) An ultrastructural analysis of the inclusion body in the type II pneumocyte processed by rapid freezing followed by freeze-substitution — an autoradiographic study. J Electron Microsc 34:398–410.

    CAS  Google Scholar 

  42. Ikeda H, Ichikawa A, Ichikawa M (1984) The effects of freeze-substitution media on the ultrastructure of inclusion-bodies in type II pneumocytes of mouse lung processed by the cryofixation method. J Electron Microsc 33:242–247.

    CAS  Google Scholar 

  43. Ingram FD, Ingram MJ (1984) Influences of freeze-drying and plastic embedding on electrolyte distributions. In: Revel J-P, Barnard T, Haggis GH (eds) The science of biological specimen preparation. SEM, AMF O’Hare, IL 60666, pp 167-174.

    Google Scholar 

  44. Inoué T (1986) High resolution scanning electron microscopic cytology — specimen preparation and intracellular structures observed by scanning electron microscopy. In: Müller M, Becker RP, Boyde A, Wolosewick JJ (eds) The science of biological specimen preparation 1985. SEM, AMF O’Hare, IL 60666, pp 245-256.

    Google Scholar 

  45. Inoue K, Kurosumi K, Deng ZP (1982) An improvement of the device for rapid freezing by use of liquid propane and the application of immunocytochemistry to the resin section of rapid frozen, substitution-fixed anterior pituitary gland. J Electron Microsc 31:93–97.

    CAS  Google Scholar 

  46. Ito T, Ichikawa A (1982) An electron microscopic observation of rat peritoneal cells processed by rapid freezing and freeze-substitution fixation. J Electron Microsc 31:235–248.

    CAS  Google Scholar 

  47. Käppeli O, Walther P, Müller M, Fiechter A (1984) Structure of the cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport. Arch Microbiol 138:279–282.

    Article  PubMed  Google Scholar 

  48. Klaushofer K, Mayersbach H von (1979) Freeze substituted tissue in 5′-nucleotidase histochemistry. J Histochem Cytochem 27:1582–1587.

    Article  PubMed  CAS  Google Scholar 

  49. Läuchli A, Spurr AR, Wittkopp RW (1970) Electron probe analysis of freeze-substituted, epoxy resin embedded tissue for ion transport studies in plants. Planta 95:341–350.

    Article  Google Scholar 

  50. Lee RMKW (1984) A critical appraisal of the effects of fixation, dehydration and embedding on cell volume. In: Revel J-P, Barnard T, Haggis GH (eds) The science of biological specimen preparation. SEM, AMF O’Hare, IL 60666, pp 61-70.

    Google Scholar 

  51. Linner JG, Bennett SC, Harrison DS, Steiner AL (1986) Cryopreparation of tissue for electron microscopy. In: Müller M, Becker RP, Boyde A, Wolosewick JJ (eds) The science of biological specimen preparation 1985. SEM, AMF O’Hare, IL 60666, pp 165-174.

    Google Scholar 

  52. Lyon R, Appleton J, Swindin KF, Abbot JJ, Chesters J (1985) An inexpensive device for freeze drying and plastic embedding tissues at low temperatures. J Microsc (Oxford) 140:81–91.

    Article  CAS  Google Scholar 

  53. MacKenzie AP (1972) Freezing, freeze-drying, and freeze-substitution. Scanning Electron Microsc 1972/II:273–280.

    Google Scholar 

  54. Marshall AT (1980) Freeze-substitution as a preparation technique for biological X-ray microanalysis. Scanning Electron Microsc 1980/II:395–408.

    Google Scholar 

  55. McCully ME, Canny MJ (1985) The stabilization of labile configurations of plant cytoplasm by freeze-substitution. J Microsc (Oxford) 139:27–33.

    Article  Google Scholar 

  56. Menco BPM (1984) Ciliated and microvillous structures of rat olfactory and nasal respiratory epithelia. Cell Tissue Res 235:225–241.

    Article  PubMed  CAS  Google Scholar 

  57. Menco BPM (1986) A survey of ultra-rapid cryofixation methods with particular emphasis on applications to freeze-fracturing, freeze-etching, and freeze-substitution. J Electron Microsc Tech 4:177–240.

    Article  Google Scholar 

  58. Meyer R, Schmitz M, Zierold K (1985) The influence of different cryopreparations on the distribution of ions in bullfrog myocard cells. Scanning Electron Microsc 1985/I:419–431.

    Google Scholar 

  59. Müller M (1981) Demonstration of liposomes by electron microscopy. In: Azzi A, Brodbeck U, Zahler P (eds) Membrane proteins. Springer, Berlin Heidelberg New York, pp 252–256.

    Chapter  Google Scholar 

  60. Müller M, Moor H (1984) Cryofixation of thick specimens by high pressure freezing. In: Revel J-P, Barnard T, Haggis GH (eds) The science of biological specimen preparation. SEM, AMF O’Hare, IL 60666, pp 131–138.

    Google Scholar 

  61. Müller M, Marti T, Kriz S (1980) Improved structural preservation by freeze substitution. In: Brederoo P, de Priester W (eds) Electron microscopy 1980, vol II. Proc 7th Eur Congr Electron Microsc, Leiden, pp 720–721.

    Google Scholar 

  62. Murata F, Suzuki S, Tsuyama S, Suganuma T, Imada M, Furihata C (1985) Application of rapid freezing followed by freeze-substitution acrolein fixation for cytochemical studies of the rat stomach. Histochem J 17:967–980.

    Article  PubMed  CAS  Google Scholar 

  63. Nagele RG, Kosciuk MC, Wang SM, Spero DA, Lee H (1985) A method for preparing quickfrozen, freeze-substituted cells for transmission electron microscopy and immunocytochemistry. J Microsc (Oxford) 139:291–301.

    Article  CAS  Google Scholar 

  64. Nassar R, Wallace NR, Taylor I, Sommer JR (1986) The quick freezing of single intact skeletal muscle fibers at known time intervals following electrical stimulation. Scanning Electron Microsc 1986/I:309–328.

    Google Scholar 

  65. Negendank W (1986) The state of water in the cell. In: Müller M, Becker RP, Boyde A, Wolosewick JJ (eds) The science of biological specimen preparation 1985. SEM, AMF O’Hare, IL 60666, pp 21–32.

    Google Scholar 

  66. Nei T (1973) Growth of ice crystals in frozen specimens. J Microsc (Oxford) 99:227–233.

    Article  Google Scholar 

  67. Ornberg RL, Reese TS (1980) A freeze-substitution method for localizing divalent cations: examples from secretory systems. Fed Proc 39:2802–2808.

    PubMed  CAS  Google Scholar 

  68. Ornberg RL, Reese TS (1981) Quick freezing and freeze substitution for X-ray microanalysis of calcium. In: Hutchinson TE, Somlyo AP (eds) Microprobe analysis of biological systems. Academic Press, London New York, pp 213–228.

    Google Scholar 

  69. Osatake H, Tanaka K, Inoué T (1985) An application of rapid freezing, freeze-substitution for scanning electron microscopy. J Electron Microsc Tech 2:201–208.

    Article  Google Scholar 

  70. Peters K-R (1986) Working at higher magnifications in scanning electron microscopy with secondary and backscattered electrons on metal coated biological specimens and imaging macromolecular cell membrane structures. In: Müller M, Becker RP, Boyde A, Wolosewick JJ (eds) The science of biological specimen preparation 1985. SEM, AMF O’Hare, IL 60666, pp 257–282.

    Google Scholar 

  71. Pfaller W (1979) Freeze drying and vacuum embedding of spray-frozen unicellular organisms. Mikroskopie (Wien) 35:37–44.

    CAS  Google Scholar 

  72. Pfaller W, Rovan E (1978) Preparation of resin embedded unicellular organisms without the use of fixatives and dehydration media. J Microsc (Oxford) 114:339–351.

    Article  CAS  Google Scholar 

  73. Pfaller W, Rovan E, Mairbäurl H (1976) A comparison of the ultrastructure of spray-frozen and freeze-etched or freeze-dried bull and boar spermatozoa with that after chemical fixation. J Reprod Fertil 48:285–290.

    Article  PubMed  CAS  Google Scholar 

  74. Plattner H, Bachmann L (1982) Cryofixation: A tool in biological ultrastructural research. Int Rev Cytol 79:237–304.

    Article  PubMed  CAS  Google Scholar 

  75. Porter KR, Anderson KL (1982) The structure of the cytoplasmic matrix preserved by freezedrying and freeze-substitution. Europ J Cell Biol 29:83–96.

    PubMed  CAS  Google Scholar 

  76. Pringle AT, Forsdyke J, Rose AH (1979) Scanning electron microscope study of Saccharomyces cerevisiae spheroplast formation. J Bacteriol 140:289–293.

    PubMed  CAS  Google Scholar 

  77. Rebhun LI (1972) Freeze-substitution and freeze-drying. In: Hayat MA (ed) Principles and techniques of electron microscopy, vol 2. Van Nostrand Reinhold, New York, pp 3–49.

    Google Scholar 

  78. Robards AW, Sleytr UB (1985) Low temperature methods in biological electron microscopy. In: Glauert AM (ed) Practical methods in electron microscopy, vol 10. Elsevier, Amsterdam.

    Google Scholar 

  79. Roos N, Barnard T (1985) A comparison of subcellular element concentrations in frozen-dried, plastic-embedded, dry-cut sections and frozen-dried cryosections. Ultramicroscopy 17:335–344.

    Article  PubMed  CAS  Google Scholar 

  80. Sakai A, Otsuka K, Yoshida S (1968) Mechanism of survival in plant cells at super-low temperatures by rapid cooling and rewarming. Cryobiology 4:165–173.

    Article  PubMed  CAS  Google Scholar 

  81. Sitte H (1984) Instruments for cryofixation, cryoultramicrotomy and cryosubstitution for biomedical TEM. Zeiss Inf MEM Mag Electron Microsc 3:25–31.

    Google Scholar 

  82. Steinbrecht RA (1976) Freeze substitution and freeze fracturing of insect sensilla without cryoprotectants. In: Ben-Shaul Y (ed) Electron microscopy 1976, vol 2. Proc 6th Eur Congr Electron Microsc, Isr Soc Electron Microsc, Jerusalem, pp 111–113.

    Google Scholar 

  83. Steinbrecht RA (1980) Cryofixation without cryoprotectants. Freeze substitution and freeze etching of an insect olfactory receptor. Tissue Cell 12:73–100.

    Article  PubMed  CAS  Google Scholar 

  84. Steinbrecht RA (1982) Experiments on freezing damage with freeze substitution using moth antennae as test objects. J Microsc (Oxford) 125:187–192.

    Article  Google Scholar 

  85. Steinbrecht RA (1984) Cryofixation and follow-up techniques in biological electron microscopy — outline and demonstration. Zeiss Inf MEM Mag Electron Microsc 3:9–17.

    Google Scholar 

  86. Steinbrecht RA (1985) Recrystallization and ice-crystal growth in a biological specimen, as shown by a simple freeze substitution method. J Microsc (Oxford) 140:41–46.

    Article  Google Scholar 

  87. Stumpf WE, Roth LJ (1967) Freeze-drying of small tissue samples and thin frozen sections below-60°C; a simple method of cryosorption pumping. J Histochem Cytochem 15:243–251.

    Article  PubMed  CAS  Google Scholar 

  88. Tanaka K (1981) Demonstration of intracellular structures by high resolution scanning electron microscopy. Scanning Electron Microsc 1981/II:1–8.

    Google Scholar 

  89. Tanford C (1980) The hydrophobic effect: Formation of micelles and biological membranes. 2nd edn. John Wiley & Sons, New York.

    Google Scholar 

  90. Umrath W (1983) Berechnung von Gefriertrocknungszeiten für die elektronenmikroskopische Präparation. Mikroskopie (Wien) 40:9–37.

    CAS  Google Scholar 

  91. Usukura J, Yamada E (1981) Molecular organization of the rod outer segment. A deep-etching study with rapid freezing using unfixed frog retina. Biomed Res 2:177–193.

    CAS  Google Scholar 

  92. Van Harreveld A, Crowell J (1964) Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat Rec 149:381–386.

    Article  Google Scholar 

  93. Van Harreveld A, Malhotra SK (1966) Demonstration of extracellular space by freeze-drying in the cerebellar molecular layer. J Cell Sci 1:223–228.

    Google Scholar 

  94. Van Harreveld A, Crowell J, Malhotra SK (1965) A study of extracellular space in central nervous tissue by freeze-substitution. J Cell Biol 25:117–137.

    Article  Google Scholar 

  95. Van Zyl J, Forrest QG, Hocking C, Pallaghy CK (1976) Freeze-substitution of plant and animal tissue for the localization of water-soluble compounds by electron probe microanalysis. Micron 7:213–224.

    Google Scholar 

  96. Verkleij AJ, Humbel B, Studer D, Müller M (1985) ‘Lipidic particle’ systems as visualized by thin-section electron microscopy. Biochim Biophys Acta 812:591–594.

    Article  CAS  Google Scholar 

  97. Weibull C, Villiger W, Carlemalm E (1984) Extraction of lipids during freeze-substitution of Acholeplasma laidlawii-cells for electron microscopy. J Microsc (Oxford) 134:213–216.

    Article  CAS  Google Scholar 

  98. Wheeler EE, Gavin JB, Seelye RN (1975) Freeze-drying from tertiary butanol in the preparation of endocardium for scanning electron microscopy. Stain Technol 50:331–337.

    PubMed  CAS  Google Scholar 

  99. White DL, Andrews SB, Faller JW, Barrnett RJ (1976) The chemical nature of osmium tetroxide fixation and staining of membranes by X-ray photoelectron spectroscopy. Biochim Biophys Acta 436:577–592.

    Article  PubMed  CAS  Google Scholar 

  100. Wildhaber I, Gross H, Moor H (1982) The control of freeze-drying with deuterium oxide (D2O). J Ultrastruct Res 80:367–373.

    Article  PubMed  CAS  Google Scholar 

  101. Wróblewski R, Wróblewski J, Anniko M, Edström L (1985) Freeze-drying and related preparation techniques for biological microprobe analysis. Scanning Electron Microsc 1985/1:447–454.

    Google Scholar 

  102. Zalokar M (1966) A simple freeze-substitution method for electron microscopy. J Ultrastruct Res 15:469–479.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steinbrecht, R.A., Müller, M. (1987). Freeze-Substitution and Freeze-Drying. In: Steinbrecht, R.A., Zierold, K. (eds) Cryotechniques in Biological Electron Microscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72815-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72815-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72817-4

  • Online ISBN: 978-3-642-72815-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics