Electron Beam Radiation Damage to Organic and Biological Cryospecimens

  • Yeshayahu Talmon


Radiation damage, i.e. the introduction of structural (e.g. loss of crystallinity) or compositional (e.g. mass loss) changes by the electron beam, has been an inevitable and serious factor in limiting the amount of microstructural information that can be collected from an electron microscope specimen. Although radiation damage is always present because it is part of the electron beam/specimen interaction that produces the image, it may be reduced or minimized, if it and the physical factors that affect it are well understood.


Mass Loss Electron Beam Radiation Damage Liquid Helium Temperature Radiolysis Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bourgeois CA, Zanchi G, Khin Y, Lacaze JC, Zalta J, Bouteille M (1980) Hydrated cell nucleus fractions as studied by energy filter in a 1.2 MeV electron microscope. In: Brederoo P, de Priester W (eds) Electron microscopy 1980, vol 2. Proc 7th Eur Congr Electron Micros,Leiden, pp 118–119Google Scholar
  2. Charlesby A (1972) Radiation effects in polymers. In: Jenkins AD (ed) Polymer science, vol 2. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 1544–1559.Google Scholar
  3. Charlesby A (1981) Crosslinking and degradation of polymers. Radiat Phys Chem 18:59–66.Google Scholar
  4. Chiu W, Knapek E, Jeng TW, Dietrich I (1981) Electron radiation damage of a thin protein crystal at 4 K. Ultramicroscopy 6:291–296.Google Scholar
  5. Chiu W, Downing KH, Dubochet J, Glaeser RM, Heide HG, Knapek E, Kopf DA, Lamvik MK, Lepault J, Robertson JD, Zeitler E, Zemlin F (1986) Cryoprotection in electron microscopy. J Microsc (Oxford) 141:385–391.CrossRefGoogle Scholar
  6. *.
    Cosslett VE (1978) Radiation damage in high resolution electron microscopy of biological materials: a review. J Microsc (Oxford) 113:113–129.CrossRefGoogle Scholar
  7. Dietrich I, Formanek H, Fox F, Knapek E, Weyl R (1979) Reduction of radiation damage in an electron microscope with a superconducting lens system. Nature (London) 277:380–381.CrossRefGoogle Scholar
  8. Dubochet J (1975) Carbon loss during irradiation of T4 bacteriophages and E. coli bacteria in electron microscopes. J Ultrastruct Res 52:276–288.PubMedCrossRefGoogle Scholar
  9. Dubochet J, Knapek E (1979) Use of very low temperature to reduce electron beam damage in biological specimens. Chem Scr 14:267–269.Google Scholar
  10. Dubochet J, Lepault J, Freeman R, Berriman JA, Homo JC (1982a) Electron microscopy of frozen water and aqueous solutions. J Microsc (Oxford) 128:219–237.CrossRefGoogle Scholar
  11. Dubochet J, Chang JJ, Freeman R, Lepault J, McDowall AW (1982b) Frozen aqueous suspensions. Ultramicroscopy 10:55–62.CrossRefGoogle Scholar
  12. Egerton RF (1980) Chemical measurements of radiation damage in organic samples at and below room temperature. Ultramicroscopy 5:521–523.Google Scholar
  13. Egerton RF (1982) Organic mass loss at 100 K and 300 K. J Microsc (Oxford) 126:95–100.CrossRefGoogle Scholar
  14. Glaeser RM (1971) Limitations to significant information in biological electron microscopy as a result of radiation damage. J Ultrastruct Res 36:466–482.PubMedCrossRefGoogle Scholar
  15. *.
    Glaeser RM (1979) Radiation damage with biological specimens and organic materials. In: Hren JJ, Goldstein JI, Joy DC (eds) Introduction to analytical electron microscopy. Plenum, New York London, pp 423–436.Google Scholar
  16. Glaeser RM, Hobbs LW (1975) Radiation damage in stained catalase at low temperature. J Microsc (Oxford) 103:209–214.CrossRefGoogle Scholar
  17. *.
    Glaeser RM, Taylor KA (1978) Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review. J Microsc (Oxford) 112:127–138.CrossRefGoogle Scholar
  18. Grubb DT, Groves GW (1971) Rate of damage of polymer crystals in the electron microscope: dependence on temperature and beam voltage. Philos Mag 24:815–828.CrossRefGoogle Scholar
  19. Hartman RE, Hartman RS (1971) Residual gas reaction in the electron microscope: IV. a factor in radiation damage. In: Arceneaux CJ (ed) Proc 29th Annu EMSA Meet Boston Mass. Claitors, Baton Rouge, pp 74–75.Google Scholar
  20. Hayward SB, Glaeser RM (1980) High resolution cold stage for the JEOL 100B and 100C electron microscopes. Ultramicroscopy 5:3–8.PubMedCrossRefGoogle Scholar
  21. Heide HG (1965) Contamination and irradiation effects and their dependence on the composition of residual gas in the electron microscope. Lab Invest 14:396/1134–401/1139.Google Scholar
  22. Heide HG (1982) On the irradiation of organic samples in the vicinity of ice. Ultramicroscopy 7:299–300.CrossRefGoogle Scholar
  23. Heide HG (1984) Observations on ice layers. Ultramicroscopy 14:271–278.CrossRefGoogle Scholar
  24. Heide HG, Grund S (1974) Eine Tiefkühlkette zum Überführen von wasserhaltigen biologischen Objekten ins Elektronenmikroskop. J Ultrastruct Res 48:259–268.PubMedCrossRefGoogle Scholar
  25. Heide HG, Zeitler E (1985) Physical behaviour of solid water at low temperatures and the embedding of electron microscopical specimens. Ultramicroscopy 16:151–160.CrossRefGoogle Scholar
  26. Hobbs LW (1979a) Radiation damage in electron microscopy of inorganic solids. Ultramicroscopy 3:381–386.CrossRefGoogle Scholar
  27. *.
    Hobbs LW (1979b) Radiation effects in analysis of inorganic specimens by TEM. In: Hren JJ, Goldstein JI, Joy DC (eds) Introduction to analytical electron microscopy. Plenum, New York London, pp 437–480.Google Scholar
  28. Hui SW (1980) Radiation damage of phosphatidylcholine bilayers: effects of temperature and hydration. Ultramicroscopy 5:505–512.PubMedGoogle Scholar
  29. Knapek E, Dubochet J (1980) Beam damage to organic material is considerably reduced in cryoelectron microscopy. J Mol Biol 141:147–161.PubMedCrossRefGoogle Scholar
  30. Knapek E, Formanek H, Lefranc G, Dietrich I (1984) The interpretation of radiation damage measurements with electron diffraction of organic materials at very low temperatures. Ultramicroscopy 14:253–264.CrossRefGoogle Scholar
  31. Lepault J, Freeman R, Dubochet J (1983a) Electron beam induced “vitrified ice”. J Microsc (Oxford) 132:RP3–RP4.CrossRefGoogle Scholar
  32. Lepault J, Booy FP, Dubochet J (1983b) Electron microscopy of frozen biological suspension. J Microsc (Oxford) 129:89–102.CrossRefGoogle Scholar
  33. Lepault J, Dubochet J, Dietrich I, Knapek E, Zeitler E (1983c) Amendment to: Electron beam damage to organic specimens at liquid helium temperature. J Mol Biol 163:511.CrossRefGoogle Scholar
  34. Miller D, Bellare JR, Evans DF, Talmon Y, Ninham BA (1987) On the meaning and structure of amphiphilic phases: inferences from video enhanced microscopy and cryo-transmission electron microscopy. J Phys Chem 91:674–685.CrossRefGoogle Scholar
  35. Müller KH, Zemlin F, Zeitler E (1981) Cryoprotection of electron-irradiated organic crystals. In: Bailey GW (ed) Proc 39th Annu EMSA Meet, Atlanta. Claitor, Baton Rouge, pp 26–27.Google Scholar
  36. Narkis M, Talmon Y, Silverstein M (1985) Properties and structure of elastomeric two-stage emulsion interpenetrating networks. Polymer 26:1359–1364.CrossRefGoogle Scholar
  37. Ramamurti K, Crewe AV, Isaacson MS (1975) Low temperature mass loss of thin films of L-phenylalanine and L-tryptophan upon electron irradiation. Ultramicroscopy 1:156–158.PubMedCrossRefGoogle Scholar
  38. Reimer L (1984) Methods of detection of radiation damage in electron microscopy. Ultramicroscopy 14:291–304.CrossRefGoogle Scholar
  39. Siegel G (1970) The influence of low temperature on the radiation damage of organic compounds and biological objects by electron irradiation. In: Favard P (ed) Proc 7th Int Congr Electron Microsc, vol 2, Grenoble, pp 221–222.Google Scholar
  40. Siegel G (1972) Der Einfluß tiefer Temperaturen auf die Strahlenschädigung von organischen Kristallen durch 100 keV-Elektronen. Z Naturforsch 27a:325–332.Google Scholar
  41. Siegel S, Flournoy JM, Baum LH (1961) Irradiation yields of radicals in gamma-irradiated ice at 4.2° and 77° K. J Chem Phys 34:1782–1788.CrossRefGoogle Scholar
  42. Somlyo AP, Shuman H, Somlyo AV (1976) Quantitation, minimal detectable levels and application of biological electron probe analysis. In: Silcox J (ed) Analytical electron microscopy: report of a specialist workshop, August 1976, Cornell Univ, pp 114-117.Google Scholar
  43. Symons MCR (1982a) Radiation processes in frozen aqueous systems. Ultramicroscopy 10:97–104.CrossRefGoogle Scholar
  44. Symons MCR (1982b) The pre-knock-on concept. Ultramicroscopy 10:41–44.CrossRefGoogle Scholar
  45. Talmon Y (1982) Thermal and radiation damage to frozen hydrated specimens. J Microsc (Oxford) 125:227–237.CrossRefGoogle Scholar
  46. Talmon Y (1984) Radiation damage to organic inclusions in ice. Ultramicroscopy 14:305–316.CrossRefGoogle Scholar
  47. Talmon Y (1986) Imaging surfactant dispersions by electron microscopy of vitrified specimens. Colloids Surfaces 19:237–248.CrossRefGoogle Scholar
  48. Talmon Y, Thomas EL (1977a) Temperature rise and sublimation of water from thin frozen hydrated specimens in cold stage microscopy. Scanning Electron Microsc 1977/I:265–272.Google Scholar
  49. Talmon Y, Thomas EL (1977b) Beam heating of a moderately thick cold stage specimen in the SEM/STEM. J Microsc (Oxford) 111:151–164.CrossRefGoogle Scholar
  50. Talmon Y, Davis HT, Scriven LE, Thomas EL (1979) Mass loss and etching of frozen hydrated specimens. J Microsc (Oxford) 117:321–332.CrossRefGoogle Scholar
  51. Talmon Y, Narkis M, Silverstein M (1985) Electron beam radiation damage as an analytical tool for polymer science. J Electron Microsc Tech 2:589–596.CrossRefGoogle Scholar
  52. Talmon Y, Adrian M, Dubochet J (1986) Electron beam radiation damage to organic inclusions in vitreous, cubic, and hexagonal ice. J Microsc (Oxford) 141:375–384.CrossRefGoogle Scholar
  53. Taub IA, Eiben K (1968) Transient solvated electron, hydroxyl, and hydroperoxy radicals in pulse-irradiated crystalline ice. J Chem Phys 49:2499–2513.CrossRefGoogle Scholar
  54. Taylor KA, Glaeser RM (1976) Electron microscopy of frozen hydrated biological specimens. J Ultrastruct Res 55:448–456.PubMedCrossRefGoogle Scholar
  55. Unwin PNT, Muguruma J (1971) Transmission electron microscopy of ice. J Appl Phys 42:3640–3641.CrossRefGoogle Scholar
  56. Venables JA, Basset DC (1967) Electron microscopy of polyethylene below 20 °K. Nature (London) 214:1107–1108.CrossRefGoogle Scholar
  57. Wade RH (1984) The temperature dependence of radiation damage in organic and biological materials. Ultramicroscopy 14:265–270.CrossRefGoogle Scholar
  58. Zemlin F, Reuber E, Beckmann E, Dorset D (1986) High-resolution electron microscopy of beam-sensitive specimens: results with paraffin. In: Bailey GW (ed) Proc 44th Annu EMSA Meet, Albuquerque. San Francisco Press, pp 10-13.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Yeshayahu Talmon
    • 1
  1. 1.Department of Chemical EngineeringTechnion — Israel Institute of TechnologyHaifaIsrael

Personalised recommendations