Skip to main content

The Response of Biological Macromolecules and Supramolecular Structures to the Physics of Specimen Cryopreparation

  • Chapter
Cryotechniques in Biological Electron Microscopy

Abstract

In the preceding chapter we have learned about the problems of freezing and have seen that one of the major problems in cryotechniques is the formation of ice crystals (see Bachmann and Mayer, Chap. 1, this Vol.). Due to their size, they disturb the fine structure of cells (see also Sitte et al., Chap. 4, this Vol.; Moor, Chap. 8, this Vol.). In the present chapter, we consider the problems which we face when we are able to work in vitreous ice, i.e. what happens with biological macromolecules and supramolecular structures. In these considerations we distinguish two levels of resolution: at the highest resolution (1–10nm), we consider conformational changes of macromolecules, particularly of proteins. This resolution is, in general, only achieved with procedures that allow for averaging from identical subunits. At the other level, we consider rearrangements and small aggregations of macromolecules due to the specimen preparation. This is the resolution of 10–20 nm achieved normally with the current methods of preparation of biological material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acetarin JD, Carlemalm E, Villiger W (1986) Development of new Lowicryl resins for embedding biological specimens at even lower temperatures. J Microsc (Oxf) 143:81–88.

    Article  CAS  Google Scholar 

  2. Acetarin JD, Carlemalm E, Kellenberger E, Villiger W (1987) Correlation of some mechanical properties of embedding resins with their behaviour in microtomy. J Electron Microsc Techn 6:63–80.

    Article  Google Scholar 

  3. Aebi U, Smith PR, Dubochet J, Henry C, Kellenberger E (1973) A study of the structure of the T-layer of Bacillus brevis. J Supramol Struct 1:498–522.

    Article  PubMed  CAS  Google Scholar 

  4. Anderson TF (1951) Techniques for the preservation of threedimensional structure in preparing specimens for the electron microscope. Trans N Y Acad Sci Scr II 13:130–134.

    Google Scholar 

  5. Anderson TF (1952) A method for eliminating gross artifacts in drying specimens. In: C R ler Congr Int Microsc Electron, Paris, pp 567-576.

    Google Scholar 

  6. Anderson TF (1954) Some fundamental limitations to the preservation of 3-dimensional specimens for the electron microscope. Trans N Y Acad Sci 16:242–249.

    PubMed  CAS  Google Scholar 

  7. Arber W, Kellenberger E, Laszt L (1957) Morphologie von Leberglycogen. Kolloid Z 150:123–127.

    Article  CAS  Google Scholar 

  8. Bachhuber K, Frösch D (1983) Melamine resins, a new class of water-soluble embedding media for electron microscopy. J Microsc (Oxford) 130:1–9.

    Article  CAS  Google Scholar 

  9. Baschong W, Baschon-Prescianotto C, Wurtz M, Carlemalm E, Kellenberger C, Kellenberger E (1984) Preservation of protein structures for electron microscopy by fixation with aldehydes and/or OsO4. Eur J Cell Biol 35:21–26.

    CAS  Google Scholar 

  10. Bayer ME, Carlemalm E, Kellenberger E (1985) Capsule of E. coli K29: Ultrastructural preservation and immunoelectron microscopy. J Bacteriol 162:985–991.

    PubMed  CAS  Google Scholar 

  11. Brisson A, Unwin PNT (1984) Tubular crystals of acetylcholine receptor. J Cell Biol 99:1202–1211.

    Article  PubMed  CAS  Google Scholar 

  12. Brisson A, Unwin PNT (1985) Quaternary structure of the acetylcholine receptor. Nature (London) 315:474–477.

    Article  CAS  Google Scholar 

  13. Cantor Ch.R, Schimmel RP (1980) Biophysical chemistry. Freeman, San Francisco.

    Google Scholar 

  14. Carlemalm E, Villiger W, Hobot JA, Acetarin JD, Kellenberger E (1985) Low temperature embedding with Lowicryl resins: two new formulations and some applications. J Mol Biol 140:55–63.

    CAS  Google Scholar 

  15. Chiovetti R, Little SA, Brass Dale J, McGuffee LJ (1986) A new approach to low temperature embedding: Quick freezing, freeze-drying and direct infiltration in Lowicryl K4M. In: Müller M, Becker R, Boyde A, Wolosewick J (eds) The science of biological specimen preparations 1985. SEM, AMF O’Hare, IL 60666, pp 155-164.

    Google Scholar 

  16. Colman PM, Deisenhofer J, Huber R (1976) Structureof the human antibody molecule Kol (im-munoglobulin G1): An electrondensity map at 5 Å resolution. J Mol Biol 100:257–282.

    Article  PubMed  CAS  Google Scholar 

  17. Crick FHC, Watson JD (1956) The structure of small viruses. Nature 177:473–475.

    Article  PubMed  CAS  Google Scholar 

  18. Dorset DL, Rosenbusch JP (1983) Properties of the anomeric octylglucosides used in the recrystallization of membrane proteins. In: Quagliariello E, Palmieri F (eds) Structure and function of membrane proteins. Elsevier, Amsterdam, pp 199–203.

    Google Scholar 

  19. Duijn G van, Dekker J, Leunissen-Bijvelt J, Verkleij AJ, deKruijff B (1985) Influence of trinitrophenylation on the structure and dynamics of phosphatidylethanolamine-containing model membranes. Biochemistry 24:7640–7650.

    Article  Google Scholar 

  20. Emerman M, Behrman EJ (1982) Cleavage and cross-linking of proteins with osmium (VIII) reagents. J Histochem Cytochem 30:395–397.

    Article  PubMed  CAS  Google Scholar 

  21. Engel J, Odermatt E, Engel A, Madri JA, Furthmayr H, Rohde H, Timpl R (1981) Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J Mol Biol 150:97–120.

    Article  PubMed  CAS  Google Scholar 

  22. Franks F (ed) (1973) Water, a comprehensive treatise, vol 2: Water in crystalline hydrates; aqueous solutions of simple nonelectrolytes. Plenum, New York London, pp 376–399.

    Google Scholar 

  23. Gerhardt P, Judge JA (1964) Porosity of isolated cell walls of Saccharomyces cerevisiae and Bacillus megaterum. J Bacteriol 87:945–951.

    PubMed  CAS  Google Scholar 

  24. Guo P, Grimes S, Anderson D (1986) A defined system for in vitro packaging of DNA-gp3 of the Bacillus subtilis bacteriophage 029. Proc Natl Acad Sci USA 83:3505–3509.

    Article  PubMed  CAS  Google Scholar 

  25. Hayat MA, Zirkin BR (1973) Critical point drying method. In: Hayat MA (ed) Principles and techniques of electron microscopy, vol 3. Van Nostrand Reinhold, New York, pp 297–313.

    Google Scholar 

  26. Hearst JE, Vinograd J (1961) The net hydration of T4 bacteriophage deoxyribonucleic acid and the effect of hydration on buoyant behaviour in a density gradient at equilibrium in the ultracentrifuge. Proc Natl Acad Sci USA 47:1005–1014.

    Article  PubMed  CAS  Google Scholar 

  27. Hobot JA, Carlemalm E, Villiger W, Kellenberger E (1984) Periplasmic gel: New concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods. J Bacteriol 160:143–152.

    PubMed  CAS  Google Scholar 

  28. Hobot JA, Villiger W, Escaig J, Maeder M, Ryter A, Kellenberger E (1985) The shape and fine structure of the nucleoid observed on sections of ultrarapid frozen and cryosubstituted bacteria. J Bacteriol 162:960–971.

    PubMed  CAS  Google Scholar 

  29. Hoppe W, Lohmann W, Markl H, Ziegler H (1977) Biophysik, ein Lehrbuch. Springer, Berlin Heidelberg New York.

    Google Scholar 

  30. Joly M (1965) A physico-chemical approach to the denaturation of proteins. Academic Press, London New York.

    Google Scholar 

  31. Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Prot Chem 14:1–63.

    Article  CAS  Google Scholar 

  32. Kellenberger E (1962) The study of natural and artificial DNA-plasms by thin section. In: Harris RJC (ed) The interpretation of ultrastructure. Academic Press, London New York, pp 233–247.

    Google Scholar 

  33. Kellenberger E (1978) Possibility to detect reproducibly some 5–10 Å conformational differences by conventional techniques: physiologically defined lattice transformations in bacteriophage T4. In: Sturgess JM (ed) Electron microscopy 1978, vol 3. Proc 9th Int Congr Electron Microsc, Toronto, pp 441–449.

    Google Scholar 

  34. Kellenberger E, Bitterli D (1976) Preparation and counts of particles in electron microscopy: application of negative stain in the agar filtration methods. Microsc Acta 78:131–148.

    PubMed  CAS  Google Scholar 

  35. Kellenberger E, Kistler J (1979) The physics of specimen preparation. In: Hoppe W, Mason R (eds) Unconventional electron microscopy for molecular structure determination. Vieweg, Braunschweig, pp 49–79.

    Google Scholar 

  36. Kellenberger E, Ryter A (1964) Bacteriology. In: Siegel BM (ed) Modern developments in electron microscopy. Academic Press, London New York, pp 335–393.

    Google Scholar 

  37. Kellenberger E, Bolle A, Boy de la Tour E, Epstein RH, Franklin NC, Jerne NK, Reali-Scafati A, Sechaud J, Bendet I, Goldstein D, Lauffer MA (1965) Functions and properties related to the tail fibers of bacteriophage T4. Virology 26:419–440.

    Article  PubMed  CAS  Google Scholar 

  38. Kellenberger E, Carlemalm E, Stauffer E, Kellenberger C, Wunderli H (1981) In vitro studies of the fixation of DNA, nucleoprotamine, nucleohistone and proteins. Eur J Cell Biol 25:1–4.

    PubMed  CAS  Google Scholar 

  39. Kellenberger E, Häner M, Wurtz M (1982) The wrapping phenomenon in air dried and negatively stained preparations. Ultramicroscopy 9:139–150.

    Article  PubMed  CAS  Google Scholar 

  40. Kellenberger E, Carlemalm E, Villiger W (1986a) Physics of the preparation and observation of specimens that involve cryoprocedures. In: Müller M, Becker R, Boyde A, Wolosewick J (eds) The science of biological specimen preparation, 1985. SEM, AMF O’Hare, IL 60666, pp 1-20.

    Google Scholar 

  41. Kellenberger E, Carlemalm E, Villiger W, Wurtz M, Mory C, Colliex CH (1986b) Z-contrast in biology; a comparison with other imaging modes. Ann N Y Acad Sci 483:202–228.

    Article  PubMed  CAS  Google Scholar 

  42. Kellenberger E, Villiger W, Carlemalm E (1986c) The influence of the surface relief of thin sections of embedded, unstained biological material on the image quality. Micron Microsc Acta 17:331–348.

    Article  Google Scholar 

  43. Killian JA, de Kruijff B (1985) Importance of hydration for gramicidin-induced hexagonal H11 phase formation in Dioleoylphosphatidylcholine model membranes. Biochemistry 24:7890–7898.

    Article  PubMed  CAS  Google Scholar 

  44. Kistler J, Kellenberger E (1977) Collapse phenomena in freeze-drying. J Ultrastruct Res 59:70–75.

    Article  PubMed  CAS  Google Scholar 

  45. Kuntz ID, Kauzmann W (1974) Hydration of proteins and polypeptides. Adv Protein Chem 28:239–345.

    Article  PubMed  CAS  Google Scholar 

  46. Lauffer MA (1975) Entropy driven processes in biology. Springer, Berlin Heidelberg New York.

    Google Scholar 

  47. Lepault J, Pitt T (1984) Projected structure of unstained, frozen-hydrated T-layer of Bacillus brevis. EMBO J 3:101–105.

    PubMed  CAS  Google Scholar 

  48. Lilley DMJ, Palecek E (1984) The supercoil-stabilised cruciform of Col El is hyper-reactive to OsO4. EMBO J 3:1187–1192.

    PubMed  CAS  Google Scholar 

  49. MacKenzie AP (1977) The physico-chemical basis for the freeze-drying process. Int Symp Freeze-drying of biological products, Washington, DC. Dev Biol Standard 36:51–67.

    CAS  Google Scholar 

  50. Malhotra SK (1962) Experiments on fixation for electron microscopy. Q J Microsc Sci 103:5–15.

    Google Scholar 

  51. Moncany MLJ (1982) Determination des conditions intracellulaires chez E. coll. Conséquences biologiques de leur modification. Thèse Doct D’Etat, Univ Paris VII.

    Google Scholar 

  52. Morel FMM, Baker RF, Weyland H (1971) Quantitation of human red blood cell fixation by glutaraldehyde. J Cell Biol 48:91–100.

    Article  PubMed  CAS  Google Scholar 

  53. Porter KR (1984) The cytomatrix: A short history of its study. J Cell Biol 99, 1, 2:3s–12s.

    Article  PubMed  CAS  Google Scholar 

  54. Rachel R, Jakubowski U, Baumeister W (1986) Electron microscopy of unstained, freeze-dried macromolecular assemblies. J Microsc (Oxford) 141:179–191.

    Article  Google Scholar 

  55. Reynolds JA, Tanford C (1970) The gross conformation of proteinodium dodecyl sulfate complexes. J Biol Chem 245:5161–5165.

    PubMed  CAS  Google Scholar 

  56. Richter J, Koller R, Ramel A, Thürkauf M (1966) Observations on electron micrographs of DNA. Biochim Biophys Acta 123:286–297.

    PubMed  CAS  Google Scholar 

  57. Rilfors L, Weibull C (1985) The consumption of osmium tetroxide by components of the cytoplasmic membrane of Acholeplasma laidlawii and its morphological implications. Micron Microsc Acta 16:77–83.

    Article  CAS  Google Scholar 

  58. Rosenbusch JP, Garavito RM, Dorset DL, Engel A (1982) Structure and function of pore-forming transmembrane protein: high resolution studies of a bacterial porin. In: Peeters H (ed) Protides of the biological fluids. 20th Colloqu 1981. Pergamon, Oxford New York, pp 171–174.

    Google Scholar 

  59. Sjöstrand FS, Kretzer F (1975) A new freeze-drying technique applied to the analysis of the molecular structure of mitochondrial and chloroplast membranes. J Ultrastruct Res 53:1–28.

    Article  PubMed  Google Scholar 

  60. Srere PA (1981) Protein crystals as a model for mitochondrial matrix proteins. TIBS 6:4–6.

    CAS  Google Scholar 

  61. Tanford CH (1968) Protein denaturation, pt A and B. Adv Prot Chem 23:121–282.

    Article  CAS  Google Scholar 

  62. Tanford CH (1970) Protein denaturation, pt C. Adv Prot Chem 24:1–95.

    Article  CAS  Google Scholar 

  63. Tanford CH (1980) The hydrophobic effect: Formation of micelles and biological membranes, 2nd edn. Wiley Interscience, New York.

    Google Scholar 

  64. Tschopp J, Villiger W, Lustig A, Jaton J-CL, Engel J (1980) Antigen-independent binding of JgG dimers to Clq as studied by sedimentation equilibrium, complement fixation and electron microscopy. Eur J Immunol 10:529–535.

    Article  PubMed  CAS  Google Scholar 

  65. Weibull C, Christiansson A, Carlemalm E (1983) Extraction of membrane lipids during fixation, dehydration and embedding of Acholeplasma laidlawii-cells for electron microscopy. J Microsc (Oxford) 129:201–207.

    Article  CAS  Google Scholar 

  66. Weibull C, Villiger W, Carlemalm E (1984) Extraction of lipids during freeze-substitution of Acholeplasma laidlawii-cells for electron microscopy. J Microsc (Oxford) 134:213–216.

    Article  CAS  Google Scholar 

  67. Westphal CH, Frösch D (1984) Electron-phase-contrast imaging of unstained biological materials, embedded in a water-soluble melamine resin. J Ultrastruct Res 88:282–286.

    Article  PubMed  CAS  Google Scholar 

  68. Williams RC (1953) A method of freeze-drying for electron microscopy. Exp Cell Res 4:188–201.

    Article  Google Scholar 

  69. Williams RC, Fraser D (1953) Morphology of the seven T bacteriophages. J Bacteriol 66:458–464.

    PubMed  CAS  Google Scholar 

  70. Yanagida M, Boy de la Tour E, Alff-Steinberger C, Kellenberger E (1970) Studies on the morphopoiesis of the head of phage T-seven: VIII. Multilayered polyheads. J Mol Biol 50:35–58.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kellenberger, E. (1987). The Response of Biological Macromolecules and Supramolecular Structures to the Physics of Specimen Cryopreparation. In: Steinbrecht, R.A., Zierold, K. (eds) Cryotechniques in Biological Electron Microscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72815-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72815-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72817-4

  • Online ISBN: 978-3-642-72815-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics