Modifications of Auxin Efflux Carrier in the Auxin Transport System by Diethyl Ether and Ethylene

  • B. G. Kang
Conference paper
Part of the NATO ASI Series book series (volume 10)


A variety of agents in vapor or in gas phase have attracted the attention of some early investigators for their growth-modifying effects in plants. Among these, Schroeder (17, see also 23) noticed a temporary stimulation of growth by low concentrations of ether vapor. Since Neljubov (12) first showed that growth of pea seedlings was affected by ethylene, ethylene research was carried out by many workers thereafter (see 1). Ether and ethylene (2), however unrelated they may be to each other functionally, are likely to influence plant growth through an interference with the auxin transport system. In an extensive study, van der Weij (21) showed that polar auxin movement in Avena coleoptile segments was inhibited (“suspended”) when 40 % ether-saturated water was placed in the test chamber. Several studies (e.g. 2) have demonstrated ethylene interference with auxin movement.


Mung Bean Auxin Transport Auxin Efflux Carrier Ether Vapor Binding Mixture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeles FB (1973) Ethylene in Plant Biology. Academic Press, New YorkGoogle Scholar
  2. 2.
    Burg SP, Burg EA (1967) Plant Physiol 42: 1224PubMedCrossRefGoogle Scholar
  3. 3.
    Depta H, Eisele KH, Hertel R (1983) Plant Sci Letts 31: 181CrossRefGoogle Scholar
  4. 4.
    Depta H, Hertel R (1982) In: Harmel D, Marre E, Hertel R (eds) Plasmalemma and Tonoplast. Elsevier, Amsterdam p l37Google Scholar
  5. 5.
    Dohrmann U, Hertel R, Kowallk H (1978) Planta 140: 97CrossRefGoogle Scholar
  6. 6.
    Goad LJ (1977) In: Telvini M, Lichtenthaler HK (eds) Lipids and Lipid Polymers in Higher Plants. Spinger-Verl, Heidelberg, p 146Google Scholar
  7. 7.
    Goldsmith MHM (1982) Planta 155: 68CrossRefGoogle Scholar
  8. 8.
    Hertel R (1981) Biochem Physiol Pflanzen 176: 495Google Scholar
  9. 9.
    Hertel R, Lomax TL, Briggs WR (1983) Planta 157: 193CrossRefGoogle Scholar
  10. 10.
    Jacobs M, Gilbert SF (1983) Science 220: 1297PubMedCrossRefGoogle Scholar
  11. 11.
    Jacobs M, Hertel R (1978) Planta 141: 1CrossRefGoogle Scholar
  12. 12.
    Neljubov D (1901) Beih Bot Zentralbl 10: 128Google Scholar
  13. 13.
    Musgrave A, Walters J (1973) New Phytol 72: 783CrossRefGoogle Scholar
  14. 14.
    Ray PM (1977) Plant Physiol 59: 594PubMedCrossRefGoogle Scholar
  15. 15.
    Ray PM, Dohrmann U, Hertel R (1977) Plant Physiol 59: 357PubMedCrossRefGoogle Scholar
  16. 16.
    Rubery PH (1977) Planta 152: 74Google Scholar
  17. 17.
    Schroeder H (1908) Flora 99: 156Google Scholar
  18. 18.
    Sussman MR, Goldsmith MHM (1981) Planta 151: 15CrossRefGoogle Scholar
  19. 19.
    Sussman MR, Goldsmith MHM (1981) Planta 152: 13CrossRefGoogle Scholar
  20. 20.
    Thomson KS, Hertel R, Müller S, Tavares JE (1973) Planta 109: 337.CrossRefGoogle Scholar
  21. 109:.
  22. 21.
    Van der Weij HG (1934) Rev trav bot neerl 31: 810Google Scholar
  23. 22.
    Winter PM, Miller JN (1985) Sci Amer 252: 94CrossRefGoogle Scholar
  24. 23.
    Witt J, Söding H (1965) Planta 65: 232CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • B. G. Kang
    • 1
  1. 1.Department of BiologyYonsei UniversitySeoulKorea

Personalised recommendations