Skip to main content

Biotechnology of Nutritional Improvement of Potato

  • Chapter
Potato

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 3))

  • 719 Accesses

Abstract

Potato is a highly nutritious, mild flavoured, easy to blend food that has many possibilities for “building in” desired nutrients. Although biotechnology has been in the service of the food industry for over 8000 years, only recent advances in molecular biology indicate the potential for further improvements in potato in the way of colour, flavour, texture, environmental adaptation, change in the content of vitamins; palatability; protein/carbohydrate ratios, as well as the crop yield. In the field of food processing and production, the use of immobilized biocatalyst technology has enabled potato starch to be converted to single cell protein using yeasts (Knorr and Sinskey 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anand JC, Maini SB (1979) Utilization of potatoes under glut conditions -possible outlets. In: Kishore H (ed) Int Symp Post Harv Technol Util Potato. CIP, Simla-New Delhi, pp 447–452

    Google Scholar 

  • Bajaj S (1969) Biological value of pea proteins as influenced by genetic variation. Ph D Thesis, Michigan State Univ

    Google Scholar 

  • Bajaj S (1975) Biological value of legume proteins as influenced by genetic variation. In: Nutritional improvement of legume proteins. Protein Advisory Group, FAO, Rome. Wiley &Sons, New York, pp 223–232

    Google Scholar 

  • Bajaj S (1979a) Report of the project ’Utilization of tubers in dietaries, incorporation of tubers such as tapioca, sweet potato and potato in selected preparations.’ Indian Council Agric Res Proj Rep

    Google Scholar 

  • Bajaj S (1979b) Cheap and nutritious food for children. Progressive farming. Joint Dir Commun Punjab Agric Univ, Ludhiana, India, Sept 1979, pp 54–56

    Google Scholar 

  • Bajaj S (1986) Review of research on the impact of integrated child development services (ICDS) scheme. In: Suraj Gupte (ed) Newer horizons in tropical pediatrics, vol II. Jaypee Brothers, New Delhi, pp 268–276

    Google Scholar 

  • Bajaj S, Saini T (1979) Utilization of potatoes. Joint Dir Commun Punjab Agric Univ, Ludhiana, India

    Google Scholar 

  • Bajaj S, Mickelson O, Lillevik HA, Baker LR, Bergen WG, Gill JL (1971a) Prediction of protein efficiency ratio of peas from their albumin content. J Crop Sci 11:813–815

    Article  CAS  Google Scholar 

  • Bajaj S, Mickelson O, Baker LR, Markarian D (1971b) The quality of protein in various lines of peas. Br J Nutr 25:207–212

    Article  CAS  Google Scholar 

  • Bajaj YPS (1986) Biotechnology in agriculture and forestry, vol 2: Crops I. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Bajaj YPS, Sopory SK (1986) Biotechnology of potato improvement. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2: Crops I. Springer, Berlin Heidelberg New York, pp 429–454

    Google Scholar 

  • Barinder Kaur, Gupta SK (1982) Utilization of potato for weaning food manufacture. J Found Sci Tech 19(1):23–25

    Google Scholar 

  • Biletska OK (1961) Dynamics of starch and ascorbic acid in potatoes during preservation of potatoes. Vishn Silsk Nauki 4(6):108–111

    CAS  Google Scholar 

  • Block RJ, Mitchell HH (1946) The correlation of amino acid composition of proteins with their nutritive value. Nutr Abstr Rev 16(2)

    Google Scholar 

  • Bright SWJ, Miflin BJ, Rognes SE (1982) Threonine accumulation in the seeds of a barley mutant with an altered aspartate kinase. Biochem Genet 20:229–243

    Article  CAS  Google Scholar 

  • Carlson JE, Widholm JM (1978) Separation of two forms of anthranilate synthetase from 5-methyltryptophan-susceptible and -resistant cultured Solarium tuberosum cells. Physiol Plant 44:251–255

    Article  CAS  Google Scholar 

  • Carlson PS (1973) Methionine sulfoximine-resistant mutants of tobacco. Science 180:1366–1368

    Article  CAS  Google Scholar 

  • Cattoir-Reynaerts A, Degryse E, Jacobs M (1981) Selection and analysis of mutants over-producing amino acids of the aspartate family in barley, Arabidopsis and carrot. In: Induced mutations -a tool in plant breeding. Int Atomic Energ Ag, Vienna, pp 353–361

    Google Scholar 

  • Chaleff RS, Carlson PS (1975) Higher plant cells as experimental organisms. In: Markham R, Davies DR, Hopwood DA, Home RW (eds) Modification of the information content of plant cells. Elsevier/North Holland Biomedical Press, Amsterdam New York, pp 197–214

    Google Scholar 

  • Chegolina MM (1969) Virus x and protein metabolism in potato. Tr Nouch Issl Inst Kartoffel Khoz 6:14–17

    Google Scholar 

  • Chelpanova NE (1972) Synthesis of protein in potato tubers in connection with the use of nitrogenous fertilizers. Sib Vestn Selsk Nauki 2 (1):14–19

    CAS  Google Scholar 

  • CIP (1984) Potatoes for the developing world. Int Potato Centre, CIP, Lima

    Google Scholar 

  • Coutrez-Geerinck D (1970) Free amino acids in tubers and sprouts of potatoes cultivated on differential media. Ann Physiol Veg Univ Bruxelles 15(4):61–99

    CAS  Google Scholar 

  • Desborough S, Li PH (1975) Physiological and genetic studies of potato tuber protein. Ann Rep Rockfeller Found, Dep Hortic Sci, Univ Minnesota St. Paul

    Google Scholar 

  • Desborough S, Weiser CJ (1972) Protein comparisons in selected phureja-haploid Tuberosum families. Am Potato J 49:227–233

    Article  Google Scholar 

  • Dimitrov S (1969) Fertilizer experiments with potatoes grown on diluvial and brown forest soils. Pochvoznanie 4(5): 113–123

    CAS  Google Scholar 

  • Eckes P, Schell J, Willmitzer L (1985a) Organ-specific expression of three leaf/stem specific cDNAs from potato is regulated by light and correlated with chloroplast development. Mol Gen Genet 199:216–224

    Article  CAS  Google Scholar 

  • Eckes P, Schell J, Willmitzer L (1985b) Potato -a model crop for gene manipulations in biotechnological approaches to production of better plants in hostile environments. Hebrew Univ, Rehovot

    Google Scholar 

  • Enachescu G (1960) Variations in ascorbic acid and thiamine content of potatoes during storage. Acad Rep Popul. Romine, Stud Cercetarc Biol Ser Biol Veg 12:239–258

    CAS  Google Scholar 

  • FAO (1984) In: Potatoes for the developing world. Int Potato Cent, Lima, Peru, p 19

    Google Scholar 

  • Filep G, Bukai J (1969) Effect of nitrogen supply on the chemical composition and free amino acid and protein contents of potato tuber. Noveny Termeles 18(2):23–32

    CAS  Google Scholar 

  • Fitzpatrick TJ, Talley EA, Porter WL, Murphy J J (1964) Chemical composition of potatoes. Ill-Relationships between specific gravity and the nitrogenous constituents. Am Potato J 41:75–81

    Article  CAS  Google Scholar 

  • Fitzpatrick TJ, Porter WL, Houghland GVC (1969) Continued studies of the relationship of specific gravity to total solids of potatoes. Am Potato J 46:120–127

    Article  Google Scholar 

  • Gastaiiaduy AS, Lopez de Romana G, Graham GG, Maclean WC (1983) Utilization of potato in the dietary treatment of infants with malnutrition of acute diarrhoea. Nutr Rep Int 28(1):75–88

    Google Scholar 

  • Gathercole RWE, Street HE (1976) Isolation, stability and biochemistry of a P-fluorophenylala-nine-resistant cell line of Acer pseudoplatanus L. New Phytol 77:29–41

    Article  CAS  Google Scholar 

  • Gladilovich BR, Gudkova GR (1971) Change in the biochemical composition of potato tubers under the effect of copper containing fungicides. Zap Leningrad Selsk Inst 160:32–36

    CAS  Google Scholar 

  • Gonzales RA, Das PK, Widholm JM (1984) Characterization of cultured tobacco cell lines selected for resistance to a methionine analog, ethionine. Plant Physiol 74:640–644

    Article  CAS  Google Scholar 

  • Gopalan C, Ramasastri BV, Balasubramaniam SC (1981) Nutritive value of Indian foods. Inst Nutr Hyderabad, India

    Google Scholar 

  • Hanning F, Mudambi SR (1962) Dehydrated and canned potatoes. J Am Diet Assoc 40:211–213

    CAS  Google Scholar 

  • Hass GM, Nau H, Biemann K, Grahan DT, Erickson LH, Neurath H (1975) The amino acid sequence of a carboxypeptidase inhibitor from potatoes. Biochemistry 14:1334–1342

    Article  CAS  Google Scholar 

  • Hass M, Mermodson M, Ryan CA, Gentry L (1982) Primary structure of two low molecular weight proteinase inhibitors from potatoes. Biochemistry 21:752–756

    Article  CAS  Google Scholar 

  • Hibberd KA, Green CE (1982) Inheritance and expression of lysine plus threonine resistance selected in maize tissue culture. Proc Natl Acad Sci USA 79:559–563

    Article  CAS  Google Scholar 

  • Hibberd KA, Walter T, Green CE, Gengenbach BG (1980) Selection and characterization of a feedback-insensitive tissue culture of maize. Planta 148:183–187

    Article  CAS  Google Scholar 

  • Hira CK, Bajaj S (1986) Protein quality of wheat-legume-potato diets supplemented with milk in adult human subjects. Ind J Med Res 83:216–220

    CAS  Google Scholar 

  • Ho C, Loo S, Xu Z, Xu S, Li W (1982) Experiments on the regenerated callus tissue from 4-oxdalysineresistant mutant plant cell line. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 469–470

    Google Scholar 

  • Hoff JE, Jones CM, Wilcox GE, Castro MD (1971) The effect of nitrogen fertilization on the composition of free amino acid pool of potato tubers. Am Potato J 48:390–394

    Article  CAS  Google Scholar 

  • Horton D (1980) The potato as a food for the developing world. Soc Sci Dep Work Pap Ser 1980–1986. Int Potato Cent, Lima Peru

    Google Scholar 

  • Jacobs M, Cattoir-Reynaerts A, Negrutiu I, Verbruggen I, Degryse E (1982) Comparison of selection schemes for the isolation of resistant mutants to aspartate-derived amino acids and S-(2-aminoethyl) cysteine in various cell culture and “whole plant” systems. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 453–454

    Google Scholar 

  • Jacobsen E, Visser RGF, Wijbrandi J (1986) Phenylalanine and tyrosine accumulating cell lines of a dihaploid potato selected by resistance to 5-methyl tryptophan. Plant Cell Rep 4:151–154

    Article  Google Scholar 

  • JADA (1985) Buttery potatoes. J Am Diet Assoc 85:634

    Google Scholar 

  • Kapoor AC, Desborough SL, Li PH (1975) Potato tuber proteins and their nutritional quality. Potato Res 18:469–478

    Article  CAS  Google Scholar 

  • Knorr D, Sinskey AJ (1985) Biotechnology in food production and processing. Science 229: 1224–1229

    Article  CAS  Google Scholar 

  • Kueh JSH, Bright SWJ (1981) Proline accumulation in barley mutant resistant to trans-4-hydroxy-Lproline. Planta 153:166–171

    Article  CAS  Google Scholar 

  • Kueh JSH, Bright SWJ (1982) Biochemical and genetical analysis of three proline-accumulating barley mutants. Plant Sci Lett 27:233–241

    Article  CAS  Google Scholar 

  • Lampitt LH, Goldenberg N (1940) The composition of potato. Chem Ind 18:748–761

    Google Scholar 

  • Loginow W, Klupczynski Z (1969) Intensive mineral fertilization of potatoes. II Effect of fertilization on the content and yield of starch and protein. Pamiet Pul 37:113–122

    Google Scholar 

  • Lopez de Romafia G, Graham G, Madrid S, Maclean WC (1981) Prolonged consumption of potato based diets by infants and small children. J Nutr 111(8): 1430–1436

    Google Scholar 

  • Mathews BF, Shye SCH, Widholm JM (1980) Mechanism of resistance of a selected carrot cell suspension culture to S(2-aminoethyl)-L-cysteine. Z Pflanzenphysiol 96:453–463

    Google Scholar 

  • Mazur T, Kawecka T (1969) Effect of simazine on the yield and protein content of some crops. Zesz Nauk Wyzcz Skz Roln Olszt 25(4):925–940

    CAS  Google Scholar 

  • McCay CM, McCay JB (1967) The nutritive value of potatoes. Potato Handbook 12:54–56

    Google Scholar 

  • Melchers G, Sacristan MD, Holder AA (1978) Somatic hybrid plants of potato and tomato regenerated from fused protoplasts. Carlsberg Res Commun 43:203–218

    Article  Google Scholar 

  • Mignery GA, Pikaard CS, Hannapel DJ, Park WD (1984) Isolation and sequence analysis of cDNAs for the major tuber protein, patatin. Nucl Acid Res 12(21):7987–8000

    Article  CAS  Google Scholar 

  • Ministry of Social Welfare (1982) Integrated child development services scheme. Gov India, pp 4–5

    Google Scholar 

  • Mica P (1971) Influence of fertilizer applications on the content of essential amino acids in potato protein. Potato Res 14:19–28

    Article  CAS  Google Scholar 

  • Mondy NI (1983) Factors affecting the nutritional quality of potatoes. In: Hooker WJ (ed) Proc Int Congr Res Potato Year 2000. CIP, Lima, Peru

    Google Scholar 

  • Mudambi SR, Rajagopal MV (1979) Role of potato in child nutrition. In: Kishore H (ed) Post harvest technology and utilization of potato. CIP Simla, New Delhi, pp 393–402

    Google Scholar 

  • Mulder EG, Bakema K (1956) Effect of the nitrogen, phosphorus, potassium and magnesium nutrition of potato plants on the content free amino acids and on amino acid composition of the protein of the tubers. Plant Soil 7:135–166

    Article  CAS  Google Scholar 

  • Negrutiu I, Cattoir-Reynaerts A, Verbruggen I, Jacobs M (1984) Lysine overproducer mutants with an altered dihydrodipicolinate synthase from protoplast culture of Nicotiana sylvestris (Spegazzini and Comes). Theor Appl Genet 68:11–20

    Article  CAS  Google Scholar 

  • Neuberger A, Sanger F (1942) The nitrogen of potato. Biochem J 36:662–671

    CAS  Google Scholar 

  • O’Keefe ARB, Kerr ED, Hagen AF (1983) Improvement of potato as an energy resource. In: Hooker WJ (ed) Proc Int Congr Res Potato Year 2000. CIP, Lima, Peru, pp 147–149

    Google Scholar 

  • Oser BL (1951) Method for integrating essential amino acid content in the nutritional evaluation of foods. J Am Diet Assoc 27:396–402

    CAS  Google Scholar 

  • Page E, Hanning FM (1963) Vitamin B and niacin in potatoes. J Am Diet Assoc 42:42–45

    CAS  Google Scholar 

  • Paiva E, Lister RM, Park WD (1983) Induction and accumulation of major tuber proteins of potato in stems and petioles. Plant Physiol 71:161–168

    Article  CAS  Google Scholar 

  • Palma V, Yeganiantz L (1983) Bioenergy and food potential of the potato and its limitations in the year 2000. In: Hooker WJ (ed) Proc Int Congr Res Potato Year 2000. CIP, Lima, Peru, p 149

    Google Scholar 

  • Payne MG, Fults JL, Hay RJ, Livingstone CH (1953) Protein content and specific gravity of Red McClure potatoes increased by 2,4-D treatment. Am Potato J 30:46–49

    Article  CAS  Google Scholar 

  • Poats SV (1983) Beyond the farmer: Potato consumption in the subtropics. In: Hooker WJ (ed) Research for the potato in the year 2000. Proc Int Congr. CIP, Lima, Peru, pp 10–17

    Google Scholar 

  • Potato Quality Planning Conference Report (1973) CIP Lima, Peru 9:48

    Google Scholar 

  • Pushkarnath (1976) Potato as a world food crop. In: Potato in subtropics. Orient Longmans, London, pp 1–10

    Google Scholar 

  • Racusen D, Foote M (1980) A major soluble glycoprotein of potato tubers. J Food Biochem 4: 43–52

    Article  CAS  Google Scholar 

  • Rakitin YV, Strel’nikova BD (1970) Effect of sodium maleic hydrazide on the level of total nitrogen, proteins and nucleic acids in potato tubers. Fiziol Rast 17(1):91–95

    CAS  Google Scholar 

  • Rees DC, Lipscomb WN (1982) Refined crystal structure of the potato inhibitor complex of carboxypeptidase A at 2.5 A resolution. J Mol Biol 160:475–498

    Article  CAS  Google Scholar 

  • Reisch B, Duke HS, Bingham ET (1981) Selection and characterization of ethionine-resistant alfalfa (Medicago sativa L.) cell lines. Theor Appl Genet 59:89–94

    Article  Google Scholar 

  • Riccardi G, Cella R, Cumerino G, Ciffeŕri O (1983) Resistance to azelidine-2-carboxylic acid and sodium chloride tolerance in carrot cell cultures and Spirulina platensis. Plant Cell Physiol 24:1073–1078

    CAS  Google Scholar 

  • Sanford LL, Fitzpatrick TJ, Porter WL (1971) Selection potential for tuber total nitrogen and solids content in a tetraploid breeding population. Am Potato J 48:428–437

    Article  Google Scholar 

  • Schaeffer GW, Sharpe FT (1981) Lysine in seed protein from S-amino ethyl-L-cysteine resistant anther derived tissue cultures of rice. In Vitro 17:545–552

    Article  Google Scholar 

  • Schupan W (1959) The influence of increasing nitrogen fertilizers on the content of essential amino acids and the biological albumin evaluation of potatoes. Z Pflanzenernaehr Dung Bodenk 86:1–14

    Article  Google Scholar 

  • Shirras AD, Northcote DM (1984) Molecular cloning and characterisation of cDNAs complementary to mRNAs from wounded potato (Solarium tuberosum) tuber tissue. Planta 162:353–360

    Article  CAS  Google Scholar 

  • Sun M (1985) Plants can be patented now. Science 230(4723):303

    Article  CAS  Google Scholar 

  • Svensson B, Carlsson H (1969) Effect of ammonium sulphate on the yield and quality of potatoes. Lantbrukshoegsk Medded Ser A 110:26

    Google Scholar 

  • Swaaij AC van, Wijbrandi J, Huitema H, Timmeri W (1984) Hydroxyproline-resistant cell lines of dihaploid potato: isolation and partial characterization. Acta Bot Neerl 33:357

    Google Scholar 

  • Swaaij AC van, Jacobsen E, Feenstra WJ (1985) Effect of cold hardening, wilting and exogenously applied proline of leaf proline content and frost tolerance of several genotypes of Solarium. Physiol Plant 64:230–236

    Article  Google Scholar 

  • Swaminathan MS, Sawyer RL (1983) The potential of potato as a world food. In: Hooker WJ (ed) Proc Int Congr Res Potato Year 2000. CIP, Lima, Peru, pp 3–6

    Google Scholar 

  • Talley EA, Porter WL (1970) Chemical composition of potatoes VII. Relationship of the free amino acid concentration to specific gravity and storage time. Am Potato J 47:214–224

    Article  CAS  Google Scholar 

  • Talley EA, Fitzpatrick TJ, Porter WL, Murphy HJ (1961) Chemical composition of potatoes. I. Preliminary studies on relationships between specific gravity and the nitrogenous constituents. J Food Sci 26:351–355

    Article  CAS  Google Scholar 

  • Talley EA, Fitzpatrick TJ, Porter WL (1964) Chemical composition of potatoes IV. Relationship of free amino acid concentrations to specific gravity and storage time. Am Potato J 41:357–366

    Article  CAS  Google Scholar 

  • Talley EA, Fitzpatrick TJ, Porter WL (1970) Chemical composition of potatoes VIII. Effect of variety, location and year of growth on the contents of nitrogenous compounds. Am Potato J 47:231–244

    Article  CAS  Google Scholar 

  • Tikhonov NI, Bychkov VA (1969a) Effect of long term fertilization on the levels of protein and essential amino acids in potato tubers. Agrokhimiya 1969(4):18–20

    Google Scholar 

  • Tikhonov NI, Bychkov VA (1969b) Level of essential amino acids in potato tubers. Khim Sel Khoz 8(9):662–665

    Google Scholar 

  • Umaerus M (1970) Influence of environmental conditions on potatoes with special reference to plant breeding under Swedish conditions. Commun Swed Seed Assoc 363:1–196

    Google Scholar 

  • Varis E (1973) Factors affecting the yield and quality of protein in potato. Acta Agr Fenn 128(3):1 -12

    Google Scholar 

  • Vigue J, Li PH (1974) The effect of simizine and cytokinins on potato tuber protein, nitrogen content and yield. Potato Res 17:327–332

    Article  CAS  Google Scholar 

  • Wakasa K, Widholm JM (1982) Regeneration of resistant cells of tobacco and rice to amino acids and amino acid analogs. In: Funiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 455–456

    Google Scholar 

  • Warren DS, Woodman JS (1974) The texture of cooked potatoes: A review. J Sci Found Agric 25:129–138

    Article  Google Scholar 

  • Watt BK, Merill Al (1963) Composition of foods -raw, processed, prepared. Handb 8 US Dep Agric

    Google Scholar 

  • Widholm JM (1974) Cultured carrot cell mutants: 5-methyltryptophan-resistance trait carried from cell to plant and back. Plant Sci Lett 3:323–330

    Article  CAS  Google Scholar 

  • Widholm JM (1976) Selection and characterisation of cultured carrot and tobacco cells resistant to lysine, methionine and proline analogs. Can J Bot 54:1523–1529

    Article  CAS  Google Scholar 

  • Widholm JM (1978) Selection and characterization of a Daucus carota L. cell line resistant to four amino acid analogues. J Exp Bot 29:1111–1116

    Article  CAS  Google Scholar 

  • Wilcox GE, Hoff J (1970) Nitrogen fertilization of potatoes for early summer harvest. Am Potato J 47:99–102

    Article  Google Scholar 

  • Wurr DCE (1978) Production of new varieties. In: Harris PM (ed) The potato crop scientific basis for improvement. Chapman &Hall, London, p 619

    Google Scholar 

  • Yamamoto M (1967) Hypersensitivity of potatoes to the invasion of Phytophthora infestans. In: Hirai T, Hidaka Z, Uritani I (eds) Biochemical regulation in diseased plants on injury. Phytopathol Soc Jpn, Tokyo, pp 335–342

    Google Scholar 

  • Yamomoto M, Otsuka M (1971) Investigations of DNA of potato leaves in realation to the resistance of the suspect against the invasion of Phytophthora infestans. Ann Phytopath Soc Jpn 37:84–90

    Article  Google Scholar 

  • Yamamoto M, Nozu M, Shigematsu A (1969) Experiments on DNA-containing fraction obtained from potatoes in relation to hypersensitivity of resistant plant to the invasion of Phytophthora infestans. Bull Fac Agric Shimane Univ 3:1–5

    Google Scholar 

  • Yamamoto M, Matsuo K, Konno K, Bando T (1977) On the DNA fraction from plants and hypersensitivity of potatoes to the invasion of Phytophthora infestans. Proc Int Symp Current Top Plant Pathology, Budapest, pp 53–60

    Google Scholar 

  • Yamamoto M, Matsuo K, Konno K (1979) Further evidence on activity of the DNA fraction from a resistant hybrid in inducing localised flecks on Phytophthora infestans-mfected potato plants. Bot Mag (Tokyo) 92:139–143

    Article  CAS  Google Scholar 

  • Yamamoto M, Kuroiwa I, Nishibayashi S (1984) Further evidence for the uptake of exogenous DNA into potato leaf cells. Plant Cell Physiol 25:665–670

    CAS  Google Scholar 

  • Zenk MH (1974) Haploids in physiological and biochemical research. In: Kasha KJ (ed) Haploids in higher plants -advances and potential. Univ Guelph Press, pp 339–353

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bajaj, S. (1987). Biotechnology of Nutritional Improvement of Potato. In: Bajaj, Y.P.S. (eds) Potato. Biotechnology in Agriculture and Forestry, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72773-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72773-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72775-7

  • Online ISBN: 978-3-642-72773-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics