Skip to main content

Asthma: Mechanisms of Actions of Corticosteroids

  • Conference paper
Fokus — Atemwegserkrankungen heute

Abstract

Pathologically the principal features of asthma are bronchial muscle hypertrophy and airway inflammation [1]. It is currently believed that airway inflammation is the principal factor determining bronchial hyperresponsiveness and luminal exudate. Since glucocorticosteroids are major anti-inflammatory drugs it is attractive to suppose that their principal benefit in the management of asthma is the inhibition of airway inflammation. The purpose of this paper is to consider the relevant mechanisms for such activity. However, one should acknowledge other possible modes of action for this group of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dunhill MS (1975) The morphology of the airways in bronchial asthma. In: Stein M (ed) New directions in Asthma. ACCP, Park Ridge, Illinois, pp 213–221

    Google Scholar 

  2. Conolly ME (1980) Cyclic nucleotides, beta-receptors, and bronchial asthma. Adv Cyclic Nucleotide Res 12: 151–159

    PubMed  CAS  Google Scholar 

  3. Ellul-Micallef R, Fenech FF (1975) Effect of intravenous prednisolone in asthmatics with diminished adrenergic responsiveness. Lancet 11: 1269–1271

    Article  Google Scholar 

  4. Davies AO, Lefkowitz RJ (1983) In vitro desensitization of beta adrenergic receptors in human neutrophils: attenuation by corticosteroids. J Clin Invest 71: 565–571

    Article  PubMed  CAS  Google Scholar 

  5. Yu DTY, Clements PJ, Paulus HE, Peter JB, Levy J, Barnett EV (1974) Human lymphocyte subpopulations. Effect of corticosteroids. J Clin Invest 53: 565–571

    Google Scholar 

  6. Fauci AS, Dale DC, Balow JE (1976) Glucocorticoid therapy: Mechanisms of action and clinical considerations. Am J Med 84: 304–315

    Google Scholar 

  7. Albert DH, Snyder F (1983) Biosynthesis of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) from l-alkyl-2-acyl-sn-glycero-3-phosphocholine by rat alveolar macrophages. Phospholipase A2 and acetyltransferase activities during phagocytosis and ionophore stimulation. J Biol Chem 258: 97–102

    PubMed  CAS  Google Scholar 

  8. Danon A, Assouline G (1978) Inhibition of prostaglandin biosynthesis by corticosteroids requires RNA and protein synthesis. Nature 273: 552–554

    Article  PubMed  CAS  Google Scholar 

  9. Fowler RJ, Blackwell GJ (1979) Anti-inflammatory steroids induce biosynthesis of phospholipase A2 inhibitor which prevents prostaglandin generation. Nature 278: 456–459

    Article  Google Scholar 

  10. Di Rosa M, Persico P (1979) Mechanism of inhibition of prostaglandin biosynthesis by hydrocortisone in rat leucocytes. Br J Pharmacol 66: 161–163

    PubMed  Google Scholar 

  11. Carnuccio R, Di Rosa M, Persico P (1980) Hydrocortisone induced inhibitor of prostaglandin biosynthesis in rat leucocytes. Br J Pharmacol 68: 14–16

    PubMed  CAS  Google Scholar 

  12. Blackwell GJ, Carnuccio R, Di Rosa M, Fowler RJ, Parente L, Persico P (1980) Maerocortin: a polypeptide causing the anti-phospholipase effect of glucocorticoids. Nature 287: 147–149

    Article  PubMed  CAS  Google Scholar 

  13. Hirata F, Corcoran BA, Venkatasubramanian K, Schiffmann E, Axelrod J (1979) Chemoattractants simulate degradation of methylated phospholipids and release of arachidonic acid in rabbit leukocytes. Proc Natl Acad Sci USA 76: 2640–2643

    Article  PubMed  CAS  Google Scholar 

  14. Hirata F, Schiffmann E, Venkatasubramanian K, Salomon D, Axelrod J (1980) A phos- pholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc Natl Acad Sci USA 77: 2533–2536

    Article  PubMed  CAS  Google Scholar 

  15. Hirata F (1981) The regulation of lipomodulin, a phospholipase inhibitory protein in rabbit neutrophils, by phosphorylation. J Biol Chem 256: 7730–7733

    PubMed  CAS  Google Scholar 

  16. Russo-Marie F, Paing M, Duval D (1979) Involvement of glucocorticoid receptors in steroid-induced inhibition of prostaglandin secretion. J Biol Chem 254: 8498–8504

    PubMed  CAS  Google Scholar 

  17. Russo-Marie F, Duval D (1982) Dexamethasone-induced inhibition of prostaglandin production does not result from a direct action on phospholipase activities but is mediated through a steroid-inducible factor. Biochim Biophys Acta 712: 177–185

    PubMed  CAS  Google Scholar 

  18. Cloix JF, Colard O, Rothut B, Russo-Marie F (1983) Characterisation and partial purification of “renocortins”: two polypeptides formed in renal cells causing the antiphospholipase- like action of glucocorticoids. Br J Parmacol 79: 313–321

    CAS  Google Scholar 

  19. Di Rosa M, Fowler RJ, Hirata F, Parente L, Russo-Marie F (1984) Nomenclature announcement. Antiphospholipase proteins. Prostaglandins 28: 441—442

    Google Scholar 

  20. Fant ME, Harbison RD, Harrison RW (1975) Glucocorticoid uptake into human placental membrane vesicles. J Biol Chem 250: 8105–8110

    Google Scholar 

  21. Turufuji S, Sugio K, Takanaka F (1979) The role of glucocorticoid receptor and gene expression in the anti-inflammatory action of dexamethasone. Nature 280: 408–410

    Article  Google Scholar 

  22. Calignano A, Carnuccio R, Di Rosa M, Ialenti A, Moncada S (1985) The anti-inflammatory effect of glucocorticoid-induced phospholipase inhibitory proteins. Agents Actions 16: 60–62

    Article  PubMed  CAS  Google Scholar 

  23. Di Rosa M, Calignano A, Carnuccio R, Ialenti A, Sautebin L (1985) Multiple control of inflammation by glucocorticoids. Agents Actions 17: 284–289

    Article  Google Scholar 

  24. Öyanagui Y (1984) Anti-inflammatory effects of poly amines in serotonin and carrageenan paw edemata-possible mechanism to increase vascular permeability inhibitory protein level which is regulated by glucocorticoids and superoxide radical. Agents Actions 14: 228–237

    Article  PubMed  Google Scholar 

  25. Öyanagui Y (1983) Physiological regulation of vascular permeability by endogenous glucocorticoids and active oxygen. Inflammation 7: 81–89

    Article  PubMed  Google Scholar 

  26. Öyanagui Y, Suzuki S (1985) Vasoregulin, a glucocorticoid- inducible vascular permeability inhibitory protein. Agents Actions 17: 270–277

    Article  Google Scholar 

  27. Altura BM (1966) Role of glucocorticoids in local regulation of blood flow. Am J Physiol 211: 1393–1397

    PubMed  CAS  Google Scholar 

  28. Friedland J, Setton C, Silverstein E (1977) Angiotensin converting enzyme: induction by steroids in rabbit alveolar macrophages in culture. Science 197: 64–65

    Article  PubMed  CAS  Google Scholar 

  29. Mendelsohn FAO, Lloyd CJ, Kachel C, Funder JW (1982) Induction by glucocorticoids of angiotensin converting enzyme production from bovine endothelial cells in culture and rat lung in vivo. J Clin Invest 70: 684–692

    Article  PubMed  CAS  Google Scholar 

  30. Cunha FQ, Cacini AT, Ferreira SH (1985) Inhibition of the release of a neutrophil chemotactic factor from macrophages partially explains the anti-inflammatory action of glucocorticoids. Agents Actions 17: 314–317

    Article  CAS  Google Scholar 

  31. Bell PA (1981) Steroids and cells of the immune system. In: Lewis GP, Ginsburg M (eds) Mechanisms of Steroid Action. McMillan, London, pp 75–84

    Google Scholar 

  32. Staruch MJ, Wood DD (1985) Reduction of serum interleukin-l-like activity after treatment with dexamethasone. J Leukocyte Biol 37: 193–207

    PubMed  CAS  Google Scholar 

  33. Bettens F, Kristensen F, Walker C, SchwuleraU, Bonnard GD, deWeek AL (1984) Lym- phokine regulation of activated ( G,) lymphocytes II: Glucocorticoid and Anti-Tac-Induced inhibition of human T lymphocyte proliferation. J Immunol 132: 261–265

    Google Scholar 

  34. Arya SK, Wong-Staal F, Gallo RC (1984) Dexamethasone-mediated inhibition of human T cell growth factor and Ý-interferon messenger RNA. J Immunol 133: 273–276

    PubMed  CAS  Google Scholar 

  35. Ezeamuzie IC, Assem ESK (1983) A study of histamine release from human basophils and lung mast cells by products of lymphocyte stimulation. Agents Actions 13: 222–230

    Article  PubMed  CAS  Google Scholar 

  36. Ezeamuzie IC, Assem ESK (1985) Histamine releasing lymphokine: preliminary evidence of membrane receptors on basophils. Agents Actions 17: 131–137

    Article  PubMed  CAS  Google Scholar 

  37. Bragt PC, Bransberg JI, Bonta IL (1980) Antiinflammatory effects of free radical scavengers and antioxidants. Further support for the proinflammatory roles of endogenous hydrogen peroxide and lipid peroxides. Inflammation 4: 289–299

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag, Berlin Heidelberg New York

About this paper

Cite this paper

Greening, A.P. (1987). Asthma: Mechanisms of Actions of Corticosteroids. In: Dethlefsen, U., Matthys, H. (eds) Fokus — Atemwegserkrankungen heute. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72768-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72768-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17958-0

  • Online ISBN: 978-3-642-72768-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics