Ultrafast Coherent Raman Spectroscopy

  • W. Zinth
  • W. Kaiser
Part of the Springer Proceedings in Physics book series (SPPHY, volume 19)

Abstract

During the past decade, time resolved coherent methods have attracted much interest for the study of fast dynamic processes. In particular, time resolved coherent Raman scattering allowed to measure — in the time domain — rapid dephasing processes of molecular vibrations in liquids and elucidated various line-broadening mechanisms /1-4/. It is the aim of this paper to focus attention on two more recent subjects. While time resolved Raman scattering is a method working in the time domain, it allows to obtain valuable information in the frequency domain /5, 6/. The results of coherent experiments in the time domain have to be transformed by appropriate methods, e.g. by Fourier transformation, to show properties of the investigated system in the frequency domain. We present here two different approaches to relate time and frequency domain: (i) A time resolved coherent Raman experiment is performed and the spectrum of the coherently scattered light is recorded, (ii) A numerical transformation is applied to coherent data of high time resolution giving precise values of frequency differences of vibrational modes separated by several terahertz. Both techniques give — when applied in an appropriate way —results superior to steady- state spontaneous spectroscopy.

Keywords

Pyridine Cyclohexane Dine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Laubereau, W. Kaiser: Rev. Mod. Phys. 50, 607 (1978); 1. A. Penzkofer, A. Laubereau, W. Kaiser: Progr. Quant. Electron. 6 55 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    D. von der Linde, A. Laubereau, W. Kaiser: Phys. Rev. Lett. 26 954 (1971)ADSCrossRefGoogle Scholar
  3. 3.
    S. Velsko, J. Trout, R.M. Hochstrasser: J. Chem. Phys. 79, 2114 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    G. M. Gale, P. Guyot-Sionnest, W. Q. Zheng: Optics Commun. 58, 395 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    W. Zinth, W. Kaiser: In Organic Molecular Aggregates, eds. R.Reinecker, H.Haken, H. C.Wolf, Solid State Science, Vol. 49, ( Springer, New York 1983 ) p. 124Google Scholar
  6. 6.
    H. Graener, A. Laubereau: Optics Commun. 54, 141 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    R. L. Carman, I. Shimizu, C. S. Wang, N. Bloembergen: Phys. Rev. A2, 60 (1970)ADSGoogle Scholar
  8. 8.
    W. Zinth, A. Laubereau, W. Kaiser: Optics Commun. 57, 457 (1978)ADSCrossRefGoogle Scholar
  9. 9.
    W. Zinth: Optics Commun. 34, 479 (1980)ADSCrossRefGoogle Scholar
  10. 10.
    W. Zinth, M.C. Nuss, W. Kaiser: Chem. Phys. Lett. 88, 257 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    M. A. Collins, P.A. Madden, A.D. Buckingham: Chem. Phys. 24, 291 (1985)CrossRefGoogle Scholar
  12. 12.
    W. Zinth, M.C. Nuss, W. Kaiser: Phys. Rev. A30, 1139 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    J. Dobler, H.H. Schulz, W. Zinth: Optics Commun. 57, 407 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    H. Takahashi, K. Mamola, E.K. Plyler, J. Mol. Spectrosc. 21, 217 (1966) B. P. Asthana, H. Takahashi, W. Kiefer: Chem. Phys. Lett. 94, 41 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    W. B. Dixon: J. Phys. Chem. 74, 1396 (1970); 15. A.N. Fletcher, ibid. 75, 1808 (1971)CrossRefGoogle Scholar
  16. 16.
    R. Leonhardt, W. Holzapfel, W. Zinth, W. Kaiser: Chem. Phys. Lett., to be published 1987Google Scholar
  17. 17.
    D. A. Long, F. S. Murfin, E. L. Thomas, Trans. Farad. Soc. 59, 12 (1963)CrossRefGoogle Scholar
  18. 18.
    K. B. Wiberg, A. Shrake: Spectrochim. Acta 27A, 1139 (1971)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • W. Zinth
    • 1
  • W. Kaiser
    • 1
  1. 1.Physik Department E11Technische Universität MünchenMünchenFed. Rep. of Germany

Personalised recommendations