Skip to main content

Cholinergic Mechanisms in Mood: Neuroendocrine Aspects

  • Conference paper
Neuroendocrinology of Mood

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 8))

Abstract

Central cholinergic mechanisms are thought to play key roles in such critical and diverse brain functions as motor tone and coordination, sleep and dreaming, analgesia, cognition and memory, and neuroendocrine regulation (Risch and Janowsky 1984). In addition, acetylcholine has been implicated in the regulation of mood and in the pathogenesis of affective illness (Janowsky et al. 1972 a). Data derived from both animal and human studies suggest that the relative balance between central cholinergic and adrenergic tone may play a role in the modulation of mood. Further, preliminary evidence suggests that patients suffering from affective disorders may be hypersensitive, both in terms of behavioral and neuroendocrine responses, to the pharmacologic effects of centrally acting cholinomi- metic agents. Such hypersensitivity may be a reflection of central cholinergic receptor hypersensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K, Hiroshige T (1974) Changes in plasma corticosterone and hypothalamic CRF levels following intraventricular injection or drug-induced changes of brain biogenic amines in the rat. Neuroendocrinology 14: 195–211

    PubMed  CAS  Google Scholar 

  • Amsterdam JD, Winokur A, Luck I, Caroff S, Synder P, Rickels K (1983) A neuroendo-crine test battery in bipolar patients and healthy subjects. Arch Gen Psychiatry 40: 515–521

    PubMed  CAS  Google Scholar 

  • Bhawe WB (1958) Experiments on the fate of histamine and acetylcholine after their injection into the cerebral ventricles. J Physiol 140: 169–189

    PubMed  CAS  Google Scholar 

  • Blackard WG, Waddell CC (1969) Cholinergic blockade and growth hormone responsiveness to insulin hypoglycemia. Proc Soc Exp Biol Med 131: 192–196

    PubMed  CAS  Google Scholar 

  • Board F, Wadeson R, Persky H (1957) Depressive affect and endocrine functions. Arch Neurol Psychiatry 78: 612–620

    CAS  Google Scholar 

  • Bowers MB, Goodman E, Sim VM (1964) Some behavioral changes in man following anti-cholinesterase administration. J Nerv Ment Dis 138:383

    Google Scholar 

  • Brezenoff HE (1973) Centrally induced pressor responses to intravenous and intraventricular physostigmine evoked via different pathways. Eur J Clin Pharmacol 23: 290–292

    CAS  Google Scholar 

  • Brezenoff HE, Giuliano R (1982) Cardiovascular control of cholinergic mechanisms in the central nervous system. Annu Rev Pharmacol Toxicol 22: 341–381

    PubMed  CAS  Google Scholar 

  • Brown WA, Shuey I (1980) Response to dexamethasone and subtype of depression. Arch Gen Psychiatry 37: 747–751

    PubMed  CAS  Google Scholar 

  • Bruni JF, Meites J (1978) Effects of cholinergic drugs on growth hormone release. Life Sci 23: 1351–1358

    PubMed  CAS  Google Scholar 

  • Buccafutsco JJ, Spector S (1980) Role of central cholinergic neurons in experimental hypertension. J Cardiovasc Pharmacol 2: 347–355

    Google Scholar 

  • Buccafusco JJ, Finberg JPM, Spector S (1980) Mechanisms of the antihypertensive action of clonidine on the pressor response by physostigmine. J Pharmacol Exp Ther 212: 58–63

    PubMed  CAS  Google Scholar 

  • Bunney WE Jr, Davis JM (1965) Norepinephrine in depressive reactions: a review. Arch Gen Psychiatry 13: 483–494

    PubMed  CAS  Google Scholar 

  • Burnett GR, Prange AJ, Wilson EC, Synder SH (1978) Neuroendocrine-drug relations in tardive dyskinesia. Abstract NR21 of the annual meeting of the American Psychiatric Association, Atlanta, Georgia

    Google Scholar 

  • Carpenter MA (1972) Core text of neuroanatomy. Williams and Wilkins, Baltimore

    Google Scholar 

  • Carroll BJ, Curtis GC, Davies BM et al. (1976) Urinary free cortisol excretion in depression. Psychol Med 6: 43–50

    PubMed  CAS  Google Scholar 

  • Carroll BJ, Greden JF, Haskett R, Feinberg M, Albala A, Martin F, Rubin R, Heath B, Sharp P, McLeod W, McLeod M (1980) Neurotransmitter studies of neuroendocrine pathology in depression. Acta Psychiatr Scand Suppl 280: 183–199

    PubMed  CAS  Google Scholar 

  • Carroll BJ, Feinberg M, Greden JF, Tarika J, Albala AA, Haskett RF, Jame NM, Kronfol Z, Lohr N, Steiner M, DeVigne JP, Young E (1981) A specific laboratory test for the diagnosis of melancholia. Arch Gen Psychiatry 38: 15–22

    PubMed  CAS  Google Scholar 

  • Casey DE (1979) Mood alterations during deanol therapy. Psychopharmacology 62: 187–191

    PubMed  CAS  Google Scholar 

  • Cass R, Spriggs TLB (1961) Tissue amine levels and sympathetic blockade after guaneth-idine and bretylium. Br J Pharmacol 17: 442–450

    CAS  Google Scholar 

  • Cohen BM, Miller AL, Lipinski JF, Pope HG (1980) Lecithin in mania: a preliminary report. Am J Psychiatry 137: 242–243

    PubMed  CAS  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (1982) The biochemical basis of neuropharmacology, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Coppen A, Shaw DM, Malleson A, Eccleston E, Gundy G (1965) Changes in 5-hydroxy-tryptophan metabolism in depression. Br J Psychiatry 3: 993–998

    Google Scholar 

  • Davis BM, Davis KL (1980) Cholinergic mechanisms and anterior pituitary hormone secretion. Biol Psychiatry 15(2): 303–310

    PubMed  CAS  Google Scholar 

  • Davis KL, Berger PA, Hollister LE, Defraites E (1978) Physostigmine in mania. Arch Gen Psychiatry 35(1): 119–122

    PubMed  CAS  Google Scholar 

  • Davis K, Hollister LE, Berger PA (1979) Choline chloride in schizophrenia. Am J Psychiatry 136: 1581–1584

    PubMed  CAS  Google Scholar 

  • Day MD, Roach AG (1977) Cardiovascular effects of carbachol and other cholinomi-metics administered into the cerebral ventricles of conscious cats. Clin Exp Pharmacol Physiol 4: 431–432

    PubMed  CAS  Google Scholar 

  • Doerr P, Berger M (1983) Physostigmine-induced escape from dexamethasone suppression in normal adults. Biol Psychiatry 18: 261–268

    PubMed  CAS  Google Scholar 

  • Dohanich GP, Barr PJ, Witcher JA, Clemen LG (1984) Pharmacological and anatomical aspects of cholinergic activation of female sexual behavior. Physiol Behav 32: 1021–1027

    PubMed  CAS  Google Scholar 

  • Domino EF, Olds ME (1968) Cholinergic inhibition of self-stimulation behavior. J Pharmacol Exp Ther 164: 202–211

    PubMed  CAS  Google Scholar 

  • Edwardson JA, Bennett GW (1974) Modulation of corticotropin-releasing factor release from hypothalamic synaptosomes. Nature 251: 425–427

    PubMed  CAS  Google Scholar 

  • Evans DL, Burnett GR, Nemeroff CB (1983) The dexamethasone suppression test in a clinical setting. Am J Psychiatry 140: 586–589

    PubMed  CAS  Google Scholar 

  • Gardiner DC, Gibson A, Pollock D (1974) A comparison of the effects of morphine withdrawal, thyroxine or thyroidectomy on the sensitivity of anococcygeus muscle to agonists and on serum thyroxine levels in the rat. Lif Sci 15: 339–349

    CAS  Google Scholar 

  • Gerson S, Shaw FH (1961) Psychiatric sequelae of chronic exposure to organophosphorus insecticides. Lancet 1: 1371–1374

    Google Scholar 

  • Gibbon JL, Meltaugh PR (1962) Plasma cortisol in depressive illness. Psychiatr Res 1: 162–176

    Google Scholar 

  • Gibson A, Pollock D (1975) Involvement of corticosteroids in supersensitivity produced in rat anococcygeus muscle by morphine withdrawal, thyroidectomy or a single injection of reserpine. J Pharmacol Exp Ther 192: 390–398

    PubMed  CAS  Google Scholar 

  • Gold PW, Goldwin FK, Wehr T, Rebar R (1977) Pituitary thyrotropin response to thyro-tropin-releasing hormone in affective illness: relationship to spinal fluid amine metabolites. Am J Psychiatry 134: 1028–1031

    PubMed  CAS  Google Scholar 

  • Golden RN, Potter WZ (1986) Neurochemical and neuroendocrine dysregulation in affective disorders. Psychiatr Clin North Am 9: 313–327

    PubMed  CAS  Google Scholar 

  • Goldman ME, Erickson CK (1983) Effects of acute and chronic administration of antide-pressant drugs on the central cholinergic system: comparison with anticholinergic drugs. Neuropharmacology 22: 1215–1222

    PubMed  CAS  Google Scholar 

  • Goodwin FK, Prange AJ Jr, Post RM, Muscettola G, Lipton MA (1982) Potentiation of antidepressant effects by 1-triiodothyronine in tricyclic nonresponders. Am J Psychiatry 139: 34–38

    PubMed  CAS  Google Scholar 

  • Grandison L, Meites J (1976) Evidence for adrenergic medication of cholinergic inhibition of prolactin release. Endocrinology 99: 775–779

    PubMed  CAS  Google Scholar 

  • Guillemin R, Vargo T, Rossier J, Minick S, Ling N, Rivier C, Vale W, Bloom F (1977) Beta-endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science 197: 1367–1369

    PubMed  CAS  Google Scholar 

  • Hernandez-Peon R (1965) Central neuro-humoral transmission in sleep and wakefulness. Prog Brain Res 18: 96–117

    CAS  Google Scholar 

  • Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1972a) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2: 6732–6735

    Google Scholar 

  • Janowsky DS, El-Yousef M, Davis JM (1972b) Cholinergic antagonism of methylpheni-date-induced stereotyped behavior. Psychopharmacologia 27: 295–303

    CAS  Google Scholar 

  • Janowsky DS, El-Yousef MK, Davis JM, Sekerle HJ (1973) Parasympathetic suppression of manic symptoms by physostigmine. Arch Gen Psychiatry 28: 542–547

    PubMed  CAS  Google Scholar 

  • Janowsky DS, Davis JM, El-Yousef MK, Sekerke HJ (1974) Acetylcholine and depression. Psychosom Med 36: 248–257

    PubMed  CAS  Google Scholar 

  • Janowsky DS, Risch SC, Parker D, Huey LY, Judd LL (1980) Increased vulnerability to cholinergic stimulation in affect disorder patients. Psychopharmacol Bull 16(4): 29–31

    PubMed  CAS  Google Scholar 

  • Janowsky DS, Risch SC, Judd LL, Huey LY, Parker DC (1981) Cholinergic supersensitivity in affect disorder patients. Behavioral and neuroendocrine observations. Psychopharmacol Bull 17(3): 129–132

    Google Scholar 

  • Janowsky DS, Risch SC, Judd LL, Parker DC, Kalin NH, Huey LY (1983a) Behavioral and neuroendocrine effects of physostigmine in affect disorder patients. In: Clayton PJ, Barrett JE (eds) Treatment of depression: old controversies and new approaches. Proceedings of the American Psychopathological Association meeting. Raven, New York

    Google Scholar 

  • Janowsky DS, Risch SC, Huey LY, Judd LL, Rausch J (1983b) Hypothalamic-pituitary-adrenal regulation, neurotransmitters, and affective disorders. Peptides 4: 775–784

    PubMed  CAS  Google Scholar 

  • Janowsky DS, Risch SC, Kennedy B, Ziegler M, Huey L (1986a) Central muscarinic effects of physostigmine on mood, cardiovascular function, pituitary and adrenal neuroendo-crine release. Psychopharmacology 89: 150–154

    PubMed  CAS  Google Scholar 

  • Janowsky DS, Risch SC, Ziegler MG, Gillin JC, Huey L, Rausch J (1986b) Physostigmine-induced epinephrine release in patients with affective disorder. Am J Psychiatry 143: 919–921

    PubMed  CAS  Google Scholar 

  • Jones M, Hillhouse E, Burden J (1969) The secretion of corticotropin-releasing hormone in vitro. In: Martini L, Ganong WF (eds) Frontiers of neuroendocrinology, vol 4. Raven, New York

    Google Scholar 

  • Kaplanski J, Smelik PG (1973) Analysis of the inhibition of ACTH release by hypotha-lamic implants of atropine. Acta Endocrinol 73: 651–659

    PubMed  CAS  Google Scholar 

  • Kato Y, Chirhara K, Ohgo S, Imura H (1974) Effect of nicotine on the secretion of growth hormone and prolactin in rats. Neuroendocrinology 16: 237–242

    PubMed  CAS  Google Scholar 

  • Kaul CL, Grewal RS (1968) Effect of physostigmine upon the output of catecholamines from the adrenal gland of the rat. J Pharmacol Sci 57: 1741

    CAS  Google Scholar 

  • Kluver H, Bucy PC (1939) Preliminary analysis of functions of the temporal lobes in monkeys. Arch Neurol Psychiatry 42: 949–1000

    Google Scholar 

  • Koslow SH, Maas JW, Bowden CL et al. (1983) Urinary biogenic amines and metabolites in depression and mania: a controlled univariate analysis. Arch Gen Psychiatry 402: 999–1010

    Google Scholar 

  • Krieger HP, Krieger DT (1970) Chemical stimulation of the brain: effect on adrenal cor-ticoid release. Am J Physiol 218: 1632–1641

    PubMed  CAS  Google Scholar 

  • Krog-Meyer I, Kirkegaard C, Kijne B, Lumholtz B, Smith E, Lykke-Olesen L, Bjorum N (1984) Prediction of relapse with the TRH test and prophylactic amitriptyline in 39 patients with endogenous depression. Am J Psychiatry 141: 945–948

    PubMed  CAS  Google Scholar 

  • Lang WJ, Rush ML (1973) Cardiovascular responses to injections of cholinomimetic drugs into the central ventricles of unanesthetized dogs. Br J Pharmacol 47: 196–205

    PubMed  CAS  Google Scholar 

  • Lawson DM, Gala RR (1975) The influences of adrenergic, dopaminergic, cholinergic and serotonergic drugs on plasma prolactin levels in ovariectomized, estrogen-treated rats. Endocrinology 96: 313–318

    PubMed  CAS  Google Scholar 

  • Leibowitz SF, Miller NE (1969) Unexpected adrenergic effect of chlorpromazine: eating elicited by injection into rat hypothalamus. Science 165: 609–611

    PubMed  CAS  Google Scholar 

  • Loosen P, Prange AJ Jr (1982) Serum thyrotropin response to thyrotropin-releasing hormone in psychiatric patients: a review. Am J Psychiatry 139: 405–416

    PubMed  CAS  Google Scholar 

  • MacLean PD (1957) Chemical and electrical stimulation of the hippocampus in unrestrained animals. II. Behavioral findings. Arch Neurol Psychiatry 78: 128–142

    CAS  Google Scholar 

  • MacLean PD (1958) Contrasting junctions of limbic and neocortical systems of the brain and their relevance to psychophysiological aspects of medicine. Am J Med 25: 611–626

    PubMed  CAS  Google Scholar 

  • MacLean PD, Delgado JMR (1953) Electrical and chemical stimulation of frontoemporal portion of limbic system in the waking animal. EEG Clin Neurophysiol 5: 91–100

    CAS  Google Scholar 

  • Marquardt DL, Motulsky JJ, Wasserman JI (1982) Rat lung cholinergic receptor: characterization and regulation by corticosteroids. J Appl Physiol 43: 731–736

    Google Scholar 

  • Martin JB, Durand D, Gurd W, Gaille G, Audet J, Brazeau P (1978) Neuropharmacologic regulation of episodic growth hormone and prolactin secretion in the rat. Endocrinology 102: 106–113

    PubMed  CAS  Google Scholar 

  • Martin JR, Overstreet DH, Driscoll P, Battig K (1981) Effects of scopolamine, pilocarpine and oxotremorine on the exploratory behavior of two psychogenetically selected lines of rats in a complex maze. Psychopharmacology 72: 135–142

    PubMed  CAS  Google Scholar 

  • McEwen BS, Pfaff C (1985) Hormonal effects of hypothalamic neurons: a analyzing gene expression and neuromodulatory action. Trends Neurosci 8: 105–110

    CAS  Google Scholar 

  • Mendelson WB, Jacobs LS, Sitaram N, Wyatt RJ, Gillin JC (1978) Methscopolamine inhibition of sleep related growth hormone secretion. J Clin Invest 61:1683

    Google Scholar 

  • Mendelson WB, Lantigua RA, Wyatt RJ, Gillin JC, Jacobs LS (1981) Piperidine enhances sleep-related and insulin-induced growth hormone secretion: further evidence for a cholinergic secretory mechanism. J Clin Endocrinol Metab 52(3): 409–415

    PubMed  CAS  Google Scholar 

  • Myers RD (1964) Emotional and autonomic responses following hypothalamic chemical stimulation. Can J Psychol 18: 6–14

    PubMed  CAS  Google Scholar 

  • Narabayashi H, Nugao T, Saito Y, Yosihida M, Nagahat M (1963) Sterotaxic amygdalo-tomy for behavioral disorders. Arch Neurol 9: 1–16

    PubMed  CAS  Google Scholar 

  • Netherton RA, Overstreet DH (1981) Sex differences in effects of oxotremorine on hypothermia. Presented at international pharmacology meeting, Tokyo

    Google Scholar 

  • Olds J (1960) Differentiation of reward systems in the brain by selfstimulation technics. In: Ramey SR, O’Doherty DS (eds) Electrical studies on the unanesthetized brain. Hoeber, New York

    Google Scholar 

  • Overstreet DH (1986) Selective breeding for increased cholinergic function: development of a new animal model of depression. Biol Psychiatry 21: 49–58

    PubMed  CAS  Google Scholar 

  • Overstreet DH, Russell RW (1982) Selective breeding for sensitivity to DFP: effects of cholinergic agonists and antagonists. Psychopharmacology 78: 150–154

    PubMed  CAS  Google Scholar 

  • Overstreet DH, Russell RW (1984) Selective breeding for differences in cholinergic function: sex differences in the genetic regulation of sensitivity to the anticholinesterase, DFP. Behav Neural Biol 40: 227

    PubMed  CAS  Google Scholar 

  • Overstreet DH, Russell RW, Kerni W, Netherton RA (1981) The influence of ovariectomy on the sex-dependent effects of the anticholinesterase, DFP. Psychopharmacology 74: 393–394

    Google Scholar 

  • Overstreet DH, Janowsky DS, Gillin JC, Shimoni PJ, Sutin EL (1987a) Stress-induced immobility in rats with cholinergic supersensitivity. Biol Psychiatry (to be published)

    Google Scholar 

  • Overstreet DH, Booth RA, Dana R, Risch SC, Janowsky DS (1987b) Corticosterone supersensitivity to arecoline in rats with cholinergic supersensitivity. Psychopharma-cology (to be published)

    Google Scholar 

  • Papez JW (1937) A proposed mechanism in emotion. Arch Neurol Psychiatry 38: 725–731

    Google Scholar 

  • Pradam SN, Kamat KA (1972) Action and interaction of cholinergic agonists and antagonists on self-stimulation. Arch Int Pharmacodyn Ther 196: 321–329

    Google Scholar 

  • Prange AJ Jr (1964) The pharmacology and biochemistry of depression. Dis Nerv 25: 217–221

    Google Scholar 

  • Rainbow TC, Degroff V, Luine VN, McEwen BS (1980) Estradiol 17B increased the number of muscarinic receptors in hypothalamic nuclei. Brain Res 198: 239–243

    PubMed  CAS  Google Scholar 

  • Rainbow TC, Snyder L, Beck DJ, McEwen BS (1984) Correlation of muscarinic receptor induction in the ventromedial hypothalamic nucleus with the activation of feminine sexual behavior by estradiol. Neuroendocrinology 39: 476–480

    PubMed  CAS  Google Scholar 

  • Riker DK, Sastre A, Barber T, Roth RH, Riker WR (1979) Regional high affinity 3H cho-line accumulation in cat forebrain. Selective increase in caudate-putamen after cortico-steroid pretreatment. Mol Pharmacol 16: 886–889

    CAS  Google Scholar 

  • Risch SC, Janowsky DS (1984) Cholinergic-adrenergic balance in affective illness. In: Post R, Ballenger J (eds) Neurobiology of mood disorder. Williams and Wilkins, Baltimore

    Google Scholar 

  • Risch SC, Cohen PM, Janowsky DS, Kalin NH, Insel TR, Murphy DL (1981a) Physostig-mine induction of depressive symptomatology in normal volunteer subjects. J Psychiatr Res 4: 89–94

    CAS  Google Scholar 

  • Risch SC, Cohen RM, Janowsky DS, Kalin NH, Murphy DL (1981b) Plasma Beta-endor-phin and cortisol elevations accompany the mood and behavioral effects of physostig-mine in man. Science 209: 1545–1546

    Google Scholar 

  • Risch SC, Janowsky DS, Kalin NH, Cohen RM, Aloi JA, Murphy DL (1982) Physostig-mine response as markers in affective disorder patients. In: Hanin I, Usdin E (eds) Biological markers in psychiatry and neurology. Pergamon, Oxford, pp 269–278

    Google Scholar 

  • Risch SC, Janowsky DS, Parker D, Kalin NH, Aloi JA, Cohen RM, Judd LL, Huey LY, Murphy DL (1984) Neuroendocrine abnormalities in affective disorders: possible cholinergic mechanisms. In: Post R, Ballenger J (eds) Neurobiology of mood disorders. Williams and Wilkins, Baltimore

    Google Scholar 

  • Risch SC, Janowsky D, Gillin JC, Kelsoe JR, Ziegler MG (1987) Muscarinic mechanisms in neuroendocrine regulation and depression (to be published)

    Google Scholar 

  • Rowntree DW, Neven S, Wilson A (1950) The effects of diisopropylfluorophosphonate in schizophrenia and manic depressive psychosis. J Neurol Neurosurg Psychiatry 13: 47–62

    PubMed  CAS  Google Scholar 

  • Rubinow DR, Post RM, Pickar D et al. (1981) Relationship between urinary free cortisol and CSF opioid-binding activity in depressed patients and normal volunteers. Psychiatr Res 5: 87–93

    CAS  Google Scholar 

  • Sachar EJ, Hellman L, Roffwarg HP et al. (1973) Disrupted 24-hour patterns of cortisol secretion in psychotic depression. Arch Gen Psychiatry 28: 19–24

    PubMed  CAS  Google Scholar 

  • Sawyer CH, Everett JW (1946) Effects of various hormonal conditions in the intact rats on the synthesis of serum cholinesterase. Endocrinology 39: 207–222

    Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122: 509–522

    PubMed  CAS  Google Scholar 

  • Sitaram N, Dube S, Jones N et al. (1984) Cholinergic REM-induction response as a state and possible genetic vulnerability marker of depression. Clin Neuropharmacol 7 [Suppl]: 524

    Google Scholar 

  • Stamenovic BA, Varagic VM (1970) The effect of eserine on the efferent neuronal activity in the cervical sympathetic of the rat. Neuropharmacology 9: 561–566

    PubMed  CAS  Google Scholar 

  • Steiner FA (1968) Influence of microelectrophoretically applied acetylcholine on the responsiveness of hippocampal and lateral geniculate neurones. Pflügers Arch 303: 173–180

    PubMed  CAS  Google Scholar 

  • Suh TH, Wang CH, Lim RKS (1975) Effect of intracisternal injection of acetylcholine. Proc Soc Exp Biol Med 32: 1410

    Google Scholar 

  • Suzuki T, Abe K, Horose T (1975) Adrenal cortical secretion in response to pilocarpine in dogs with hypothalamic lesions. Neuroendocrinology 17: 75–82

    PubMed  CAS  Google Scholar 

  • Sze PY, Marchi M, Towle AC, Giacobini E (1983) Increased uptake of 3H choline by rat superior cervical ganglion: an effect of dexamethasone. Neuropharmacology 22: 711–716

    PubMed  CAS  Google Scholar 

  • Tamminga C, Smith RC, Chang S, Naraszti JS, Davis JM (1976) Depression associated with oral choline. Lancet 11: 905

    Google Scholar 

  • Targum SD, Greenberg RD, Harmon RL et al. (1984) The TRH test and thyroid hormone in refractory depression. Am J Psychiatry 141:463

    Google Scholar 

  • Varagic V (1955) The action of eserine on the blood pressure of the rat. Br J Pharmacol 10: 349–353

    CAS  Google Scholar 

  • Varagic V, Vojvadic N (1957) Effect of guanethidine, hemicholinium and mebutamate in the hypertensive response to eserine and catecholamines. Br J Pharmacol Chemother 19: 451–457

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Janowsky, D.S., Golden, R.N., Risch, S.C. (1988). Cholinergic Mechanisms in Mood: Neuroendocrine Aspects. In: Ganten, D., Pfaff, D., Fuxe, K. (eds) Neuroendocrinology of Mood. Current Topics in Neuroendocrinology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72738-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72738-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72740-5

  • Online ISBN: 978-3-642-72738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics