Skip to main content

Serotonin and Mood: Neuroendocrine Aspects

  • Conference paper
Neuroendocrinology of Mood

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 8))

Abstract

The role of serotonin (5-HT) in the pathophysiology of mood disorders has been intensively investigated during the past 25 years (Meltzer and Lowy 1987). If 5- HT is involved in the etiology of affective disorders and the mechanism of action of thymoleptic drugs, it must have a significant role, direct or indirect, in the regulation of somatic processes that are disturbed in these mood disorders. In fact, 5-HT has been shown to have an important influence on mood itself, as well as on sleep, sexual activity, appetite, circadian rhythms, neuroendocrine function, anxiety, motor activity, and cognitive function, all of which are disturbed in affective disorders (Meltzer and Lowy 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ågren H (1980) Symptom patterns in unipolar and bipolar depression correlating with monoamine metabolites in the cerebrospinal fluid. II. Suicide. Psychiatry Res 3: 225–236

    Google Scholar 

  • Amsterdam JD, Schweizer E, Winokur A (1987) Multiple hormone responses to insulin-induced hypoglycemia in depressed patients and normal volunteers. Am J Psychiatry 144: 170–175

    PubMed  CAS  Google Scholar 

  • Anderson IM, Cowen PJ (1986) Clomipramine enhances prolactin and growth hormone responses to L-tryptophan. Psychopharmacol 89: 131–133

    CAS  Google Scholar 

  • Asberg M, Traskman L, Thoren P (1976) 5-HIAA in the cerebrospinal fluid: a biochemical suicide predictor? Arch Gen Psychiatry 33: 1193–1197

    PubMed  CAS  Google Scholar 

  • Azmita EC, McEwen BS (1969) Corticosterone regulation of tryptophan hydroxylase in midbrain of the rat. Science 166: 1274–1276

    Google Scholar 

  • Azmita EC, Algeri S, Costa E (1970) In vivo conversion of 3H-L-tryptophan into 3H-sero-tonin in brain areas of adrenalectomized rats. Science 169: 201–203

    Google Scholar 

  • Banki CM, Aratò M (1983) Amine metabolites, neuroendocrine findings, and personality dimensions as correlates of suicidal behavior. Psychiatry Res 19: 253–261

    Google Scholar 

  • Beck-Peccoz P, Ferrari C, Rondena M, Paracuhi A, Faglia G (1976) Failure of oral 5-hy-droxytryptophan administration to affect prolactin secretion in man. Horm Res 7: 303–307

    PubMed  CAS  Google Scholar 

  • Beskow J, Gottfries OG, Roos BE, Winblad B (1976) Determination of monoamine and monoamine metabolites in the human brain: postmortem studies in a group of suicides and in a control group. Acta Psychiatr Scand 53: 7–20

    PubMed  CAS  Google Scholar 

  • Briley MS, Langer SZ (1986) Platelet (3H) imipramine binding in the affective disorders: trait versus state characteristics. Am J Psychiatry 143: 711–717

    Google Scholar 

  • Brown GL, Ebert MH, Goyer PF, Jimerson CD, Klein WJ, Bunney WE, Goodwin FK (1982) Aggression, suicide and serotonin: relationships to CSF amine metabolites. Am J Psychiatry 139: 741–746

    PubMed  CAS  Google Scholar 

  • Calil HM, Lesieur P, Gold PW, Brown GM, Zavadil III AP, Potter WZ (1984) Hormonal responses to zimelidine and desipramine in depressed patients. Psychiatry Res 13: 231–242

    PubMed  CAS  Google Scholar 

  • Casanueva FF, Villanueva L, PeNalva H, Cabezas-Cerrato J (1984) Depending on the stimulus, central serotonergic activation by fenfluramine blocks or does not alter growth hormone secretion in man. Neuroendocrinol 38: 302–308

    CAS  Google Scholar 

  • Charney DS, Heninger GR (1986) Serotonin function in panic disorders: the effect of intravenous tryptophan in healthy subjects and patients with panic disorder before and during alprazolam treatment. Arch Gen Psychiatry 43: 1059–1065

    PubMed  CAS  Google Scholar 

  • Charney DS, Heninger GR, Reinhard JF, Sternberg DE, Hafstead KM (1982) The effect of intravenous L-tryptophan on prolactin and growth hormone and mood in healthy subjects. Psychopharmacology 77: 217–222

    PubMed  CAS  Google Scholar 

  • Charney DS, Heninger GR, Sternberg DE (1984) Serotonin function and mechanism of action of antidepressant treatment: effects of amitryptyline and desipramine. Arch Gen Psychiatry 41: 359–365

    PubMed  CAS  Google Scholar 

  • Chihara K, Kato Y, Maeda K, Matsukara S, Imura H (1976) Suppression by cyprohepta-dine of human growth hormone and cortisol secretion during sleep. J Clin Invest 57: 1393–1402

    PubMed  CAS  Google Scholar 

  • Clineschmidt BV, Reiss DR, Pettibone DJ, Robinson JL (1985) Characterization of 5-hy-droxytryptamine receptors in rat stomach fundus. J Pharmacol Exp Ther 235: 696–708

    PubMed  CAS  Google Scholar 

  • Conn PJ, Sanders-Bush E (1987) Central serotonin receptors: effector systems, physiology, roles and regulation. Psychopharmacology 92: 267–277

    PubMed  CAS  Google Scholar 

  • Cowen PJ, Gadhvi H, Gosden B, Kolakowska T (1985) Responses of prolactin and growth hormone to L-tryptophan infusion: effects in normal subjects and schizophrenic patients receiving neuroleptics. Psychopharmacology 86: 164–169

    PubMed  CAS  Google Scholar 

  • Cowen PJ, Geaney DP, Schächter M, Green AR, Elliott JM (1986) Desipramine treatment in normal subjects effects on neuroendocrine responses to tryptophan and on platelet serotonin (5-HT) related receptors. Arch Gen Psychiatry 43: 61–67

    PubMed  CAS  Google Scholar 

  • Curzon G, Kantamaneni BD, Van Boxel P, Gillman PK, Bartlett JR, Bridges PK (1980) Substances related to 5-hydroxytryptamine in plasma and in lumbar and ventricular fluids of psychiatric patients. Acta Psychiatr Scand 61 (Suppl 280): 3–19

    Google Scholar 

  • Davis KL, Hollister LE, Mathé AA, Davis BM, Rothpearl AB, Faull KF, Hsieh JYK, Bar-chas JD, Berger PA (1981) Neuroendocrine and neurochemical measurements in depression. Am J Psychiatry 138: 1555–1562

    PubMed  CAS  Google Scholar 

  • De Kloet ER, Kovacs GL, Szabo G, Telegdy G, Bohus B, Versteeg DHG (1982) Decreased serotonin turnover in the dorsal hippocampus of rat brain shortly after adrenalectomy: selective normalization after corticosterone administration. Brain Res 239: 659–663

    PubMed  Google Scholar 

  • De Kloet ER, Sybesma H, Reul H (1986) Selective control by corticosterone of serotonin1 receptor capacity in raphé-hippocampal system. Neuroendocrinology 42: 513–522

    PubMed  Google Scholar 

  • De Meirleir K, L’Hermite-Balériaux M, L’Hermite M, Rost R, Hollyman W (1985) Evidence for serotonergic control of exercise-induced prolactin secretion. Horm Metab Res 17: 380–381

    PubMed  Google Scholar 

  • Delitala G, Masala A, Alagna S, Devilla L (1975) Effect of cyproheptadine on the spontaneous diurnal variations of plasma ACTH-cortisol, and ACTH-GH secretion induced by L-dopa. Biomed Expr 23: 406–409

    CAS  Google Scholar 

  • Demisch L, Neubauer M (1979) Stimulation of human prolactin secretion by mescaline. Psychopharmacology 64: 361–363

    PubMed  CAS  Google Scholar 

  • Di Renzo GF, Quattrone A, Schettini G, Preziosi P (1979) Effect of selective lesioning of serotonin-containing neurons on the TSH-inhibiting actions of D-fenfluramine in male rats. Life Sci 24: 489–494

    PubMed  Google Scholar 

  • Feldman RS, Quenzer LF (1984) Fundamentals of neuropsychopharmacology. Sinauer, Sunderland, MA

    Google Scholar 

  • Fernstrom JD (1983) Role of precursor availability in control of monoamine biosynthesis in brain. Physiol Rev 63: 484–546

    PubMed  CAS  Google Scholar 

  • Ferrari C, Caldara R, Romussi M, Rampini G, Tellolo P, Zaatar S, Curtarelli G (1978) Prolactin suppression by serotonin antagonists in man; further evidence for serotonergic control of prolactin secretion. Neuroendocrinology 25: 319–328

    PubMed  CAS  Google Scholar 

  • Fessier RG, Deyo SN, Meltzer HY, Miller RJ (1984) Evidence that the medial and dorsal raphé nuclei mediate serotonergically-induced increases in prolactin release from the pituitary. Brain Res 299: 231–237

    Google Scholar 

  • Foresta C, Scanelli G, Indino M, Federspil G, Scandellari C (1985) Naloxone reduces the fenfluramine-induced prolactin release in man. Clin Endocrinol 22: 539–543

    CAS  Google Scholar 

  • Fraser WM, Tucker HS, Grubb SR, Wigand JP, Blackard WG (1979) Effect of L-tryptophan on growth hormone and prolactin release in normal volunteers and patients with secretory pituitary tumors. Horm Metab Res 11: 149–155

    PubMed  CAS  Google Scholar 

  • Fuller RW (1981) Serotonergic stimulation of pituitary-adrenocortical function in rats. Neuroendocrinology 32: 118–127

    PubMed  CAS  Google Scholar 

  • Fuller RW (1986) Pharmacological modification of serotonergic function: drugs for the study and treatment of psychiatric and other disorders. J Clin Psychiatry 47(suppl 4): 4–7

    PubMed  CAS  Google Scholar 

  • Fuxe K, Butcher LL, Engel J (1971) DL-5-Hydroxytryptophan-induced changes in central monoamine neurons after peripheral decarboxylase inhibition. J Pharm Pharmacol 23: 420–424

    PubMed  CAS  Google Scholar 

  • Fuxe K, Farnebo L-O, Hamberger B, Ögren S-0 (1975) On the “in vivo” and “in vitro” actions of fenfluramine and its derivates on central monoamine neurons, especially 5-hydroxytryptamine neurons, and their relation to the anorectic activity fenfluramine. Postgrad Med J 51(suppl 1): 35–45

    PubMed  Google Scholar 

  • Fuxe K, Ögren S-O, Agnati LF, Benfenati F, Ferdholm B, Andersson K, Zini I, Eneroth P (1985) Chronic antidepressant treatment and central 5-HT synapses. Neuropharma-cology 22: 389–400

    Google Scholar 

  • Gaddum JH, Picarelli ZP (1957) Two kinds of tryptamine receptor. Br J Pharmacol 12: 323–328

    CAS  Google Scholar 

  • Garfmkel PE, Brown GM, Warsh JJ, Stancer HC (1979) Neuroendocrine responses to car-bidopa in primary affective disorders. Psychoneuroendocrinology 4: 13–20

    Google Scholar 

  • Garratini S, Buczo W, Jori A, Samanin R (1975) On the mechanism of action of fenfluramine. Postgrad Med J 51(suppl l): 27–35

    Google Scholar 

  • Gillman PK, Bartlett JR, Bridges PK, Hunt A, Patel AJ, Kantamaneni BD, Curzon G (1981) Indolic substances in plasma, cerebrospinal fluid and frontal cortex of human subjects infused with saline or tryptophan. J Neurochem 37: 410–417

    PubMed  CAS  Google Scholar 

  • Glass AR, Smallridge RC, Schaff M, Diamond RC (1980) Absent prolactin response to L-tryptophan in normal and acromegalic subjects. Psychoneuroendocrinology 5: 261–265

    PubMed  CAS  Google Scholar 

  • Glennon RA (1987) Central serotonin receptors as targets for drug research. J Med Chem 30: 1–12

    PubMed  CAS  Google Scholar 

  • Glennon RA, Slusher RM, Lyon RA, Titeler M, McKenney JD (1986) 5-HT1 and 5-HT2 binding characteristics of some quipazine analogues. J Med Chem 29: 2375–2380

    PubMed  CAS  Google Scholar 

  • Gordin A, Mustajoki P, Pelhoren R (1985) Ketanserin without effects on basal anterior pituitary hormone secretion in healthy subjects. J Endocrinol Invest 8: 73–75

    PubMed  CAS  Google Scholar 

  • Gudelsky GA, Koenig JI, Meltzer H Y (1986) Thermoregulatory responses to serotonin (5-HT) receptor stimulation in the rat. Evidence for opposing roles of 5-HT2 and 5-HTla receptors. Neuropharmacology 25: 1307–1313

    PubMed  CAS  Google Scholar 

  • Halàsz B (1978) Functional anatomy of the hypothalamus. In: Cox B, Morris ID, Weston AH (eds) Pharmacology of the hypothalamus. University Park Press, Baltimore MD, pp 5–28

    Google Scholar 

  • Hall ED (1980) Glucocorticoid enhancement of serotonergic facilitation of cat spinal monosynaptic motor neuron excitation. Exp Neurol 68: 589–594

    PubMed  CAS  Google Scholar 

  • Handwerger S, Plonk JW, Lebovits HE, Bivens CH, Feldman JM (1975) Failure of 5-hy-droxytryptophan to stimulate prolactin and growth hormone secretion in man. Horm Metab Res 7: 214–216

    CAS  Google Scholar 

  • Heninger GR, Charney DJ, Sternberg DE (1984) Serotonergic function in depression. Prolactin response to intravenous tryptophan in depressed patients and healthy subjects. Arch Gen Psychiatry 41: 398–402

    CAS  Google Scholar 

  • Holl WR, Fehm HL, Voigt KH, Steiner K, Teller W (1986) Acute effects of desipramine and clomipramine on pituitary-adrenal axis in man. Horm Metab Res 18: 134–137

    PubMed  CAS  Google Scholar 

  • Holmes MC, DiRenzo GD, Beckford B, Gillham B, Jones MT (1982) Role of serotonin in the control of secretion of corticotropin releasing factor. J Endocrinol 93: 151–160

    PubMed  CAS  Google Scholar 

  • Holsboer F, Müller OA, Winter K, Doerr HG, Sippell WG (1983) Effect of serotonin uptake inhibition by zimelidine on hypothalamic-pituitary-adrenal activity. Psychphar-macology 80: 85–87

    CAS  Google Scholar 

  • Honma K-I, Watanabe K, Kiroshige T (1979) Effects of parachlorophenylalanine and 5,6-D-hydroxytryptamine on the free-running rhythms of locomotor activity and plasma corticosterone in the rat exposed to continous light. Brain Res 169: 531–544

    PubMed  CAS  Google Scholar 

  • Hoyer D, Pazos A, Probst A, Palacios JM (1986a) Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain Res 376: 85–96

    PubMed  CAS  Google Scholar 

  • Hoyer D, Pazos A, Probst A, Palacios JM (1986b) Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HTlc and 5-HT2 recognition sites. Brain Res 376: 97–107

    PubMed  CAS  Google Scholar 

  • Hyyppä MT, Jolma T, Liira V-A, Kytömäki O (1979) L-Tryptophan treatment and the episodic secretion of pituitary hormones and cortisol. Psychoneuroendocrinology 4: 29–35

    PubMed  Google Scholar 

  • Imura H, Nakai Y, Yoshimi T (1973) Effect of 5-HTP on growth hormone and ACTH release in man. J Clin Endocrinol Metab 36: 204–206

    PubMed  CAS  Google Scholar 

  • Invernizzi R, Berettera C, Garattini S, Samanin R (1986) D-and L-isomers of fenfluramine differ markedly in their interaction with brain serotonin and catecholamines in the rat. Eur J Pharmacol 20: 9–15

    Google Scholar 

  • Jacobs BL (1976) An animal behavior model for studying central serotonergic synapses. Life Sci 19: 777–786

    PubMed  CAS  Google Scholar 

  • Jones RB, Luscombe DK, Groom GV (1977) Plasma prolactin concentrations in normal subjects and depressive patients following oral clomipramine. Postgrad Med J 53 (suppl4): 166–171

    PubMed  CAS  Google Scholar 

  • Jordan D, Pigeon P, McRae-De Gueurce A, Pujol JF, Mornex R (1979) Participation of serotonin in thyrotropin release. II. Evidence for the action of serotonin on the phasic release of thyrotropin. Endocrinology 105: 975–979

    CAS  Google Scholar 

  • Kato Y, Nakai Y, Imura H, Chihara K, Ohgo S (1974) Effects of 5-hydroxytryptophan on plasma prolactin levels in man. J Clin Endocrinol 38: 695–697

    CAS  Google Scholar 

  • Kletzky OA, Marrs RP, Nicoloff JT (1980) Effects of cyproheptadine on insulin induced hypoglycermia secretion of PRL, GH and cortisol. Clin Endocrinol 13: 231–234

    CAS  Google Scholar 

  • Koenig JI, Gudelsky GA, Meltzer HY (1987) Stimulation of corticosterone and β-endor-phin secretion in the rat by selective 5-HT receptor subtype activation. Eur J Pharmacol 137: 1–8

    PubMed  CAS  Google Scholar 

  • Koyama T, Lowy MT, Meltzer HY (1987) 5-Hydroxytryptophan-induced cortisol response and CSF 5-HIAA. Am J Psychiatry 144: 334–347

    PubMed  CAS  Google Scholar 

  • Kuhn CM, Vogel RA, Mailman RB, Mueller RA, Schanberg SM, Breese GR (1981) Effect of 5,7-dihydroxytryptamine on serotonergic control of prolactin secretion and behavior in rats. Psychopharmacology 73: 188–193

    PubMed  CAS  Google Scholar 

  • Laakmann G, Schumacher G, Benkert O (1977) Stimulation of growth hormone secretion by desipramine and chlorimipramine in man. J Clin Endocrinol Metab 44: 1010–1013

    PubMed  CAS  Google Scholar 

  • Laakmann G, Gugath M, Kuss H-J, Zygan K (1984a) Comparison of growth hormone and prolactin stimulation induced by chlorimipramine and desipramine in man in connection with chlorimipramine metabolism. Psychopharmacology 82: 62–67

    PubMed  CAS  Google Scholar 

  • Laakmann G, Wittman M, Gugath M, Mueller OA, Treusch J, Wahlster U, Stalla GK (1984b) Effects of psycho tropic drugs (desipramine, chlorimipramine, sulpiride and diazepam) on the human HPA axis. Psychopharmacology 84: 66–70

    PubMed  CAS  Google Scholar 

  • Lancranjan I, Wirz-Justice A, Pühringer W, Del Pozo E (1977) Effect of L-5-hydroxytryp-tophan infusion on growth hormone and prolactin secretion in man. J Clin Endocrinol Metab 45: 588–593

    PubMed  CAS  Google Scholar 

  • Lewis DA, Sherman BM (1984) Serotonergic stimulation of adrenocorticotropin secretion in man. J Clin Endocrinol Metab 58: 458–462

    PubMed  CAS  Google Scholar 

  • Lòpez-Ibor JJ Jr, Saiz-Ruiz J, Pérez de los Cobos JC (1985) Biological correlations of suicide and aggressivity in major depressions (with melancholia): 5-hydroxyindoleacetic acid and cortisol in cerebral spinal fluid, dexamethasone suppression test and therapeutic response to 5-hydroxytryptophan. Neuropsychobiology 14: 67–74

    PubMed  Google Scholar 

  • Lowy MT, Meltzer HY (1988) Stimulation of serum cortisol and prolactin secretion in man by MK-212, a centrally active serotonin agonist. Biol Psychiatry (in press)

    Google Scholar 

  • Lucki I, Nobler MS, Frazer A (1984) Differential effects of serotonin antagonists on two behavioral models of serotonin receptor activation in the rat. J Pharmacol Exp Ther 228: 133–139

    PubMed  CAS  Google Scholar 

  • Maclndoe JH, Turkington RW (1973) Stimulation of human prolactin secretion by intravenous infusion of L-tryptophan. J Clin Invest 52: 1972–1978

    Google Scholar 

  • Magnussen I, Engbaek F (1978) The effects of aromatic amino acid decarboxylase inhibitors on plasma concentrations of 5-hydroxytryptophan in man. Acta Pharmacol Tox-icol 43: 36–42

    CAS  Google Scholar 

  • Mann JJ, Stanley M, McBride A, McEwen BS (1986) Increased serotonin2 and β-adrener-gic receptor binding in the frontal cortices of suicide victims. Arch Gen Psychiatry 43: 954–959

    PubMed  CAS  Google Scholar 

  • Masala A, Delitala G, Devilla L, Alagna S, Rovasio PP (1979) Enhancement of insulin-induced prolactin secretion by fluoxetine in man. J Clin Endocrinol Metab 49: 350–352

    PubMed  CAS  Google Scholar 

  • Mashchak CA, Kletzky OA, Spencer C, Artal R (1983) Transient efect of L-5-hydroxytryp-tophan on pituitary function in men and women. J Clin Endocrinol Metab 56: 170–176

    PubMed  CAS  Google Scholar 

  • McEwen BS (1987) Glucocorticoid-biogenic amine interactions in relation to mood and behavior. Biochem Pharmacol 36: 1755–1763

    PubMed  CAS  Google Scholar 

  • Mclntrye IM, Oxenkrug GF, Stanley M, Gershon S (1984) The effect of 5,7-dihydroxy-tryptamine on the serum corticosterone resistance to suppression by dexamethasone. Brain Res 309: 156–158

    Google Scholar 

  • Meltzer HY, Lowy MT (1986) Neuroendocrine function in psychiatric disorders and behavior. In: Berger PA, Brodie KH (eds) American handbook of psychiatry, vol 7. Basic Books, New York, pp 111–150

    Google Scholar 

  • Meltzer HY, Lowy MT (1987) The serotonin hypothesis at depression. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 513–526

    Google Scholar 

  • Meltzer HY, Fessier RG, Simonovic M, Doherty J, Fang VS (1977a) Lysergic acid dieth-ylamide: evidence for stimulation of pituitary dopamine receptors. Psychopharmacology 54: 39–44

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Piyakalmala S, Schyve P, Fang VS (1977b) Lack of effect of tricyclic antide-pressants on serum prolactin levels. Psychopharmacology 51: 185–187

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Fessier RG, Simonovic M, Fang VS (1978) The effect of mescaline, 3,4-di-methoxylphenethylamine and 2,5-dimethoxy-4-methylamphetamine on rat plasma prolactin: evidence for serotonergic mediation. Life Sci 23: 1185–1192

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Arora RC, Baber R, Tricou BJ (1981a) Serotonin uptake in blood platelets of psychiatric patients. Arch Gen Psychiatry 38: 1322–1326

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Simonovic M, Fang VS, Goode DJ (1981b) Neuroendocrine effects of psy-chotomimetic drugs. J McLean Hosp 6: 115–137

    Google Scholar 

  • Meltzer HY, Simonovic M, Sturgeon RD, Fang VS (1981c) Effects of antidepressants, lithium and electroconvulsive treatment on rat serum prolactin levels. Acta Psychiatr Scand 63(suppl 290): 100–121

    Google Scholar 

  • Meltzer HY, Wiita B, Tricou BJ, Simonovic M, Fang V, Manov G (1982) Effect of serotonin precursors and serotonin agonists on plasma hormone levels. In: Serotonin in biological psychiatry. Raven, New York, pp 117–138

    Google Scholar 

  • Meltzer HY, Boutros NN, Simonovic M, Gudelsky GA, Fang VS (1983) Hallucinogenic drugs and neuroendocrine secretion. In: Endroczi E, de Weid D, Angelucci L, Scapag-nini U (eds) Integrative neurohumoral mechanisms. Elsevier, Amsterdam, pp 463–477

    Google Scholar 

  • Meltzer HY, Arora RC, Robertson A, Lowy M (1984a) Platelet 3H-imipramine binding and platelet 5-HT uptake in affective disorders and schizophrenia. Clin Neuropharma-col 7(suppl l): 320–321

    Google Scholar 

  • Meltzer HY, Perline R, Tricou BJ, Lowy M, Robertson A (1984b) Effect of 5-hydroxytryp-tophan on serum cortisol levels in major affective disorders. II. Relation to suicide, psychosis and depressive symptoms. Arch Gen Psychiatry 41: 379–387

    CAS  Google Scholar 

  • Meltzer HY, Umberköman-Wiita B, Robertson A, Tricou BJ, Lowy M, Perline R (1984c) Effect of 5-hydroxytryptophan on serum cortisol levels in major affective disorders. I. Enhanced response in depression and mania. Arch Gen Psychiatry 41: 366–374

    CAS  Google Scholar 

  • Meltzer HY, Lowy M, Robertson A, Goodnick P, Perline R (1984d) Effect of 5-hydroxytryptophan on serum cortisol levels in major affective disorders. III. Effect of antidepressants and lithium carbonate. Arch Gen Psychiatry 41: 391–397

    CAS  Google Scholar 

  • Meltzer HY, Gudelsky GA, Koenig JI, Lowy MT (1987) Neuroendocrine effects of bu-spirone: mediation by dopaminergic and serotonergic mechanisms. In: Tunnicliff G, Eisen A, Taylor D (eds) Buspirone: mechanisms and clinical aspects. Academic (in press)

    Google Scholar 

  • Mendelson WB, Jacobs LE, Reichman JD, Othmer E, Cryer PE, Trivedi B, Daughaday WH (1975) Methysergide: suppression of sleep-related prolactin secretion and enhancement of sleep-related growth hormone secretion. J Clin Invest 56: 690–697

    PubMed  CAS  Google Scholar 

  • Modlinger RS, Schonmuller JM, Arora SP (1979) Stimulation of aldosterone, renin and cortisol by tryptophan. J Clin Endocrinol Metab 50: 599–603

    Google Scholar 

  • Modlinger RS, Schonmuller JM, Arora SP (1980) Adrenocorticotropin release by trypto-phan in man. J Clin Endocrinol Metab 50: 360–363

    PubMed  CAS  Google Scholar 

  • Möller SE (1985) Tryptophan to competing amino acids ratio in depressive disorder: relation to efficacy of antidepressive treatments. Acta Psychiatr Scand 72: 9–30

    Google Scholar 

  • Moller SE, Kirk L, Fremming KH (1976) Plasma amino acids as an index for subgroups in manic depressive psychosis: correlation to effect of tryptophan. Psychopharmacol-ogy 49: 205–213

    CAS  Google Scholar 

  • Moller SE, de Beurs P, Timmerman L, Tan BK, Leijnse-Ybema HJ, Cohen S, Hopfner MH, Petersen HE (1986) Plasma tryptophan and tyrosine ratios to competing amino acids in relation to antidepressant response to citalopram and maprotiline. A preliminary study. Psychopharmacology 88: 96–100

    CAS  Google Scholar 

  • Mueller EA, Murphy DL, Sunderland T (1985) Neuroendocrine effects of m-chlorophenyl-piperazine, a serotonin agonist, in humans. J Clin Endocrinol Metab 61: 1179–1184

    PubMed  CAS  Google Scholar 

  • Mueller EA, Murphy DL, Sunderland T (1986) Further studies of the putative serotonin agonist, m-chlorophenylpiperazine: evidence for a serotonin receptor mediated mechanism of action in humans. Psychopharmacology 89: 388–391

    PubMed  CAS  Google Scholar 

  • Muhlbauer HO, Muller-Oerlinghausen B (1985) Fenfluramine stimulation of serum corti-sol in patients with major affective disorders and healthy controls: further evidence for a central serotonergic action of lithium in man. J Neural Trans 61: 81–94

    CAS  Google Scholar 

  • Müller EE, Brambilla F, Cavagnini F, Peracchi M, Panerai A (1974) Slight effect of L-tryp-tophan on growth hormone release in normal human subjects. J Clin Endocrinol Metab 39: 1–5

    PubMed  Google Scholar 

  • Murphy DL, Campbell I, Costa J (1978) Current status of the indoleamine hypothesis of the affective disorders. In: Lipton MA, DiMascio A, Killiam KF (eds) Psychopharmacology: a generation of progress. Raven, New York, pp 1235–1248

    Google Scholar 

  • Nakai Y, Imura H, Sakurai H, Kurahachi H, Yoshimi T (1974) Effect of cyproheptadine on human growth hormone secretion. J Clin Endocrinol Metab 38: 446–449

    PubMed  CAS  Google Scholar 

  • Nausieda PA, Carvey PM, Weiner WJ (1982) Modification of central serotonergic and do-paminergic behaviors in the course of chronic corticosteroid administration. Eur J Pharmacol 78: 335–343

    PubMed  CAS  Google Scholar 

  • Neckers L, Sze PY (1975) Regulation of 5-hydroxytryptamine metabolism in mouse brain by adrenal glucocorticoids. Brain Res 93: 123–132

    PubMed  CAS  Google Scholar 

  • Ng LKY, Chase TN, Colburn RW, Kopin I (1972) Release of [3H] dopamine by L-5-hy-droxytryptophan. Brain Res 45: 499–505

    PubMed  CAS  Google Scholar 

  • Nuller JL, Ostroumova MN (1980) Resistance to inhibiting effect of dexamethasone in patients with endogenous depression. Acta Psychiatr Scand 61: 169–177

    PubMed  CAS  Google Scholar 

  • O’Malley BP, Jennings PE, Cook N, Barnett DB, Rosenthal FD (1984) The role of serotonin (5-HT) in the control of TSH and prolactin release in euthyroid subjects as assessed by the administration of ketanserin (5-HT2 antagonist) and zimelidine (5-HT re-uptake inhibitor). Psychoneuroendocrinology 9: 13–19

    PubMed  Google Scholar 

  • Parati EA, Zanardi P, Cocchi D, Caraceni T, Müller EE (1980) Neuroendocrine effects of quipazine in man in healthy state or with neurological disorders. J Neural Trans 47: 273–297

    CAS  Google Scholar 

  • Paul SM, Rehavi M (1981) Depressed patients have decreased binding of tritiated imi-pramine to platelet serotonin “transporter”. Arch Gen Psychiatry 38: 1315–1317

    PubMed  CAS  Google Scholar 

  • Penington NJ, Reiffenstein RJ (1986) Direct comparison of hallucinogenic phenethyl-amines and D-amphetamine on dorsal raphé neurons. Eur J Pharmacol 122: 373–377

    PubMed  CAS  Google Scholar 

  • Peroutka SJ (1985) Selective labelling of 5-HT1A and 5-HT1B binding sites in bovine brain. Brain Res 344: 167–171

    PubMed  CAS  Google Scholar 

  • Peroutka SJ, Lebovitz RM, Snyder SH (1981) Two distinct central serotonin receptors with different physiological functions. Science 212: 827–829

    PubMed  CAS  Google Scholar 

  • Prescott RWG, Kendall-Taylor P, Weightman DR, Watson MJ, Ratcliffe WA (1984) The effect of ketanserin, a specific serotonin antagonist on the PRL, GH, ACTH and cor-tisol responses to hypoglycemia in normal subjects. Clin Endocrinol 20: 137–142

    CAS  Google Scholar 

  • Price LH, Charney DS, Heninger GR (1985) Effects of tranylcypromine treatment of neu-roendocrine, behavioral and autonomic responses to tryptophan in depressed patients. Life Sci 37: 809–818

    PubMed  CAS  Google Scholar 

  • Pühringer W, Wirz-Justice A, Lancranjan (1976) Mood elevation and pituitary stimulation after i.v. L-5-HTP in normal subjects: evidence for a common serotonergic mechanism. Neurosci Lett 2: 349

    PubMed  Google Scholar 

  • Quattrone A, Di Renzo G, Schettini G, Tedeschi G, Scopacaso F (1978) Increased plasma prolactin levels induced in rats by d-fenfluramine: relation to central serotonergic stimulation. Eur J Pharmacol 49: 163–167

    PubMed  CAS  Google Scholar 

  • Quattrone A, Schettini G, Annunziato L, Di Renzo G (1981) Pharmacological evidence of supersensitivity of central serotonergic receptors involved in the control of prolactin secretion. Eur J Pharmacol 76: 9–13

    PubMed  CAS  Google Scholar 

  • Quattrone A, Tedeschi G, Aguglia V, Scopacasa F, Di Renzo GF, Annunziato L (1983) Prolactin secretion in man: a useful tool to evaluate the activity of drugs on central 5-hydroxytryptaminergic neurons. Studies with fenfluramine. Br J Clin Pharmacol 16: 471–475

    CAS  Google Scholar 

  • Roccatagliata G, Murialdo G, Abano C, Giovale M, Zauli C, Polled L (1982) Neuroen-docrinological and clinical data on trazodone treatment in depressed patients. Neuro-psychobiology 8: 259–269

    CAS  Google Scholar 

  • Rocco A, De Giorgio G, Buongiorno T, Proietti A, Lucchetti G, Falaschi P (1983) Prolactin response to R41468, a new specific 5-HT2 antagonist. Neuroendocrinol Lett 5: 47–53

    CAS  Google Scholar 

  • Rolandi E, Magnani G, Milesi GM, Barreca T (1981) Effect of a pschoactive drug, trazodone, on prolactin secretion in man. Neuropsychobiology 7: 17–19

    PubMed  CAS  Google Scholar 

  • Roy A, Agren H, Pickar D, Linnoila M, Doran AR, Cutler NR, Paul SM (1986) Reduced CSF concentrations of homovanillic acid and homovanillic acid to 5-hydroxyindo-leacetic acid ratios in depressed patients: relationship to suicidal behavior and dexa-methasone nonsuppression. Am J Psychiatry 143: 1539–1545

    PubMed  CAS  Google Scholar 

  • Scapagnini U, Moberg GP, van Loon GR, Ganong WF (1971) Relation of brain 5-hy-droxytryptamine content to the diurnal variation in plasma corticosterone in the rat. Neuroendocrinology 7: 90–96

    PubMed  CAS  Google Scholar 

  • Scarduelli C, Mattei AM, Brambilla G, Zavaglia C, Adelasco P, Cavioni V, Ferrari C (1985) Effect of fenfluramine oral administration on serum prolactin levels in health and hyperprolactinemic women. Gynecol Obstet Invest 19: 92–96

    PubMed  CAS  Google Scholar 

  • Schulz P, Reaven GM, Blaschke TF (1982) Growth hormone release after acute amitrip-tyline administration to normal human subjects. Psychopharmacology 76: 299–301

    PubMed  CAS  Google Scholar 

  • Siever LJ, Murphy DL, Slater S, de la Vega E, Lipper S (1984) Plasma prolactin changes following fenfluramine in depressed patients compared to controls: an evaluation of central serotonergic responsivity in depression. Life Sci 34: 1029–1039

    PubMed  CAS  Google Scholar 

  • Sueldo CE, Duda M, Kletzky (1986) Influence of sequential doses of 5-hydroxytryptophan on prolactin release. Am J Obstet Gynecol 154: 424–427

    PubMed  CAS  Google Scholar 

  • Syvälahti E, Eneroth P, Ross SB (1979a) Acute effects of zimelidine and alaproclate, two inhibitors of serotonin uptake, on neuroendocrine function. Psychiatry Res 1: 111–120

    PubMed  Google Scholar 

  • Syvälahti E, Nagy A, van Praag HM (1979b) Effects of zimelidine, a selective 5-HT uptake inhibitor, on serum prolactin levels in man. Psychopharmacology 64: 251–253

    PubMed  Google Scholar 

  • Szafarczyk A, Ixart G, Malaval F, Nouguier-Soulé J, Assenmacher I (1979) Effects of lesions of the suprachiasmatic nuclei and of p-chlorophenylalanine on the circadian rhythms of adrenocorticotrophic hormone and corticosterone in the plasma, and on lo-comotor activity of rats. J Endocrinol 83: 1–16

    PubMed  CAS  Google Scholar 

  • Takahashi S, Kondo H, Yoshimura M, Ochi Y (1974) Growth hormone response to administration of L-5-hydroxytryptophan (L-5-HTP) in manic-depressive psychoses. In: Psychoneuroendocrinology Workshop Conf. Int. Karger, Basel, pp 1235–1248

    Google Scholar 

  • Telegdy G, Vermes G (1975) Effect of adrenocortical hormones on activity of the serotonergic system in limbic structures in rats. Neuroendocrinology 18: 16–26

    PubMed  CAS  Google Scholar 

  • Thompson J, Rankin H (1982) The treatment of depression in general practice: a comparison of L-tryptophan, amitryptiline with placebo. Psychol Med 12: 741–751

    Google Scholar 

  • Titeler M, Herrick K, Lyon RA, McKenney JD, Glennon RA (1985) [3H]DOB: a specific agonist radioligand for 5-HT2 serotonin receptors. Eur J Pharmacol 117: 145–146

    PubMed  CAS  Google Scholar 

  • Träskman L, Tybring G, Asberg M, Bertilsson L, Lantto O, Schalling D (1980) Cortisol in the CSF of depressed and suicidal patients. Arch Gen Psychiatry 37: 761–167

    PubMed  Google Scholar 

  • Tukiainen E (1981) Effect of hypophysectomy and adrenalectomy on 5-hydroxytryptamine uptake by rat hypothalamic synaptosomes and blood platelets. Acta Pharmacol Tox-icol 48: 139–144

    CAS  Google Scholar 

  • Tuomisto J, Tukiainen E, Ahlfors UG (1979) Decreased uptake of 5-hydroxytryptamme in blood platelets from patients with endogenous depression. Psychopharmacology 65: 141–147

    PubMed  CAS  Google Scholar 

  • Tuomisto J, Mannisto P (1985) Neurotransmitter regulation of anterior pituitary hormones. Pharmacol Rev 37: 251–332

    Google Scholar 

  • Van de Kar LD, Urban JH, Richardson KD, Bethea CL (1985) Pharmacological studies on the serotonergic and nonserotonin-mediated stimulation of prolactin and corticosterone secretion by fenfluramine. Neuroendocrinology 41: 283–288

    PubMed  Google Scholar 

  • van Loon GR, Shum A, Sole MJ (1981) Decreased brain serotonin turnover after short term adrenalectomy in rats: a comparison of four turnover methods. Endocrinology 108: 1392–1402

    PubMed  Google Scholar 

  • van Praag HM (1981) Management of depression with serotonin precursors. Biol Psychiatry 16: 291–310

    PubMed  Google Scholar 

  • van Praag HM (1983) In search of the mode of action of antidepressants. 5-HTP/tyrosme mixtures in depression. Neuropharmacology 22: 433–440

    Google Scholar 

  • van Praag HM, Korf J, Puite J (1970) 5-Hydroxyindoleacetic acid levels in the cerebrospi-nal fluid of depressive patients treated with probenecid. Nature 225: 1259–1260

    Google Scholar 

  • van Praag HM, Lemus C, Kahn R (1987) Hormonal probes of central serotonergic activity: do they really exist? Biol Psychiatry 22: 86–98

    PubMed  Google Scholar 

  • Vermes I, Smelik PG, Mulder AH (1976) Effects of hypophysectomy: adrenalectomy and corticosterone treatment on uptake and release of putative central neurotransmitters by rat hypothalamic tissue in vitro. Life Sci 19: 1719–1726

    PubMed  CAS  Google Scholar 

  • Vernikos-Danellis J, Berger P, Barchas JD (1973) Brain serotonin and pituitary adrenal function. Rec Prog Brain Res 39: 301–308

    CAS  Google Scholar 

  • Virkkunen M, Nuutila A, Goodwin FK, Linnoila M (1987) Cerebrospinal monoamine metabolite levels in male arsonists. Arch Gen Psychiatry 44: 241–247

    PubMed  CAS  Google Scholar 

  • Westenberg HGM, van Praag HM, de Jong TVM, Thijssen JHH (1982) Post-synaptic activity in depressive serotonergic patients: evaluation of the neuroendocrine strategy. Psychiatry Res 7: 361–371

    PubMed  CAS  Google Scholar 

  • Wiebe RH, Handwerger S, Hammond CB (1977) Failure of L-tryptophan to stimulate prolactin secretion in man. J Clin Endocrinol Metab 45: 1310–1312

    PubMed  CAS  Google Scholar 

  • Willner P (1985) Antidepressants and serotonergic neurotransmission: an integrative review. Psychopharmacology 85: 387–404

    PubMed  CAS  Google Scholar 

  • Winokur A, Lindberg ND, Lucki I, Phillips J, Amsterdam JD (1986) Hormonal and behavioral effects associated with intravenous L-tryptophan administration. Psychopharmacology 88: 213–219

    PubMed  CAS  Google Scholar 

  • Woolf PD, Lee L (1977) Effect of the serotonin precursor, tryptophan, on pituitary hormone secretion. J Clin Endocrinol Metab 45: 123–133

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meltzer, H.Y., Nash, J.F. (1988). Serotonin and Mood: Neuroendocrine Aspects. In: Ganten, D., Pfaff, D., Fuxe, K. (eds) Neuroendocrinology of Mood. Current Topics in Neuroendocrinology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72738-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72738-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72740-5

  • Online ISBN: 978-3-642-72738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics