Skip to main content

Catecholamines and Mood: Neuroendocrine Aspects

  • Conference paper
Book cover Neuroendocrinology of Mood

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 8))

Abstract

The results of pharmacological-clinical studies in humans, e.g. those using psy- chomotor stimulants and other substances, leave no doubt that catecholamin- ergic neurons in the brain are involved in mood regulation. However, according to present knowledge, we have to remember that, given the close connections between the different neurotransmitter systems and the influence of diverse hormones on these systems, it is not possible to determine which brain process is finally responsible for the feelings of sadness, depression and happiness, for example, and their conscious perception. Bearing in mind these restrictions, I will attempt in this article to reveal the relations of the three catecholaminergic systems — the dopamine (DA), noradrenaline (NA) and adrenaline system — with regard to some aspects of neuroendocrinology and mood. We know today that dys- regulation in many hormone systems, such as thyroid, adrenal cortex and gonads, may lead to mood swings (Bleuler 1979) and that in the regulation mechanisms of these hormones the catecholamines are markedly involved (Fuxe et al. 1979 a; Tuomisto and Männisto 1985). But on the other hand, thyroid (Kunos 1981), ke- tosteroid and sex hormones (Motulsky and Insel 1982) have strong influence on different catecholaminergic neurotransmitter systems. Since hypercortisolism and thyrotropin-releasing hormone (TRH) are reviewed in separate chapters in this volume, I will concentrate mainly on catecholamine challenge tests, especially in relation to growth hormone (GH), but also with some results concerning cor- tisol and prolactin. I will restrict myself to neuroendocrine tests in connection with the different types of depression since they are especially suitable for investigating these aspects of mood swings. For excellent reviews of this topic see also Checkley and Arendt (1984), Terry (1984), and Siever and Davis (1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackenheil M, Albus M, Müller F, Müller TH, Welter D (1979) Catecholamine response to short-time stress in schizophrenic and depressive patients. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines: basic and clinical frontiers. Pergamon, New York, pp 1937–1939

    Google Scholar 

  • Ackenheil M, Albus M, Bondy B, Müller-Spahn F, Münch U, Naber D (1985) Neuroendocrine and receptor binding studies in schizophrenia. In: Pichot P, Berner P, Wolf R, Than K (eds) Psychiatry, vol 2. Plenum, New York, pp 215–220

    Google Scholar 

  • Aghajanian GK (1985) The neurobiology of opiate withdrawal: receptors, second messengers, and ion channels. Pair Oaks Hosp Psychiatry Lett III(10): 57–60

    Google Scholar 

  • Agnati LF, Fuxe K, Yu Z-Y, Härfstrand A, Okret S, Wikström A-C, Goldstein M, Zoli M, Vale W, Gustafsson JÅ (1985) Morphometrical analysis of the distribution of cor-ticotropin releasing factor glucocorticoid receptor and phenylethanolamine-methyl-transferase immunoreactive structures in the paraventricular hypothalamic nucleus of the rat. Neurosci Lett 54: 147–152

    PubMed  CAS  Google Scholar 

  • Ågren H, Lundqvist G (1984) Low levels of somatostatin in human CSF mark depressive episodes. Psychoneuroendocrinology 9: 233–248

    PubMed  Google Scholar 

  • Allen JM, Gibson SJ, Adrian TE, Polak JM, Bloo SR (1984) Neuropeptide Y in human spinal cord. Brain Res 308: 145–148

    PubMed  CAS  Google Scholar 

  • Angst J (1983) The origins of depression: current concepts and approaches (Dahlem Konferenzen). Life sciences research report 26. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ansseau M, Scheyvaerts M, Doumont A, Poirrier R, Legros JJ, Franck G (1984) Concurrent use of REM latency, dexamethasone suppression, clonidine, and apomorphine tests as biological markers of endogenous depression: a pilot study. Psychiatry Res 12: 261–272

    PubMed  CAS  Google Scholar 

  • Ansseau M, Frenckell R, Cerfontaine J-L, Papart P, Franck G, Timsit-Berthier M, Geenen V, Legros J-J (1987) Neuroendocrine evaluation of catecholaminergic neurotransmission in mania. Psychiatry Res 22: 193–206

    PubMed  CAS  Google Scholar 

  • Aratò M, Rihmer Z, Banki CM, Grof P (1983) The relationships of neuroendocrine tests in endogenous depression. Prog Neuro-Pharmacol Biol Psychiatry 7: 715–718

    Google Scholar 

  • Ashcroft GW, Eccleston D, Murray LG, Glen AJ, Crawford TBB, Pullar JA, Shields PJ, Walter DS, Blackburn JM, Chonnechan J, Lonergan M (1972) Modified amine hypothesis for the ethiology of affective illness. Lancet 11: 573–577

    Google Scholar 

  • Asnis GM, Lemus CZ, Halbreich U (1986) The desipramine cortisol test — a selective nor-adrenergic challenge (relationship to other cortisol tests in depressives and normals). Psychopharmacol Bull 22(3): 571–578

    PubMed  CAS  Google Scholar 

  • Barbieri C, Ferrari C, Caldera R, Curtarelli G (1980) Growth hormone secretion in hypertensive patients: evidence for a derangement in central adrenergic function. Clinical Science 58: 135–138

    PubMed  CAS  Google Scholar 

  • Berger M, Doerr P, Lund R, Bronisch T, Zerssen D (1982) Neuroendocrinological and neurophysiological studies in major depressive disorders: are there biological markers for the endogenous subtype? Biol Psychiatry 17: 1217–1241

    PubMed  CAS  Google Scholar 

  • Berger PA, King R, Lemoine P, Mefford IN, Barchas JD (1984) Cerebrospinal fluid epi-nephrine concentrations: discrimination of subtypes of depression and, schizophrenia. Psychopharmacol Bull 20(3): 412–415

    PubMed  CAS  Google Scholar 

  • Berrettini WH, Nurnberger JI, Dimaggio DA (1986) Neuropeptide Y immunoreactivity in human cerebrospinal fluid. Peptides 7: 455–458

    PubMed  CAS  Google Scholar 

  • Berrettini WH, Nürnberger JI, Simmons-Ailing S (1987) Growth hormone releasing factor in human cerebrospinal fluid. Psychiatry Res 22: 141–147

    PubMed  CAS  Google Scholar 

  • Bleuler M (1979) Endokrinologische Psychiatric In: Kisker KP, Meyer JE, Müller C, Strömgren E (eds) Psychatrie der Gegenwart, vol I/l. Springer, Berlin Heidelberg New York, pp 257–342

    Google Scholar 

  • Boyd AE, Lebovitz HE, Pfeiffer JB (1970) Stimulation of human growth hormone secretion by L-DOPA. N Engl J Med 283: 1425

    PubMed  Google Scholar 

  • Boyer P, Schaub C, Pichot P (1982) Growth hormone response to clonidine test in depressive states. Neuroendocrinol Lett 4: 178

    Google Scholar 

  • Brambilla F, Lampertico M, Sali L, Cavagnini CI, Invitti C, Maggioni M, Candolfi C, Panerai AE, Müller EE (1987) Clonidine stimulation in anorexia nervosa: growth hormone, cortisol, and beta-endorphin responses. Psychiatry Research 20: 19–31

    PubMed  CAS  Google Scholar 

  • Brodde OE, Anlauf M, Graben N, Bock KD (1982) Age-dependent decrease of β2-adren-ergic receptor number in human platelets. Eur J Pharmacol 81: 345–347

    PubMed  CAS  Google Scholar 

  • Brown WA, Corriveau DP, Ebert MH (1978) Acute psychologic and neuroendocrine effects of dextroamphetamine and methylphenidate. Psychopharmacology 58: 189–195

    PubMed  CAS  Google Scholar 

  • Brown GM, Friend WC, Chambers JW (1979) Neuropharmacology of hypothalamic-pitu-itary regulation. In: Tolis G, Labrie F, Martin JB, Naftolin F (eds) Clinical neuroen-docrinology. A pathophysiological approach. Raven, New York, pp 47–81

    Google Scholar 

  • Bunney WE Jr, Davis JM (1965) Norepinephrine in depressive reactions. Arch Gen Psychiatry 13: 483

    PubMed  CAS  Google Scholar 

  • Calil HM, Lesieur P, Gold PW, Brown GM, Potter WZ (1984) Hormonal responses to zi-melidine and desipramine in depressed patients. Psychiatry Res 13: 231–242

    PubMed  CAS  Google Scholar 

  • Cantor EH, Abraham S, Spector S (1981) Central neurotransmitter receptors in hypertensive rats. Life Sci 28: 519–526

    PubMed  CAS  Google Scholar 

  • Casper RC, Davis JM, Pandey GN, Garver DL, Dekirmenjian H (1977) Neuroendocrine and amine studies in affective illness. Psychoneuroendocrinology 2: 105–114

    PubMed  CAS  Google Scholar 

  • Catalano M, Bellodi L, Lucca A, Brambilla F (1984) Lithium and alpha-2-adrenergic receptors: effects of lithium ions on clonidine-induced growth hormone release. Neuroendocrinol Lett 6: 61–66

    CAS  Google Scholar 

  • Cella SG, Picotti GB, Morgese M, Mantegazza P, Müller EE (1984) Presynaptic stimulation leads to growth hormone release in the dog. Life Sci 34: 447–454

    PubMed  CAS  Google Scholar 

  • Chalmers JP, Baldessarini RJ, Wurtman RJ (1971) Effects of L-DOPA on norepinephrine metabolism in the brain. Proc Natl Acad Sci 68: 662–666

    PubMed  CAS  Google Scholar 

  • Charney DS, Heninger GR, Sternberg DE, Hafstadt KM, Giddings S, Landis H (1982a) Adrenergic receptor sensitivity in depression. Effects of clonidine in depressed patients and healthy subjects. Arch Gen Psychiatry 39: 290–294

    PubMed  CAS  Google Scholar 

  • Charney DS, Heninger GR, Sternberg DE (1982b) Failure of chronic antidepressant treatment to alter growth hormone response to clonidine. Psychiatry Res 7: 135–138

    PubMed  CAS  Google Scholar 

  • Charney DS, Heninger GR, Sternberg DE (1984) The effect of mianserin on alpha-2 adrenergic receptor function in depressed patients. Br J Psychiatry 144: 407–416

    PubMed  CAS  Google Scholar 

  • Checkley SA (1979) Corticosteroid and growth hormone responses to methylamphetamine in depressive illness. Psychol Med 9: 107–115

    PubMed  CAS  Google Scholar 

  • Checkley SA, Arendt J (1984) Pharmacoendocrine studies of GH, PRL, and melatonin in patients with affective illness. In: Brown GM, Koslow SH, Reichlin S (eds) Neuroen-docrinology and psychiatric disorder. Raven, New York, pp 165–190

    Google Scholar 

  • Checkley SA, Corn TH (1986) Factors responsible for reduced growth hormone (GH) responses to clonidine in patients with endogenous depression. In: Shagass C, Josiassen RC, Bridger WH, Weiss KJ, Stoff D, Simpson GM (eds) Biological psychiatry 1985. Developments in psychiatry, vol 7. Proceedings of IVth World Congress of Biological Psychiatry. Elsevier, Amsterdam, pp 799–801

    Google Scholar 

  • Checkley SA, Crammer JL (1977) Hormone responses to methylamphetamine in depression: a new approach to the noradrenaline depletion hypothesis. Br J Psychiatry 131: 582–586

    PubMed  CAS  Google Scholar 

  • Checkley SA, Slade AP, Shur E (1981) Growth hormone and other responses to clonidine in patients with endogenous depression. Br J Psychiatry 138: 51–55

    PubMed  CAS  Google Scholar 

  • Checkley SA, Rush AJ (1983) Functional indices of biological disturbance. In: Angst J (ed) The origins of depression: current concepts and approaches (Dahlem Konferenzen). Springer, Berlin Heidelberg New York Tokyo, pp 425–445

    Google Scholar 

  • Checkley SA, Glass IB, Thompson C, Corn T, Robinson P (1984) The GH response to clonidine in endogenous as compared to reactive depression. Psychol Med 14: 773–777

    PubMed  CAS  Google Scholar 

  • Checkley SA, Corn TH, Glass IB, Burton SW, Burke CA (1986) The responsiveness of central alpha-2 adrenoceptors in depression. In: Deakin JFW (ed) The biology of depression. Gaskell, London, pp 101–120

    Google Scholar 

  • Corn TH, Honig A, Thompson C, Bridges PK, Bartlett JR, Checkley SA (1984a) A neu-roendocrine study of stereotactic sub-caudate tractotomy. Br J Psychiatry 144: 417–420

    PubMed  CAS  Google Scholar 

  • Corn TH, Hale AS, Thompson C, Bridges PK, Checkley SA (1984b) A comparison of the growth hormone responses to clonidine and apomorphine in the same patients with endogenous depression. Br J Psychiatry 144: 636–639

    PubMed  CAS  Google Scholar 

  • Corn TH, Thompson C, Checkley SA (1984c) Effects of desipramine treatment upon central adrenoreceptor function in normal subjects. Br J Psychiatry 145: 139–145

    PubMed  CAS  Google Scholar 

  • Czernik A (1982) Zur Psychophysiologie und Neuroendokrinologie von Depressionen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Czernik A, Kleesiek K, Steinmeyer EM (1980) Änderungen neuroendokrinologischer Parameter im Verlauf von Depressionen. Nervenarzt 51: 662–667

    PubMed  CAS  Google Scholar 

  • Delini-Stula A, Hunn C (1985) Neophobia in spontaneous hypertensive (SHR) and normo-tensive control (WKY) rats. Behav Neural Biol 43: 206–211

    PubMed  CAS  Google Scholar 

  • Delitala G, Maioli M, Pacificio A, Brianda S, Palermo M, Manelli H (1983) Cholinergic receptor control mechanisms for L-DOPA, apomorphine, and clonidine-induced growth hormone secretion in man. J Clin Endocrinol Metab 57: 1145–1149

    PubMed  CAS  Google Scholar 

  • Denef C, Baes M, Schamme C (1986) Paracrine interactions in the anterior pituitary: role in the regulation of prolactin and growth hormone secretion. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology, vol 9. Raven, New York, pp 115–148

    Google Scholar 

  • Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, Mumford RA, Slater EE, Sigal IS, Caron MG, Lefkowitz RJ, Strader CD (1986) Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321: 75–79

    PubMed  CAS  Google Scholar 

  • Dolan RJ, Calloway SP (1986) The human growth hormone response to clonidine: relationship to clinical and neuroendocrine profile in depression. Am J Psychiatry 143: 772–774

    PubMed  CAS  Google Scholar 

  • Endo M (1970) Plasma growth hormone levels during insulin hypoglycemia in atypical psychosis. Folia Endocrinol Jpn 45: 1295–1296

    Google Scholar 

  • Endo M, Endo J, Nishikubo M, Yamaguchi T, Hatotani N (1974) Endocrine studies in depression. In: Mieken (ed) Psychoneuroendocrinology. Karger, Basel

    Google Scholar 

  • Eriksson E (1985) Experimental psycho-neuro-endocrinology: brain β2-adrenoceptor function and growth hormone release. Medi, Göteborg

    Google Scholar 

  • Eriksson E, Modigh K (1984) Depression, β2-receptors and sex hormones: neuroendocrine studies in rat. In: Usdin E, Åsberg M, Bertilsson L, Sjöqvist F (eds) Frontiers in biochemical and pharmacological research in depression. Raven, New York, pp 161–178

    Google Scholar 

  • Eriksson E, Eden S, Modigh K (1980) Enhanced growth hormone response to clonidine in the spontaneously hypertensive rat. Clin Exp Hypertens 2: 341

    PubMed  CAS  Google Scholar 

  • Eriksson E, Eden S, Modigh K (1981) Importance of norepinephrine alpha-2-receptor activation for morphine-induced rat growth hormone secretion. Neuroendocrinology 33: 91–96

    PubMed  Google Scholar 

  • Everett GM, Toman JEP (1959) Mode of action of Rauwolfia alkaloids and motor activity. Biological psychiatry, vol 1. Grune and Stratton, New York

    Google Scholar 

  • Feinberg M, Greden JF, Carroll BJ (1981) The effect of amphetamine on plasma cortisol in patients with endogenous and nonendogenous depression. Psychoneuroendocrinology 6(4): 355–357

    PubMed  CAS  Google Scholar 

  • Fichter MM, Pirke K-M (1986) Effect of experimental and pathological weight loss upon the hypothalamo-pituitary-adrenal axis. Psychoneuroendocrinology 11: 295–305

    PubMed  CAS  Google Scholar 

  • Fichter MM, Weyerer S, Meller I, Eiberger T, Witzke W, Rehm J, Dilling H, Hippius H (1987) Ergebnisse der oberbayerischen Verlaufsuntersuchung. In: Schmidt MH (ed) Psychiatrische Epidemiologie. Abschluβband des SFB 116. VHC, Heidelberg

    Google Scholar 

  • Flier JS, Kahn CR, Roth J (1979) Receptors, antireceptors, antibodies, and mechanisms of insulin resistance. N Engl J Med 300: 413

    PubMed  CAS  Google Scholar 

  • Frantz AG, Rabkin MT (1965) Effects of estrogen and sex differences on secretion of human growth hormone. J Clin Endocrinol Metab 25: 1470–1480

    PubMed  CAS  Google Scholar 

  • Frazer A (1975) Adrenergic responses to depression: implications for a receptor defect. In: Mendels J (ed) The psychobiology of depression. Spectrum, New York

    Google Scholar 

  • Fuxe K, Agnati LF (1985) Receptor-receptor interactions in the central nervous system. A new integrative mechanism in synapses. Med Res Rev 5(4): 441–482

    PubMed  CAS  Google Scholar 

  • Fuxe K, Hökfeld T, Johansson O, Ganten D, Goldstein M, Perez de la Mora M, Possani L, Tapia R, Teran L, Palacios R, Said S, Mutt V (1976) Monoamine neuron systems in the hypothalamus and their relation to the GABA and peptide containing neurons. In: Colloque de synthèse. Série action thématique rapport no 7. INSERM, Paris, pp 17–40

    Google Scholar 

  • Fuxe K, Andersson K, Löfström A, Hökfelt T, Ferland L, Agnati LF, Perez de la Mora M, Schwarcz R, Eneroth P Gustafsson JÅ, Skett P (1979a) Neurotransmitter mechanisms in the control of the secretion of hormones from the anterior pituitary. In: Fuxe K, Hökfelt T, Luft R (eds) Central regulation of the endocrine system. Plenum, New York

    Google Scholar 

  • Fuxe K, Jonsson G, Bolme P, Andersson K, Agnati LF, Goldstein M, Hökfelt T (1979b) Reduction of adrenaline turnover in cardiovascular areas of rat medulla oblongata by clonidine. Acta Physiol Scand 107: 177–179

    PubMed  CAS  Google Scholar 

  • Fuxe K, Andersson K, Härfstrand A, Agnati LF, Eneroth P, Janson AM, Vale W, Thorner M, Goldstein M (1986a) Medianosomes as integrative units in the external layer of the median eminence. Studies on GRF/catecholamine and somatostatin/catecholamine interactions in the hypothalamus of the male rat. Neurochem Int 9(1): 155–170

    PubMed  CAS  Google Scholar 

  • Fuxe K, Agnati LF, Härfstrand A, Andersson K, Mascagni F, Zoli M, Kalia M, Battistini N, Benfenati F, Hökfelt T, Goldstein M (1986b) Studies on peptide comodulator transmission. New perspective on the treatment of disorders of the central nervous system. In: Emson PC, Rossor MN, Tohyama M (eds) Progress in brain research, vol 66. Elsevier, Amsterdam, pp 341–368

    Google Scholar 

  • Fuxe K, Härfstrand A, Agnati LF, Kalia M, Neumeyer A, Cintra A, Zini I, Zoli M, Tere-nius L, Goldstein M (1986c) Evidence for a vasodepressor role of neuropeptide Y and adrenaline mechanisms in the medulla oblongata of the rat. In: Nakamura K (ed) Brain and blood pressure. Elsevier, Amsterdam, pp 99–112

    Google Scholar 

  • Genazzani AR, Lemarchand-Beraudth TH, Aubert ML, Felber JP (1975) Pattern of plasma ACTH, HGH and cortisol during menstrual cycle. J Clin Endocrinol Metab 41: 431–437

    PubMed  CAS  Google Scholar 

  • Gil-Ad I, Gurewitz R, Marcovici O, Rosenfeld J, Laron Z (1984) Effect of aging on human plasma growth hormone response to clonidine. Mechan Ageing Dev 27: 97–100

    CAS  Google Scholar 

  • Gibson SJ, Polak JM, Allen JM, Adrian TE, Kelly JS, Bloom SR (1984) Distribution and origin of a novel brain peptide, neuropeptide Y, in the spinal cord of several mammals. J Comp Neurol 227: 78–91

    PubMed  CAS  Google Scholar 

  • Glass IB, Checkley SA, Shur E, Dawling S (1982) The effect of desipramine upon central adrenergic function in depressed patients. Br J Psychiatry 141: 372–376

    PubMed  CAS  Google Scholar 

  • Gold PW, Goodwin FK (1977) Neuroendocrine response to levodopa in affective illness. Lancet I: 1007

    Google Scholar 

  • Gregoire F, Brauman H, de Buck R, Corvilain J (1977) Hormone release in depressed patients before and after recovery. Psychoneuroendocrinology 2: 303–312

    PubMed  CAS  Google Scholar 

  • Grof E, Brown GM, Grof P (1983) Neuroendocrine strategies in affective disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 7: 557–562

    CAS  Google Scholar 

  • Gruen PH, Sachar EJ, Altman N, Sassin J (1975) Growth hormone responses to hypogly-cemia in postmenopausal depressed women. Arch Gen Psychiatry 32: 31–33

    PubMed  CAS  Google Scholar 

  • Halbreich U, Goldstein S (1987) Aging and hormones. In: Nemeroff CB, Loosen PT (eds) Handbook of clinical psychoneuroendocrinology. Guilford, New York

    Google Scholar 

  • Halbreich U, Sachar EJ, Asnis GM, Quitkin F, Nathan RS, Halpern FS, Klein DF (1982) Growth hormone response to dextroamphetamine in depressed patients and normal subjects. Arch Gen Psychiatry 39: 189–192

    PubMed  CAS  Google Scholar 

  • Halbreich U, Asnis GM, Zumoff B, Nathan RW, Shindledecker R (1984) Effect of age and sex on cortisol secretion in depressives and normals. Psychiatry Res 13: 221–229

    PubMed  CAS  Google Scholar 

  • Halbreich U, Asnis GM, Shindledecker R, Zumoff B, Nathan RS (1985a) Cortisol secretion in endogenous depression. I. Basal plasma levels. Arch Gen Psychiatry 42: 904–908

    PubMed  CAS  Google Scholar 

  • Halbreich U, Asnis AG, Shindledecker R, Zumoff B, Nathan RS (1985b) Cortisol secretion in endogenous depression. II. Time-related functions. Arch Gen Psychiatry 42: 909–914

    PubMed  CAS  Google Scholar 

  • Härfstrand A, Fuxe K, Agnati LF, Ganten D, Eneroth P, Tatemoto K, Mutt V (1984) Studies on neuropeptide-Y catecholamine interactions in central cardiovascular regulation in the β-chloralose anaesthetized rat. Evidence for a possible way of activating the β2-adrenergic transmission line. Clin Exp Hypertens [A] 6(10-11): 1947–1950

    Google Scholar 

  • Härfstrand A, Fuxe K, Agnati LF, Eneroth P, Zini I, Zoli M, Andersson K, v. Euler G, Terenius L, Muti V, Goldstein M (1986) Studies on neuropeptide Y-catecholamine interactions in the hypothalamus and in the forebrain of the male rat. Relationship to neuroendocrine function. Neurochem In 8(3): 355–376

    Google Scholar 

  • Härfstrand A, Eneroth P, Agnati LF, Fuxe K (1987) Further studies on the effects of central administration of neuropeptide Y on neuroendocrine function in the male rat: relationship to hypothalamic catecholamines. Regul Pept 17: 167–179

    PubMed  Google Scholar 

  • Hendley ED, Atwater DG, Myers MM, Whitehorn D (1983) Dissociation of genetic hy-peractivity and hypertension in SHR. Hypertension 5(2): 211–217

    PubMed  CAS  Google Scholar 

  • Höhe M (1986) Wirkung von Opiaten auf neuroendokrine und psychische Parameter. Untersuchungen an Probanden als Grundlage für neuroendokrinologische Depressionsstudien. Thesis. Psychiatric Hospital, University of Munich, Munich

    Google Scholar 

  • Höhe M, Duka TH, Doenicke A, Matussek N (1984) Dose-dependent influence of fentanyl on prolactin, growth hormone and mood. Neuropeptides 5: 269–272

    Google Scholar 

  • Höhe M, Valido G, Matussek N (1986) Growth hormone response to clonidine in endogenous depressive patients: evidence for a trait marker in depression. In: Shagass C, Josiassen RC, Bridger WH, Weiss KJ, Stoff D, Simpson GM (eds) Biological psychiatry 1985. Developments in psychiatry, vol 7. Proceedings of IVth World Congress of Biological Psychiatry. Elsevier, Amsterdam, pp 862–864

    Google Scholar 

  • Honer WG, Glas IB, Corn T, Checkley SA (1984) Measurement of the GH and other responses to clonidine at different times of the day in normal subjects. Psychoneuroen-docrinology 9: 279–284

    CAS  Google Scholar 

  • Hunt GE, O’Sullivan BT, Johnson GFS, Smythe GA (1986) Growth hormone and cortisol secretion after oral clonidine in healthy adults. Psychoneuroendocrinology 11(3): 317–325

    PubMed  CAS  Google Scholar 

  • Insel TR, Mueller III EA, Gillin JC, Siever LJ, Murphy DL (1984) Biological markers in obsessive-compulsive and affective disorders. J Psychiatry Res 18(4): 407–423

    CAS  Google Scholar 

  • Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic hypothesis of mania and depression. Lancet 11: 6732

    Google Scholar 

  • Jhanwar-Uniyal M, Leibowitz SF (1986) Impact of circulating corticosterone on β1 and β2-noradrenergic receptors in discrete brain areas. Brain Research 368: 404–408

    PubMed  CAS  Google Scholar 

  • Jimerson DC, Cutler NR, Post RM, Rey A, Gold PW, Brown GM, Bunney WE Jr (1984) Neuroendocrine responses to apomorphine in depressed patients and healthy control subjects. Psychiatry Res 13: 1–12

    PubMed  CAS  Google Scholar 

  • Johansson O (1986) A detailed account of NPY-immunoreactive nerves and cells of the human skin. Comparison with VIP-, substance P-and PHI-containing structures. Acta Physiol Scand 128: 147–152

    PubMed  CAS  Google Scholar 

  • Kafka MS, Siever LJ, Nurnberger JI, Uhde TW, Targum S, Cooper DMJ, van Kämmen DP, Tokola NS (1985) Studies of peripheral monoamine receptors in affective illness. Psychopharmacol Bull 21: 599–602

    PubMed  CAS  Google Scholar 

  • Kahn CR, Flier JS, Bahr RS, Archer JA, Gordon P, Martin MM, Roth J (1976) The syndrome of insulin resistance and acanthosis nigricans: insulin-receptor disorder in man. N Engl J Med 294–739

    Google Scholar 

  • Katona CLE, Theodorou AE, Davies SL, Yamaguchi Y, Tunnicliffe CA, Hale AS, Horton RW, Kelly JS, Paykel ES (1986) Platelet binding and neuroendocrine responses in depression. In: Deakin JFW (ed) The biology of depression. Gaskell, London, pp 121–136

    Google Scholar 

  • Kaye WH, Gwirtsman HE, Lake CR, Liever LJ, Jimerson DC, Ebert MH, Murphy DL (1985) Disturbances of norepinephrine metabolism and β-2 adrenergic receptor activity in anorexia nervosa: relationship to nutritional state. Psychopharmacology Bull 21(3): 419–423

    CAS  Google Scholar 

  • Kendler KS, Davis KL (1977) Elevated corticosteriods as a possible cause of abnormal neuroendocrine function in depressive illness. In: Usdin E (ed) Communications in psychopharmacology. Pergamon, Oxford

    Google Scholar 

  • Kleinberg DL, Noel GL, Frantz AG (1971) Chlorpromazine stimulation and L-DOPA suppression of plasma prolactin in man. J Clin Endocrinol Metab 33: 873–876

    CAS  Google Scholar 

  • Klerman GL (1986) Evidence for increase in rates of depression in North America and Western Europe in recent decades. In: Hippius H, Klerman GL, Matussek N (eds) New results in depression research. Springer, Berlin Heidelberg New York, pp 7–15

    Google Scholar 

  • Kobinger W (1979) β-Adrenoreceptors and the action of clonidine-like drugs. Wenner-Gren-Center Intern Symp Ser 33: 143–150

    Google Scholar 

  • Koslow SH, Stokes PE, Mendels J, Ramsey A, Casper R (1982) Insulin tolerance test: human growth hormone response and insulin resistance in primary unipolar depressed, bipolar depressed and control subjects. Psychol Med 12: 45–55

    PubMed  CAS  Google Scholar 

  • Kräuchi K, Wirz-Justice A, Willener R, Campbell IC, Feer H (1983) Spontaneous hypertensive rats: behavioral and corticosterone response depend on circadian phase. Physiol Behav 30: 35–40

    PubMed  Google Scholar 

  • Krishnan KRR, Manepalli A, Rayasam ML, Melville G, Daughtry G, Rivier J, Vale W, Thorner MO, Nemeroff CB (1986) Somatotroph response to GHRF in depression. 15th CINP congress, San Juan, Puerto Rico (Book of abstracts, poster sessions)

    Google Scholar 

  • Krulich L, Mayfield MA, Steele MK, McMillen BA, McCann SM, Koenig JI (1982) Differential effects of pharmacological manipulations of central ax-and a2-adrenergic receptors on the secretion of thyrotropin and growth hormone in male rats. Endocrinology 110(3): 796–804

    PubMed  CAS  Google Scholar 

  • Kunos G (1980) Reciprocal changes in a-and β-adrenoreceptor reactivity — myth or reality? Trends Pharmacol Sci 7: 282–284

    Google Scholar 

  • Kunos G (1981) Modulation of adrenergic reactivity and adrenoreceptors by thyroid hormones. In: Kunos G (ed) Neurotransmitter receptors. Adrenoreceptors and catechol-amine action, part A. Wiley, New York, pp 297–333

    Google Scholar 

  • Kunos G, Tchakarov L, Ishac JN, Kan WH (1985) Hepatic ax-adrenergic receptors: structure and heterologous regulation. In: Lefkowitz J, Lindenlaub E (eds) Adrenergic receptors: molecular properties and therapeutic implications. Symposia medica Hoechst 19. Schattauer, Stuttgart, pp 105–131

    Google Scholar 

  • Laakmann G (1980) Beeinflussung der Hypophysenvorderlappen-Hormonsekretion durch Antidepressiva bei gesunden Probanden, neurotisch und endogen depressiven Patienten. Nervenarzt 51: 725–732

    PubMed  CAS  Google Scholar 

  • Laakmann G, Schumacher G, Benkert O, v Werder K (1977) Stimulation of growth hormone secretion by desimipramine and chlorimipramine in man. J Clin Endocrinol Metab 44: 101

    Google Scholar 

  • Laakmann G, Zygan K, Schoen HW, Weiss A, Wittmann M, Meissner R, Blaschke D (1986a) Effects of receptor blockers (methysergide, propranolol, phentolamine, yohim-bine, and prazosin) on the desimipramine-induced pituitary hormone stimulation in humans. Part I: growth hormone. Psychoneuroendocrinology 11: 447–461

    PubMed  CAS  Google Scholar 

  • Laakmann G, Hinz A, Neulinger E (1986b) Pharmacoendocrine studies in healthy subjects and depressed patients. In: Hippius H, Klerman GL, Matussek N (eds) New results in depression research. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Laakmann G, Neuhauser H, Hinz A, Dick G (1986c) Stimulation of growth hormone, prolactin and cortisol by GRFH and DMI in healthy subjects and depressed patients. 15th CINP congress, San Juan, Puerto Rico (Book of abstracts, poster sessions)

    Google Scholar 

  • Lake CR, Sternberg DE, van Kämmen DP, Ballenger JC, Ziegler MG, Post RM, Kopin IJ, Bunney WE (1980) Schizophrenia: elevated cerebrospinal fluid norepinephrine. Science 207,18: 331–333

    Google Scholar 

  • Lake CR, Gullner HG, Polinsky RA (1981) Essential hypertension: central and peripheral norepinephrine. Science 211: 955–957

    PubMed  CAS  Google Scholar 

  • Lal D, Tolis G, Martin JB, Brown GM, Guyda H (1975) Effect of clonidine on growth hormone, prolactin, luteinizing hormone, follicle-stimulating hormone, and thyroid-stimulating hormone in the serum of normal men. J Clin Endocrinol Metab 41: 827–832

    PubMed  CAS  Google Scholar 

  • Langer G, Heinze G, Reim B, Matussek N (1975) Growth hormone response to d-amphet-amine in normal controls and in depressive patients. Neurosci Lett 1: 185–189

    PubMed  CAS  Google Scholar 

  • Langer G, Heinze G, Reim B, Matussek N (1976) Reduced growth hormone responses to amphetamine in endogenous depressive patients. Arch Gen Psychiatry 33: 1471–1475

    PubMed  CAS  Google Scholar 

  • Leaton RN, Cassella JV, Whitehorn (1983) Locomotor activity, auditory startle and shock thresholds in spontaneously hypertensive rats. Physiol Behav 31: 103–109

    PubMed  CAS  Google Scholar 

  • Lechin F, van der Dijs B, Jakubowicz D, Camero R, Villa S, Lechin E, Gomez F (1985a) Effects of clonidine on blood pressure, noradrenaline, cortisol, growth hormone, and prolactin plasma levels in high and low intestinal tone subjects. Neuroendocrinology 40: 253–261

    PubMed  CAS  Google Scholar 

  • Lechin F, van der Dijs B, Jakubowicz D, Camero RE, Villa S, Arochia L, Lechina AE (1985b) Effects of clonidine on blood pressure, noradrenaline, cortisol, growth hormone, and prolactin plasma levels in high and low intestinal tone depressed patients. Neuroendocrinology 41: 156–162

    PubMed  CAS  Google Scholar 

  • Linkowsky P, Brauman H, Mendlewicz J (1983) Prolactin and growth hormone response to levodopa in affective illness. Neuropsychobiology 9: 108–112

    Google Scholar 

  • Loftus DJ, Guchhait RB, U’Prichard DC, Stolk JM (1988) Inheritence of epinephrine formation rates and phenylethanolamine iV-methyltransferase structural heterology in inbred rat strains. In: Stolk G, U’Prichard D, Fuxe K (eds) Epinephrine in the central nervous system. Oxford University Press, New York

    Google Scholar 

  • Maany I, Mendels J, Frazer A, Brunswick D (1979) A study of growth hormone release in depression. Neuropsychobiology 5: 282

    PubMed  CAS  Google Scholar 

  • Maj J, Przegalinski E, Mogilnicka E (1984) Hypotheses concerning the mechanism of action of antidepressant drugs. Rev Physiol Biochem Pharmacol, vol 100. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Martin JB (1973) Neural regulation of growth hormone secretion. Engl J Med 228: 1381–1392

    Google Scholar 

  • Matussek N (1966) Neurobiologie und Depression. Med Wochenschr 20: 109

    Google Scholar 

  • Matussek N (1980) Stoffwechselpathologie der Zyklothymie und Schizophrenic In: Kisker KP, Meyer JE, Müller C, Strömgren E (eds) Psychiatrie der Gegenwart, vol 1/2. Springer, Berlin Heidelberg New York, pp 65–113

    Google Scholar 

  • Matussek N (1982) Erweiterung und Einschränkung der Dopamin-Hypothese der Schizophrenie. In: Huber G (ed) Endogene Psychosen: Diagnostik, Basissymptome und biologische Parameter. Schattauer, Stuttgart, pp 315–318

    Google Scholar 

  • Matussek N, Holsboer F (1987) Ätiologie und Pathogenese: Biologischer Hintergrund. In: Müller C, Kisker KP, Lauter H, Meyer JE, Strömgren E (eds) Psychiatrie der Gegenwart, vol V. Affektive Psychosen. Springer, Berlin Heidelberg New York Tokyo, pp 204–240

    Google Scholar 

  • Matussek N, Ackenheil M, Hippius H, Müller F, Schröder H-T, Schultes H, Wasilewski B (1980) Effect of clonidine on growth hormone release in psychiatric patients and controls. Psychiatry Res 2: 25–36

    PubMed  CAS  Google Scholar 

  • Matussek N, Ackenheil M, Herz M (1984) The dependence of the clonidine growth hormone test on alcohol drinking habits and the menstrual cycle. Psychoneuroendocrinol-ogy 9: 173–177

    CAS  Google Scholar 

  • Matussek N, Ackenheil M, Höhe M, Müller-Spahn F (1986) Clonidine growth hormone stimulation test in depressive patients before and after treatment. In: Shagass C, Josias-sen RC, Bridger WH, Weiss KJ, Stoff D, Simpson GM (eds) Biological psychiatry 1985. Developments in psychiatry, vol 7. Proceedings of the IVth World congress of biological psychiatry. Elsevier, New York, pp 788–790

    Google Scholar 

  • McCarty R, Chiueh CC, Kopin IJ (1978) Spontaneously hypertensive rats: adrenergic hy-perresponsivity to anticipation of electric shock. Behav Biol 23: 180–188

    PubMed  CAS  Google Scholar 

  • McWilliam JR, Meldrum BS (1983) Noradrenergic regulation of growth hormone secretion in the baboon. Endocrinology 112(l): 254–259

    PubMed  CAS  Google Scholar 

  • Meesters P, Kerkhofs M, Charles G, Decoster C, Vanderelst M, Mendlewicz J (1985) Growth hormone release after desipramine in depressive illness. Eur Arch Psychiatry Neurol Sci 235: 140–142

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Kolakowska T, Fang VS, Fogg L, Robertson A, Lewine R, Strahilevitz M, Busch D (1984) Growth hormone and prolactin response to apomorphine in schizophrenia and the major affective disorders. Relation to duration of illness and depressive symptoms. Arch Gen Psychiatry 41: 512–519

    CAS  Google Scholar 

  • Merimee TJ, Fineberg SE (1971) Studies of the sex based variation of human growth hormone secretion. J Clin Endocrinol Metab 33: 896–902

    PubMed  CAS  Google Scholar 

  • Middeke M (1985) Adrenoceptors in hypertension. In: Middeke M, Holzgreve H (eds) New aspects in hypertension — adrenoceptors. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Misra CH, Shelat HA, Smith RC (1980) Effect of age on adrenergic and dopaminergic receptor binding in rat brain. Life Sci 27: 521–526

    PubMed  CAS  Google Scholar 

  • Möller HJ, Kissling W, Bottermann P (1984) Serial application of clonidine tests during antidepressive treatment with chlorimipramine. Pharmacopsychiat 17: 184–187

    Google Scholar 

  • Motulskly HJ, Insel PA (1982) Adrenergic receptors in man. Direct identification, physiologic regulation, and clinical alterations. N Engl J Med 307: 18–29

    Google Scholar 

  • Mueller PS, Heninger GR, McDonald RK (1969a) Insulin tolerance test in depression. Arch Gen Psychiatry 21: 587–594

    PubMed  CAS  Google Scholar 

  • Mueller PS, Heninger GR, McDonald RK (1969b) Intravenous glucose tolerance test in depression. Arch Gen Psychiatry 21: 470–477

    PubMed  CAS  Google Scholar 

  • Müller-Spahn F, Bondy B, Ackenheil M (1985) Apomorphine and clonidine induced growth hormone secretion in different states of schizophrenic illness: a predictor of relapse? IV. World congress of biological psychiatry, Philadelphia. In: Book of abstracts. p 139

    Google Scholar 

  • Nagata M, Franco-Cereceda A, Svensson TH, Lundberg JML (1986) Clonidine treatment elevates content of neuropeptide Y in cardiac nerves. Acta Physiol Scand 128: 312–322

    Google Scholar 

  • Nakagawara N, Witzke W, Matussek N (1987) Hypertension in depression. Psychiatry Res 21: 85–86

    PubMed  CAS  Google Scholar 

  • Nathan RS, Sachar EJ, Asnis GM, Halbreich U, Halpern FS (1981) Relative insulin insen-sitivity and cortisol secretion in depressed patients. Psychiatry Res 4: 291–300

    PubMed  CAS  Google Scholar 

  • Nürnberger JI Jr, Gershon ES, Jimerson DC, Buchsbaum M, Gold P, Brown GM, Ebert M (1981) Pharmacogenetics of d-amphetamine response in man. In: Gershon ES, Mat-thysse S, Breakefield XO, Ciaranello RD (eds) Genetic strategies in psychobiology and psychiatry. Boxwood, Pacific Grove, pp 257–268

    Google Scholar 

  • Nürnberger JI Jr, Gershon ES, Simmons S, Ebert M, Kessler LR, Dibble ED, Jimerson SS, Brown GM, Gold P, Jimerson DC, Guroff JJ, Storch FI (1982) Behavioral, biochemical and neuroendocrine responses to amphetamine in normal twins and “well-state” bipolar patients. Psychoneuroendocrinology 7(2/3): 163–176

    PubMed  Google Scholar 

  • Price LH, Charney DS, Heninger GR (1986) Effects of trazodone treatment on alpha-2 ad-renoceptor function in depressed patients. Psychopharmacology 89: 38–44

    PubMed  CAS  Google Scholar 

  • Propping P, Friedl W (1983) Genetic control of adrenergic receptors on human platelets. A twin study. Hum Genet 64: 105–109

    CAS  Google Scholar 

  • Rafaelsen OJ, Christensen NJ, Gjerris A (1986) Cerebrospinal fluid (CSF) adrenaline in depression. Clinical Neuropharmacology 9(4): 170–171

    Google Scholar 

  • Randrup A, Braestrup C (1977) Uptake of biogenic amines by newer antidepressant drugs: relevance to the dopamine hypothesis of depression. Psychopharmacology 53: 309

    PubMed  CAS  Google Scholar 

  • Randrup A, Munkvad I, Fog R, Gerlach J, Molander L, Kjellberg B, Scheel-Kruger J (1975) Mania, depression and brain dopamine. In: Essman WB, Valzelli L (eds) Current developments in psychopharmacology, vol 2. Plenum, New York, pp 206–248

    Google Scholar 

  • Rees L, Butler PWP, Gosling C, Besser GM (1970) Adrenergic blockade and corticosteroid and growth hormone responses to methylamphetamine. Nature 228: 565–566

    PubMed  CAS  Google Scholar 

  • Risch S, Janowsky D, Judd L, Gillin J, Ehlers C (1986) Attenuated growth hormone response to human growth hormone releasing factor in depressed subjects vs. matched controls. 15th CINP congress, San Juan, Puerto Rico. (Book of abstracts, poster session)

    Google Scholar 

  • Rivier C, Vale (1984) Corticoptropin-releasing factor (CRF) acts centrally to inhibit growth hormone secretion in rat. Endocrinology 114: 2409–2411

    PubMed  CAS  Google Scholar 

  • Roth KA, Katz RJ, Sibel M, Mefford IN, Barchas JD, Carroll BJ (1981) Central epinephri-nergic inhibition of corticosterone release in rat. Life Sci 28: 2389–2394

    PubMed  CAS  Google Scholar 

  • Rubinow DR, Gold PW, Post RM, Ballenger JC, Cowdry R, Bollinger J, Reichlin S (1983) CSF somatostatin in affective illness. Arch Gen Psychiatry 40: 409–412

    PubMed  CAS  Google Scholar 

  • Saavedra JM, Grobecker H, Axelrod J (1976) Adrenaline-forming enzyme in brainstem: elevation in genetic and experimental hypertension. Science 191: 483–484

    PubMed  CAS  Google Scholar 

  • Sachar EJ, Finkelstein J, Hellmann L (1971) Growth hormone responses in depressive illness. I. Response to insulin tolerance test. Arch Gen Psychiatry 25: 263–269

    Google Scholar 

  • Sachar EJ, Mushrush G, Perlow M, Weitzman ED, Sassin J (1972) Growth hormone response to L-DOPA in depressed patients. Science 178: 1304–1305

    PubMed  CAS  Google Scholar 

  • Sachar EJ, Altman N, Gruen PH, Glassman A, Halpern FS, Sassin J (1975) Human growth hormone response to levodopa. Arch Gen Psychiatry 32: 502–503

    PubMed  CAS  Google Scholar 

  • Sachar EJ, Asnis G, Nathan RS, Halbreich U, Tabrizi MA, Halpern FS (1980) Dextroam-phetamine and cortisol in depression. Arch Gen Psychiatry 37: 755–757

    PubMed  CAS  Google Scholar 

  • Sachar EJ, Puig-Antich J, Ryan ND, Asnis GM, Rabinovich H, Halpern FS, Novacenko H, Ostrow L, Nelson B, Davies M, Goetz D (1985) Three tests of cortisol secretion in adult endogenous depression. Acta Psychiatry Scand 71: 1–8

    CAS  Google Scholar 

  • Sawa Y, Odo S, Nakasawa T (1982) Growth hormone secretion by tricyclic and nontri-cyclic antidepressants in healthy volunteers and depressives. In: Langer SZ, Takahashi R, Segawa T, Briley M (eds) New vistas in depression. Pergamon, New York, pp 309–315

    Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122: 509

    PubMed  CAS  Google Scholar 

  • Schittecatte M, Charles G, Defauw Y, Meesters P, Wilmotte J (1988) Growth hormone response to clonidine in panic disorder patients. Psychiatry Res (to be published)

    Google Scholar 

  • Scholtysik G, Jerie P (1976) Pharmacological and clinical effects of BS 100-141, a new anti-hypertensive agent. In: Scriabine A, Sweet CS (eds) New antihypertensive drugs. Spectrum, New York, pp 259–368

    Google Scholar 

  • Segal DS, Kuczenski RT, Mandell AJ (1972) Strain differences in behavior and brain tyrosine hydroxylase activity. Behav Biol 7: 75–81

    PubMed  CAS  Google Scholar 

  • Seidel UP (1977) Hypertension and paranoid states. Lancet 1: 906

    PubMed  CAS  Google Scholar 

  • Siever LS, Davis KL (1985) Overview: toward a dysregulation hypothesis of depression. Am J Psychiatry 142: 1017–1031

    PubMed  CAS  Google Scholar 

  • Siever LJ, Risch SC, Murphy DL (1981) Central cholinergic-adrenergic imbalance in the regulation of affective state. Psychiatry Res 5: 108–109

    PubMed  CAS  Google Scholar 

  • Siever LJ, Uhde TW, Silberman EK, Jimerson DC, Aloi JA, Post RM, Murphy DL (1982a) The growth hormone response to clonidine as a probe of noradrenergic receptor responsiveness in affective disorder patients and controls. Psychiatry Res 6: 171–183

    PubMed  CAS  Google Scholar 

  • Siever LJ, Uhde TW, Insel TR, Roy BF, Murphy DL (1982b) Growth hormone response to clonidine unchanged by chronic chlorgyline treatment. Psychiatry Res 7: 139–144

    PubMed  CAS  Google Scholar 

  • Siever LJ, Insel TR, Jimerson DC, Lake CR, Uhde TW, Aloi J, Murphy DL (1983) Growth hormone response to clonidine in obsessive-compulsive patients. Br J Psychiatry 142: 184–187

    PubMed  CAS  Google Scholar 

  • Siever LJ, Uhde TW, Jimerson DC, Post RM, Lake CR, Murphy DL (1984) Plasma cortisol responses to clonidine in depressed patients and controls. Arch Gen Psychiatry 41: 63–68

    PubMed  CAS  Google Scholar 

  • Siever LJ, Insel TR, Hamilton JA, Aloi J, Murphy DL (1985) A comparison between the growth hormone responses to amphetamine and clonidine. Psychiatry Res 16: 79–82

    PubMed  CAS  Google Scholar 

  • Siever LJ, Coccaro EF, Benjamin E, Rubinstein K, Davis KL (1986) Adrenergic and sero-tonergic receptor responsiveness in depression. In: Porter R, Bock G, Clark S (eds) Antidepressant and receptor function. Ciba foundation symposium 123. Wiley, Chi-chester, pp 148–158

    Google Scholar 

  • Slade AP, Checkley SA (1980) Neuroendocrine study of the mechanism of action of ECT. Br J Psychiatry 137: 217–221

    PubMed  CAS  Google Scholar 

  • Slater E (1938) Zur Erbpathologie des manisch-depressiven Irreseins. Die Eltern und Kinder von Manisch-Depressiven. Z Gesamt Neurol Psychiatry 163: 1–45

    Google Scholar 

  • Sowers JR, Nyby M, Jasberg K (1982) Dopaminergic controls of prolactin and blood pressure: altered control in essential hypertension. Hypertension 4: 431–438

    PubMed  CAS  Google Scholar 

  • Stokes PE, Koslow S, Swann A, Stoll P, Maas J, Kocsis J, Jawaid J (1984) Neurochemical/ neuroendocrine interactions in depression and mania. Clin Neuropharmacol 7(1): 836–837

    Google Scholar 

  • Sulser F (1982) Antidepressant drug research: its impact on neurobiology and psychobiol-ogy. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven, New York

    Google Scholar 

  • Sulser F (1986) The “serotonin-noradrenaline link” and transmembrane signalling: physiological and pharmacotherapeutic implications. In: Hippius H, Matussek N (eds) Advances in pharmacotherapy, vol 2. Karger, Basel, pp 175–188

    Google Scholar 

  • Svensson TH, Fuxe K, Härfstrand A (1986) Pharmacological and physiological studies on brain adrenaline and noradrenaline neurons. Clin Neuropharmacol 9(4): 180

    Google Scholar 

  • Terry LC (1984) Catecholamine regulation of growth hormone and thyrotropin in mood disorders. In: Brown GM et al. (eds) Neuroendocrinology and psychiatric disorder. Raven, New York, pp 237–254

    Google Scholar 

  • Terry LC (1986) Neuroendocrine regulation by brain epinephrine. Clin Neuropharmacol 9(4): 172–174

    Google Scholar 

  • Terry LC (1988) Role of epinephrine in regulation of anterior pituitary hormone secretion. In: Stolk G, U’Prichard D, Fuxe K (eds) Epinephrine in the central nervous system. Oxford University Press, New York

    Google Scholar 

  • Tilson HA, Chamberlain JH, Gylys JA, Buyniski JP (1977) Behavioral suppressant effects of clonidine in strains of normotensive and hypertensive rats. Eur J Pharmacol 43: 99–105

    PubMed  CAS  Google Scholar 

  • Tuomisto J, Männistö P (1985) Neurotransmitter regulation of anterior pituitary hormones. Pharmacol Rev 37: 249–332

    PubMed  CAS  Google Scholar 

  • Uhde TW, Vittone BJ, Siever LJ, Kaye WH, Post RM (1986) Blunted growth hormone response to clonidine in panic disorder patients. Biol Psychiatry 21: 1077–1081

    Google Scholar 

  • U’Prichard DC (1984) Biochemical characteristics and regulation of brain β2-adrenocep-tors. In: Salama AI (ed) Presynaptic modulation of postsynaptic receptors in mental diseases. Ann NY Acad Sci 430: 55–75

    Google Scholar 

  • U’Prichard D, Loftus D, Stolk G (1988) Functional association between epinephrine and β-adrenoceptor in discrete brain areas: analysis in bred rat strains. In: Stolk G, U’Prichard D, Fuxe K (eds) Epinephrine in the central nervous system. Oxford University Press, New York

    Google Scholar 

  • Van Valkenburg C, Winokur G (1984) Hypertension and paranoia. Am J Psychiatry 141: 999–1000

    Google Scholar 

  • Vizi S (1983) Releasing-modulating adrenoceptors. In: Kunos G (ed) Neurotransmitter receptors. Adrenoreceptors and catecholamine action, part B. Wiley, New York, pp 65–107

    Google Scholar 

  • Vogel WH, Lewis LE, Boehme DH (1976) Phenylethanolamine-iV-methyltransferase activity in various areas of human brain, tissues and fluids. Brain Res 115: 357–359

    PubMed  CAS  Google Scholar 

  • v Zerssen D, (1981) Befmdlichkeits-Skala. In: CIPS (ed) Internationale Skalen für Psychiatrie. Beltz, Weinheim

    Google Scholar 

  • v Zerssen D, Berger H, Doerr P (1984) Neuroendocrine dysfunction in subtypes of depression. In: Shah NK, Donald AG (eds) Psychoneuroendocrine dysfunction. Plenum, New York

    Google Scholar 

  • Weeke A (1979) Causes of death in manic-depressives. In: Schou M, Strömgren E (eds) Origin, prevention and treatment of affective disorders. Academic Press, London New York, pp 289–299

    Google Scholar 

  • Weissman MM, Myers JK, Leaf PJ, Tischler GL, Hölzer CE (1986) The affective disorders: results from the epidemiologic catchment area study (ECA). In: Hippius H, Klerman GL, Matussek N (eds) New results in depression research. Springer, Berlin Heidelberg New York, pp 16–26

    Google Scholar 

  • Weizman A, Gil-Ad I, Weizman R, Hering R, Bechar M, Tyano S, Laron Z (1984) Basal plasma HGH and cortisol levels and the effect of clonidine administration in female migrainous patients. Neuropsychobiology 12: 106–111

    PubMed  CAS  Google Scholar 

  • Widerlöv E, Wahlestedt, Hakanson R, Ekman R (1986) Altered brain neuropeptide function in psychiatric illnesses — with special emphasis on NPY and CRF in major depression. Clin Neuropharmacol 9(4): 572–574

    Google Scholar 

  • Winokur G (1986) Familial classification of depressive illness. In: Hippius H, Klerman GL, Matussek N (eds) New results in depression research. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wirz-Justice A, Kräuchi K, Campbell IC, Feer H (1983) Adrenoceptor changes in spontaneous hypertensive rats: a circadian approach. Brain Res 262: 233–242

    PubMed  CAS  Google Scholar 

  • Wood K, Swade C, Coppen A (1985) Platelet β-adrenergic receptors in depression: ligand binding and aggregation studies. Acta Pharmacol Toxicol 56[suppl l]: 203–211

    Google Scholar 

  • Wright JH, Jacisin JJ, Radin NS, Bell RA (1978) Glucose metabolism in unipolar depression. Br J Psychiatry 132: 386–393

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matussek, N. (1988). Catecholamines and Mood: Neuroendocrine Aspects. In: Ganten, D., Pfaff, D., Fuxe, K. (eds) Neuroendocrinology of Mood. Current Topics in Neuroendocrinology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72738-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72738-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72740-5

  • Online ISBN: 978-3-642-72738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics