Skip to main content

Cholecystokinin and Mood

  • Conference paper
Neuroendocrinology of Mood

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 8))

Abstract

Cholecystokinin (CCK) is a peptide hormone which has long been known to be present in the pancreas and gastro-intestinal tract and has recently been found to be present in brain (Morley 1982). High concentrations are found in animal and human cerebral cortex, basal ganglia, hypothalamus and the limbic lobe (hippocampus, amygdala, olfactory tubercle and associated cortices) (Geola et al. 1981). The major CCK entity in the brain is the COOH-terminal octapeptide CCK-8, although lesser amounts of the COOH-terminal tetrapeptide CCK-4 (Geola et al. 1981; Rehfeld 1978) are found. There is good evidence that CCK acts as a neu- rotransmitter or neuromodulator in the CNS; it is synthesised in neurones and concentrated in synaptic vesicles, its release is calcium-dependent (Emson et al. 1980 b) and it has a potent excitatory effect on postsynaptic membranes of hip- pocampal cells (Dodd and Kelly 1981). In addition there have been several reports of high-affinity binding sites for radiolabelled CCK in the brains of rodents and man (Hays et al. 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albus M, Ackenheil M, Munch U, Naber D (1984) Ceruletide: a new drug for the treatment of schizophrenic patients? Arch Gen Psychiatry 41: 528

    PubMed  CAS  Google Scholar 

  • Baile CA, Della Ferra MA (1985) Central nervous system cholecystokinin and the control of feeding. Ann NY Acad Sci 448: 424–430

    Article  PubMed  CAS  Google Scholar 

  • Bloom DM, Nair NPV, Schwartz G (1983) CCK-8 in the treatment of chronic schizophrenia. Psychopharmacol Bull 19: 361–363

    Google Scholar 

  • Bogerts B, Meertz E, Schonfedt-Bausch E (1985) Basal ganglia and limbic system pathology in schizophrenia. Arch Gen Psychiatry 42: 784–791

    PubMed  CAS  Google Scholar 

  • Carruthers B, Dawbarn D, de Quidt M, Emson PC, Hunter J, Reynolds GP (1984) Changes in neuropeptide content of amygdala in schizophrenia. Br J Pharmacol 81: 190P

    Google Scholar 

  • Chang RSL, Lotta VJ, Martin GE, Chen TB (1983) Increase in brain 125I-cholecystokinin (CCK) receptor binding following chronic haloperidol treatment, intracisternal 6-hy-droxydopamine or ventral tegmental lesions. Life Sci 32: 871–878

    Article  PubMed  CAS  Google Scholar 

  • Chase TN, Barone P, Bruno G, Cohen SL, Juncos J, Knight M, Ruggeri S, Steardo L, Tamminga CA (1985) Cholecystokinin-mediated synaptic function and the treatment of neuropsychiatric disease. Ann NY Acad Sci 448: 553–561

    Article  PubMed  CAS  Google Scholar 

  • Chun JJM, Nakamira MJ, Shatz CJ (1987) Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons. Nature 325: 617–620

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN (1985) Comparative distribution of cholecystokinin and other neuropeptides. Ann NY Acad Sci 448: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Crow TJ (1980) Molecular pathology of schizophrenia: more than one disease process? Br Med J [Clin Res] 280: 66–68

    Article  CAS  Google Scholar 

  • Crow TJ, Ferner IN, Johnstone EC (1986) The two syndrome concept and the neuroendo-crinology of schizophrenia. Psychiatr Clin North Am 9: 99–113

    PubMed  CAS  Google Scholar 

  • De Witte P, Swanet E, Gewiss M, Goldman S, Roques B, Vanderhaeghen JJ (1985) Psy-chopharmacological profile of cholecystokinin using the self-stimulation and the drug discrimination paradigms. Ann NY Acad Sci 448: 470–487

    Article  PubMed  Google Scholar 

  • Dodd J, Kelly JS (1981) The actions of cholecystokinin and related peptides on pyramidal neurons of the mammalian hippocampus. Brain Res 205: 337–350

    Article  PubMed  CAS  Google Scholar 

  • Edwardson JA, McDermott JR (1982) Neurochemical pathology of brain peptides. Br Med Bull 38: 259–264

    PubMed  CAS  Google Scholar 

  • Emson PC, Rehfeld JF, Langevin H, Rossor M (1980a) Reduction in cholecystokinin-like immunoreactivity in the basal ganglia in Huntington’s disease. Brain Res 198: 497–500

    Article  PubMed  CAS  Google Scholar 

  • Emson PC, Lee CM, Rehfeld JF (1980b) Cholecystokinin octapeptide: vesicular localization and calcium-dependent release from rat brain in vitro. Life Sci 26: 2157–2163

    Article  PubMed  CAS  Google Scholar 

  • Farmery SM, Owen F, Poulter M, Crow TJ (1984) Reduced high affinity cholecystokinin binding in hippocampus and frontal cortex of schizophrenic patients. Life Sci 36: 473–477

    Article  Google Scholar 

  • Fekete M, Kadar T, Penke B, Kovacs K, Telegdy G (1981) Influence of cholecystokinin octapeptide sulfate ester on brain monamine metabolism in rats. J Neural Transm 50: 81–88

    Article  PubMed  CAS  Google Scholar 

  • Ferner IN, Crow TJ, Farmery SM, Roberts GW, Bowen F, Adrian TE, Bloom SR (1985) Reduced cholecystokinin levels in the limbic lobe in schizophrenia. Ann NY Acad Sci 448: 495–506

    Article  Google Scholar 

  • Fuxe K, Agnati L, Benfenati F, Cimmino M, Algeri S, Hokfelt T, Mutt V (1981) Modulation by cholecystokinin of [3H]spiroperidol binding in rat striatum: evidence for increased affinity and reduction in number of binding sites. Acta Physiol Scand 113: 567–569

    Article  PubMed  CAS  Google Scholar 

  • Geola FL, Hershman JM, Warwick R, Reeve JR, Walsh JH, Tourtellotte WW (1981) Regional distribution of cholecystokinin-like immunoreactivity in the human brain. J Clin Endocrinol Metab 53: 270–275

    Article  PubMed  CAS  Google Scholar 

  • Gerner RH, Yamada T (1982) Altered neuropeptide concentrations in cerebrospinal fluid of psychiatric patients. Brain Res 238: 298–302

    Article  PubMed  CAS  Google Scholar 

  • Greenwood RS, Godar SE, Reaves TA, Hayward JN (1981) Cholecystokinin in hippocam-pal pathways. J Comp Neurol 203: 335–350

    Article  PubMed  CAS  Google Scholar 

  • Handelmann GE, Meyer DK, Beinfeld MC, Oertel WH (1981) CCK-containing terminals in the hippocampus are derived from intrinsic neurons: an immunohistochemical and radioimmunological study. Brain Res 224: 180–184

    Article  PubMed  CAS  Google Scholar 

  • Hays SE, Goodwin FK, Paul SM (1981) Cholecystokinin receptors are decreased in basal ganglia and cerebral cortex of Huntington’s disease. Brain Res 225: 452–456

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T, Skirboll L, Rehfeld JF, Goldstein M, Markey K, Dann O (1980a) A subpop-ulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: evidence from immunohistochemistry combined with retrograde tracing. Neuroscience 5: 2093–2124

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T, Rehfeld JF, Skirboll L, Ivemark B, Goldstein M, Markey K (1980b) Evidence for coexistence of dopamine and CCK in mesolimbic neurons. Nature 285: 476–478

    Article  PubMed  CAS  Google Scholar 

  • Hommer D, Skirboll L (1983) Cholecystokinin-like peptides potentiate apomorphine-in-duced inhibition of dopamine neurons. Eur J Pharmacol 91: 151–152

    Article  PubMed  CAS  Google Scholar 

  • Hommer DW, Pickar D, Crawley JN, Weingartner H, Paul SM (1985) The effects of cholecystokinin-like peptides in schizophrenics and normal human subjects. Ann NY Acad Sci 448: 542–552

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Tanoue S, Yagi G, Tateyama M, Kamisada M, Fujii Y, Takamiya M, Nakajima S (1982) Clinical study of the psycho tropic effects of caerulein: an open clinical trial in chronic schizophrenic patients. Keio J Med 31: 71–95

    Article  PubMed  CAS  Google Scholar 

  • Kleinman JE, Iadarola M, Govani S, Hong J, Gillin JC, Wyatt RJ (1983) Post mortem measurements of neuropeptides in human brain. Psychopharmacol Bull 19: 375–377

    Google Scholar 

  • Kovelman JA, Scheibel AB (1984) A neurohistological correlate of schizophrenia Biol Psychiatry 19: 1601–1621

    CAS  Google Scholar 

  • Kruse-Larsen C, Rehfeld JF (1979) Gastrin in human cerebrospinal fluid: lack of correlation with serum concentrations. Brain Res 176: 189–191

    Article  PubMed  CAS  Google Scholar 

  • Kudo Y (1983) The effect of ceruletide on chronic schizophrenia. Jpn J Clin Psychiatry 12: 703–710

    Google Scholar 

  • Lindvall O, Bjorklund A (1978) Organisation of catecholamine neurons in rat central nervous system. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychophar-macology, vol 9. Plenum, New York, pp 139–231

    Google Scholar 

  • Lostra F, Verbanck PMP, Gilles C, Mendlewicz J, Vanderhaeghen JJ (1985) Reduced chol-cystokinin levels in cerebrospinal fluid of parkinsonian and schizophrenic patients. Effect of ceruletide in schizophrenia. Ann NY Acad Sci 448: 507–517

    Article  Google Scholar 

  • Lucignani G, Porrino LJ, Tamminga CA (1984) Effects of systemically administered cho-lecystokinin octapeptide on local cerebral metabolism. Eur J Pharmacol 101: 147–151

    Article  PubMed  CAS  Google Scholar 

  • Meibach RC, Katzman R (1981) Origin, course and termination of dopaminergic substantia nigra neurons projecting to the amygdaloid complex in the cat. Neuroscience 6: 2159–2171

    Article  PubMed  CAS  Google Scholar 

  • Morley JE (1982) The ascent of cholecystokinin (CCK) from gut to brain. Life Sci 30: 479–493

    Article  PubMed  CAS  Google Scholar 

  • Moroji T, Watanabe N, Aoki N, Itoh S (1982) Antipsychotic effects of caerulein in chronic schizophrenia. Arch Gen Psychiatry 39: 485

    PubMed  CAS  Google Scholar 

  • Moroji T, Itoh K, Itoh K (1985) Antipsychotic effects of cerulitide in chronic schizophrenia: an appraisal of the long-term, intermittend medication of cerulitide in chronic schizophrenia. Ann NY Acad Sci 448: 518–534

    Article  PubMed  CAS  Google Scholar 

  • Nair NP, Bloom DM, Nestoros JN (1982) Cholecystokinin appears to have antipsychotic properties. Biol Psychiatry 6: 509–512

    CAS  Google Scholar 

  • Nair NPV, Bloom D, Lal S, Rebonnel G, Schwartz G, Mosticyan S (1985) Clinical and neuroendocrine studies with cholecystokinin peptides. Ann NY Acad Sci 448: 535–541

    Article  PubMed  CAS  Google Scholar 

  • Passaro E, Bebas H, Oldendorf W, Yamada T (1982) Rapid appearance of intraventricu-larly administered neuropeptides in the peripheral circulation. Brain Res 241: 335–340

    Article  PubMed  Google Scholar 

  • Perry RH, Dockray GJ, Dimaline R, Perry EK, Blessed G, Tomlinson BE (1981) Neuropeptides in Alzheimer disease depression and schizophrenia. A post-mortem analysis of vasoactive intestinal peptide and cholecystokinin in cerebral cortex. J Neurol Sci 51: 465–472

    CAS  Google Scholar 

  • Price JL (1981) The efferent projects of the amygdaloid complex in the rat, cat and monkey. In: Ben-Ari Y (ed) The amygdaloid complex. Elsevier/North-Holland, Amsterdam, pp 121–132

    Google Scholar 

  • Rehfeld JF (1978) Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog J Biol Chem 253: 4022–4030

    CAS  Google Scholar 

  • Reynolds GP (1983) Increased concentrations and lateral asymmetry of amygdala dopa-mine in schizophrenia. Nature 305: 527–529

    Article  PubMed  CAS  Google Scholar 

  • Roberts GW, Woodhams PL, Polak JM, Crow TJ (1982) Distribution of neuropeptides in the limbic system of the rat: the amygdaloid complex. Neuroscience 7: 99–131

    Article  PubMed  CAS  Google Scholar 

  • Roberts GW, Ferner IN, Lee Y, Crow TJ, Johnstone EC, Owens DGC, Bacarese-Hamil-ton AJ, McGregor C, O’Shaughnessy D, Polak JM, Bloom SR (1983) Peptides, the limbic lobe and schizophrenia. Brain Res 288: 199–211

    Article  PubMed  CAS  Google Scholar 

  • Rossor MN, Emson PC (1985) Neuropeptides in degenerative disease of the central nervous system. Trends Neurosci 5: 399–401

    Article  Google Scholar 

  • Skirboll LR, Grace AA, Hommer DW, Rehfeld J, Goldstein M, Hokfelt T, Bunney BS (1981) Peptide-monoamine coexistence: studies of actions of cholecystokinin-like peptide on the electrical activity of midbrain dopamine neurons. Neuroscience 6: 2111–2124

    Article  PubMed  CAS  Google Scholar 

  • Smith GP, Gibbs J (1985) The satiety effect of cholecystokinin: recent progress and current problems. Ann NY Acad Sci 448: 417–423

    Article  PubMed  CAS  Google Scholar 

  • Stacher G, Bauer J, Steinringer H (1979) Cholecystokinin decreases appetite and activation evoked by stimuli arising from the preparation of a meal in man. Physiol Behav 23: 325–331

    Article  PubMed  CAS  Google Scholar 

  • Studler JM, Javoy-Agid F, Cesselin F, Legrand JC, Agid Y (1982) CCK-8 immunoreactiv-ity distribution in human brain: selective decrease in the substantia nigra from parkin-sonian patients. Brain Res 243: 176–179

    Article  PubMed  CAS  Google Scholar 

  • Vanderhaeghen JJ, Lotstra F, De Mey J, Gilles C (1980) Immunohistochemical localization of cholecystokinin-and gastrin-like peptides in the brain and hypophysis of the rat. Proc Natl Acad Sci USA 77: 1190–1194

    Article  PubMed  CAS  Google Scholar 

  • Verbanck PMP, Lotstra F, Gilles C, Linkowski P, Mendlewicz J, Vanderhaeghen JJ (1984) Reduced cholecystokinin immunoreactivity in the cerebrospinal fluid of patients with psychiatric disorders. Life Sci 34: 67–72

    Article  PubMed  CAS  Google Scholar 

  • Zarbin MA, Innis RB, Wamsley JK, Snyder SH, Kuhar MJ (1983) Autoradiographic localization of cholecystokinin receptors in rodent brain. Neuroscience 3: 877–906

    PubMed  CAS  Google Scholar 

  • Zetler G (1985) Neuropharmacological profile of cholecystokinin-like peptides. Ann NY Acad Sci 448: 448–469

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferrier, I.N., Crow, T.J. (1988). Cholecystokinin and Mood. In: Ganten, D., Pfaff, D., Fuxe, K. (eds) Neuroendocrinology of Mood. Current Topics in Neuroendocrinology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72738-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72738-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72740-5

  • Online ISBN: 978-3-642-72738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics