Skip to main content

Alzheimer’s Disease Causes Metabolic Uncoupling of Associative Brain Regions Beyond that Seen in the Healthy Elderly

  • Conference paper
Modification of Cell to Cell Signals During Normal and Pathological Aging

Part of the book series: NATO ASI Series ((ASIH,volume 9))

Abstract

Alzheimer’s disease (AD) is a progressive degenerative brain disorder that has no agreed-upon cause. The earliest and most prominent neuropsychological deficit is recent memory impairment, which usually is attributed to pathological and neurochemical changes in the hippocampus, amygdala and neocortex (3, 5, 32). The first cognitive deficits to appear that are related to neocortical dysfunction are impairments of attention, abstract reasoning, language and visuospatial construction (18, 20, 21).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Arendt, T., Bigl, V., Tennstedt, A., and Arendt, A., 1985, Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease, Neurosci., 14, 1–14.

    Article  CAS  Google Scholar 

  2. Axelrod, S., and Cohen, L. D., 1961, Senescence and embedded-figure performance in vision and touch. Percept. Motor Skills, 12, 283–288.

    Google Scholar 

  3. Ball, M. J., Fishman, M., Hachinski, V., Blume, W., Fox, A., Krai, V. A., Kirsher, A. J., Fox, H., and Merskey, H., 1985, A new definition of Alzheimer’s disease: a hippocampal dementia, Lancet, Jan., 14–16.

    Google Scholar 

  4. Benton, A., 1985, Visuoperceptual, visuospatial and visuocontructive disorders, in: “Clinical Neuropsychology”, 2nd Ed., K. M. Heilman, E. Valenstein, eds., Oxford University Press, Oxford, pp. 151–186.

    Google Scholar 

  5. Birren, J. E., Butler, R. N., Greenhouse, S. W., Sokoloff, L., and Yarrow, M. R., 1963, Interdisciplinary relationships: interrelations of physiological, psychological, and pyschiatric findings in healthy elderly men, in: “Human Aging I: a Biological and Behavioral Approach”, J. E. Birren, R. N. Butler, S. W. Greenhouse, L. Sokoloff, M. R. Yarrow, eds., U. S. Government Printing Office, Washington, D. C. pp. 283–305

    Chapter  Google Scholar 

  6. Brun, A., and Gustafson L., 1976, Distribution of cerebral degeneration in Alzheimer’s disease. A clinico-pathological study, Arch. Psychiatr. Nervenkr., 223, 15–33.

    Article  CAS  Google Scholar 

  7. De Leon, M. J., Ferris, S. H., George, A. E., Reisberg, B., Christman, D. R., Kricheff, I. I., and Wolf, A. P., 1983, Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer’s disease. J. Cerebr. Blood Flow Metab., 3, 391–394.

    Article  Google Scholar 

  8. Duara, R., Grady, C. L., Haxby, J. V., Sundaram, M., Cutler, N. R., Heston, L., Moore, A., Schlageter, N. L., Larson, S., and Rapoport, S. I., 1986, Positron emission tomography in Alzheimer’s disease. Neurol., 36, 879–887.

    CAS  Google Scholar 

  9. Duara, R., Grady, C. L., Haxby, J. V., Ingvar, D., Sokoloff, L., Margolin, R. A., Manning, R. G., Cutler, N. R., and Rapoport, S. I., 1984, Human brain glucose utilization and cognitive function in relation to age, Ann. Neurol., 16, 703–713.

    Article  PubMed  CAS  Google Scholar 

  10. Duara, R., Margolin, R. A., Robertson-Tchabo, E. A., London, E. D., Schwartz, M., Renfrew, J. W., Koziarz, B. J., Sundaram, M., Grady, C., Moore, A. M., Ingvar, D. H., Sokoloff, L., Weingartner, H., Kessler, R. M., Manning, R. G., Channing, M. A., Cutler, N. R., and Rapoport, S. I., 1983, Cerebral glucose utilization, as measured with positron emission tomography in 21 resting healthy men between the ages of 21 and 83 years, Brain, 106, 761–775.

    Article  PubMed  Google Scholar 

  11. Duyckaerts, C., Hauw, J. J., Piette, F., Rainsard, C., Poulain, V., Berthaux, P., and Escourolle, R., 1985, Cortical atrophy in senile dementia of the Alzheimer type is mainly due to a decrease in cortical length, Acta. Neuropath. (Berl), 66, 72–74.

    Article  CAS  Google Scholar 

  12. Folstein, M. F., Folstein, S. E., and McHugh, P. R., 1975, “Mini-Mental State.” A practical method for grading the cognitive state of patients for the clinician., J. Psychiat. Res., 12, 189–198.

    Article  PubMed  CAS  Google Scholar 

  13. Foster, N. L., Chase, T. N., Mansi, L., Brooks, R., Fedio, P., Patronas, N. J., and DiChiro, G., 1984, Cortical abnormalities in Alzheimer’s disease., Ann. Neurol., 16, 649–654.

    Article  PubMed  CAS  Google Scholar 

  14. Frackowiak, R. S. J., Lenzi, G.-L., Jones, T., and Heather, J. D., 1980, Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 150 and positron emission tomography: theory, procedure and normal values, J. Comput. Asst. Tomog., 4, 727–736.

    Article  CAS  Google Scholar 

  15. Frackowiak, R., and Gibbs, J. M., 1983, Cerebral metabolism and blood flow in normal and pathologic aging, In: “Functional Radionuclide Imaging of the Brain”, P. Magistretti, ed, Raven Press, New York, pp. 305–309.

    Google Scholar 

  16. Friedland, R. P., Budinger, T. F., Koss, E., and Ober, B. A., 1985, Alzheimer’s disease: anterior-posterior and lateral hemispheric alterations in cortical glucose utilization., Neurosci. Lett., 53, 235–240.

    CAS  Google Scholar 

  17. Gajdusek, D. C., 1985, Hypothesis: Interference with axonal transport of neurofilament as a common pathogenetic mechanism in certain diseases of the central nervous system, New Eng. J. Med., 312, 714–719.

    Article  CAS  Google Scholar 

  18. Goldman, P. S., and Nauta, W. J. H., 1977, Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing Rhesus monkey., Brain Res., 122, 393–413.

    Article  PubMed  CAS  Google Scholar 

  19. Grady, C. L., Haxby, J. V., Sundaram, M., Berg, G., arid Rapoport, S. I., 1985, Longitudinal relations between cognitive and cerebral metabolic deficits in Alzheimer’s disease (AD)., J. Clin. Exp. Neuropsychol., 7, 622,

    Google Scholar 

  20. Grady, C. L., Haxby J. V., Schlageter, N. L., Berg, G., and Rapoport, S, I., in press, Stability of metabolic and neuropsychological asymmetries in dementia of the Alzheimer type, Neurol.

    Google Scholar 

  21. 19a.Haxby, J. V., 1986, Cerebral metabolic rate of glucose and Alzheimer’s disease: Reply, J. Cerebr. Blood Flow Metabl., 6, 125–127.

    Google Scholar 

  22. Haxby, J. V., Duara, R., Grady, C. L., Cutler, N. R., and Rapoport, S. I., 1985, Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease, J. Cerebr. Blood Flow Metab., 5, 193–200.

    Article  CAS  Google Scholar 

  23. Haxby, J. V., Grady, C. L., Duara, R., Schlageter, N., Berg, G., and Rapoport, S. I., in press, Neocortical metabolic abnormalities precede non-memory cognitive deficits in early Alzheimer-type dementia, Arch. Neurol Neurosurg. Psychiatr.

    Google Scholar 

  24. Horn, J. L., and Cattell, R. B., 1967, Age differences in fluid and crystallized intelligence, Acta Psychol. (Amst.), 26, 107–129.

    Article  CAS  Google Scholar 

  25. Horwitz, B., Grady C. L., Schlageter N. L., Duara, R., and Rapoport, S. I., in press, Intercorrelations of regional cerebral metabolic rates in Alzheimer’s disease, Brain Res.

    Google Scholar 

  26. Horwitz, B., Duara, R., and Rapoport S. I., 1986, Age differences in intercorrelations between regional cerebral metabolic rates for glucose, Ann Neurol., 19, 60–67.

    Article  PubMed  CAS  Google Scholar 

  27. Horwitz, B., Duara, R., and Rapoport, S. I., 1984, Intercorrelations of glucose metabolic rates between brain regions: application to healthy males in a state of reduced sensory input, J. Cerebr. Blood Flow Metab., 4, 484–499.

    Article  CAS  Google Scholar 

  28. Huang, S-C, Phelps, M. E., Hoffman, E. J., Sideris, K., Selin, C. J., and Kuhl, D. E., 1980, Noninvasive determination of local cerebral metabolic rate of glucose in man., Am. J. Physiol., 238, E69–E82.

    PubMed  CAS  Google Scholar 

  29. Hyman, B. T., Van Hoesen, G. W., Damasio A. R., and Barns, C. L., 1984, Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation, Science, 225, 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  30. Kuhl, D. E., E. J. Metter, W. H. Riege, and M. E. Phelps, 1982, Effects of human aging on patterns of local cerebral glucose utilization determined with the [18F]fluorodeoxyglucose method. J. Cerebr. Blood Flow Metab., 2, 163–171.

    Google Scholar 

  31. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E. M., 1984, Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurol., 34, 939–944.

    CAS  Google Scholar 

  32. Metter, E. J., Riege, W. H., Kameyama, M., Kuhl, D. E., and Phelps, M. E., 1984, Cerebral metabolic relationships for selected brain regions in Alzheimer’s, Huntington’s, and Parkinson s diseases, J. Cerebr. Blood Flow Metab., 4, 500–506.

    Google Scholar 

  33. Pandya, D. N., and Seltzer, B., 1982, Association areas of the cerebral cortex, Trends Neurosci., 5, 386–390.

    Article  Google Scholar 

  34. Pearson, R. C., Esiri, M. M., Hiorns, R. W., Wikock, G. K., and Powell T. P., 1985, Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease, Proc. Natl. Acad. Sci., 82, 4531–4534.

    Article  PubMed  CAS  Google Scholar 

  35. Rapoport, S. I., Horwitz, B., and Duara, R., 1985, PET scanning demonstrates that aging in man is accompanied by loss of integration of regional brain activity, without concurrent reductions in absolute cerebral metabolic rates for glucose, J. Cerebr. Blood Flow Metab., 35 (Suppl. 1), S119–S120.

    Google Scholar 

  36. Rapoport, S. I., Horwitz, B., Haxby, J. V., and Grady, C. L., in press, Alzheimer s disease: metabolic uncoupling of associative brain regions, Can. J. Neurological Sci.

    Google Scholar 

  37. Rogers, J., and Morrison J. H., 1985, Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer’s disease, J. Neurosci., 5, 2801–2808.

    PubMed  CAS  Google Scholar 

  38. Scheibel, A. B., 1978, Structural aspects of the aging brain: spine systems and the dendritic arbor, In: “Aging. Volume 7. Alzheimer’s Disease: Senile Demencia and Related Disorders”, R. Katzman, R. D. Terry, K. L. Bick, eds., Raven Press, New York, pp. 353–373.

    Google Scholar 

  39. Schlageter, N. L., Horwitz, B., Creasey, H., Carson, R., Duara, R., Berg, G. W., and Rapoport, S. I., in press, Relation of brain glucose utilization to cortical atrophy and intracranial volume in man, J. Neurol. Neurosurg. Psychiatr.

    Google Scholar 

  40. Schwartz, M. L., Goldman-Rakic, P. S., 1984, Callosal and intrahemispheric connectivity of the prefrontal association cortex in Rhesus monkey: relation between intraparietal and principal sulcal cortex., J. Comp. Neurol., 226, 403–420.

    Article  PubMed  CAS  Google Scholar 

  41. Soncrant, T. T., Horwitz, B., Sato, S., Holloway, H. W., and Rapoport, S. I., 1986, Left-right regional functional interactions are disrupted by corpus callosotomy in the rat, Abstr. Soc. Neurosci., 12, 177.

    Google Scholar 

  42. Terry, R. D., Peck, A., DeTeresa R., Schechter, R., and Horoupion, D. S., 1981, Some morphometric aspects of the brain in senile dementia of the Alzheimer type, Ann. Neurol., 10, 184–192.

    Article  PubMed  CAS  Google Scholar 

  43. Van Hoesen, G. W., 1982, The parahippocampal gyrus. New observations regarding its cortical connections in the monkey, Trends Neurosci., 1, 345–350.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rapoport, S.I., Horwitz, B., Grady, C.L., Haxby, J.V. (1987). Alzheimer’s Disease Causes Metabolic Uncoupling of Associative Brain Regions Beyond that Seen in the Healthy Elderly. In: Govoni, S., Battaini, F. (eds) Modification of Cell to Cell Signals During Normal and Pathological Aging. NATO ASI Series, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72729-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72729-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72731-3

  • Online ISBN: 978-3-642-72729-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics