Dietary and Neuroendocrine Modulation of Age Related Changes in Dopaminergic Action During Aging

  • George S. Roth
  • James A. Joseph
Conference paper
Part of the NATO ASI Series book series (volume 9)


Aging is associated with progressively impaired motor function, which manifests itself as disorders in gait, balance, posture, coordination, and an increased incidence of falls (1, 2). Although many neural pathways are involved in motor control, the dopaminergic system seems to play a major role, particularly as evidenced by the deterioration characteristic of Parkinson’s and Huntington’s Diseases (2). Since numerous motor problems occur with increased age, both associated with and independent of such pathology, we have chosen to examine the mechanisms responsible for decline of the dopaminergic system during senescence.


Dopamine Receptor Corpus Striatum Rotational Behavior Position Emission Tomography Receptor Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roth, G. S., Henry, J. M., and Joseph, J. A., in press, The striatal dopaminergic system as a model for modulation of altered neurotransmitter action during aging. Effects of dietary and neuroendocrine manipulations, Progr. in Brain Res.Google Scholar
  2. 2.
    Roth, G. S. and Joseph, J. A., 1985, Modulation of changes in dopaminergic receptors and responsiveness during aging, in Thresholds in Aging (M. Bergenere, M. Ermini and H. B. Stahelin, eds.J Academic Press, NY, 189–202.Google Scholar
  3. 3.
    Puri, S. K. and Volicer, L., 1977, Effect of aging on cyclic AMP levels and adenylate cyclase and phosphodiesterase activities in rat corpus striatum, Mech. Ageing and Devel. 6: 53–58.Google Scholar
  4. 4.
    Schmidt, M. J. and Thornberry, J. F., 1978, Cyclic AMP and cyclic GMP accumulation in vitro in brain regions of young, old and aged rats, Brain Res. 139: 169–177.PubMedCrossRefGoogle Scholar
  5. 5.
    Walker, J. P. and Boas-Walker, J., 1973, Properties of adenylate cyclase from senescent rat brains, Brain Res. 54: 391–396.PubMedCrossRefGoogle Scholar
  6. 6.
    Joseph, J. A., Berger, R. E., Engel, B. T., and Roth, G. S., 1978, Agerelated changes in the nigrostriatum: a behavioral and biochemical analysis. J. Gerontology 33: 643–649.Google Scholar
  7. 7.
    Joseph, J. A., Bartus, R. T., Clody, D., Morgan, D., Finch, C., Beer, B., and Sesack, S., 1983, Psychomotor performance in the senescent rodent: reduction of deficits with striatal dopamine receptor up-regulation, Neurobiology of Aging 4: 313–319.PubMedCrossRefGoogle Scholar
  8. 8.
    Cimino, M., Vantini, G., Algeri, S., Curatola, G., Pezzoli, C., and Stramentinoli, G., 1984, Age related modification of dopaminergic and B-adrenergic receptor systems: Restoration to normal activity by modifying membrane fluidity with S-adenosyl-methionine, Life Sciences 34: 2029–2039.Google Scholar
  9. 9.
    Deblasi, A. A. and Mennini, T., 1982, Selective reduction of one class of dopamine receptor binding sites in the corpus striatum of aged rats, Brain Res. 242: 361–364.CrossRefGoogle Scholar
  10. 10.
    Deblasi, A. A., Cotecchia, S., and Merinini, T., 1982, Selective changes of receptor binding in brain regions of aged rats, Life Sciences 31: 335–340.CrossRefGoogle Scholar
  11. 11.
    Henry, J. M. and Roth, G. S., 1984, Effect of aging on recovery of striatal dopamine receptors following N-ethoxy-carbonyl- 2-ethoxy-l, 2 dihydroquinoline ( EEDQ) blockage, Life Sciences 35: 899–904.Google Scholar
  12. 12.
    Henry, J. M. and Roth, 1986, Solubilization of striatal dopamine receptorsi evidence that apparent loss is not due to membrane sequestration. J. Gerontology 41: 129–135.Google Scholar
  13. 13.
    Joseph, J. A., Roth, G. S., and Lippa, A. S., 1986, Reduction of motor behavioral deficits in senescent animals via chronic prolactin administration I. Rotational behavior, Neurobiology of Aging 7: 31–35.Google Scholar
  14. 14.
    Joseph, J. A., Filburn, C. R., and Roth, G. S., 1981, Development of dopamine receptor denervation supersensitivity in the neostriatum of the senescent rat, Life Sciences 29: 575–584.PubMedCrossRefGoogle Scholar
  15. 15.
    Levin, P., Janda, J. K., Joseph, J. A., Ingram, D. K., and Roth, G. S., 1981, Dietary restriction retards the age associated loss of rat striatal dopaminergic receptors, Science 214: 561–562.PubMedCrossRefGoogle Scholar
  16. 16.
    Levin, P., Haji, M., Joseph, J. A., and Roth, G. S., 1983, Effect of aging on prolactin regulation of rat striatal dopamine receptor concentrations, Life Sciences 32: 1743–1749.PubMedCrossRefGoogle Scholar
  17. 17.
    Memo, M., Lucchi, L., Spano, P. F., and Trabucchi, M., 1980, Aging process affects a single class of dopamine receptors, Brain Res. 202: 488–492.PubMedCrossRefGoogle Scholar
  18. 18.
    Misra, C. H., Shelat, H. S., and Smith, R. C., 1980, Effect of age on adrenergic and dopaminergic binding in rat brain, Life Sciences 27: 521–526.PubMedCrossRefGoogle Scholar
  19. 19.
    Morgan, D. G., Marcusson, J. 0., Winblad, B., and Finch, C. E., 1984, Reciprocal changes in D-l and D-2 dopamine binding sites in human caudate nucleus and putamen during normal aging: 3H-fluphenazine as a dopamine receptor ligand, Abstr. Soc. for Neurosci. p. 445.Google Scholar
  20. 20.
    O. Boyle, K. M. and Waddington, J. L., 1984, Loss of rat striatal dopamine receptors with aging is selective for the D-2 but not the D-l sites: Association with increased non-specific binding of the D-l ligand + 3H-piflutixol, Eur. J. Pharmacol. 105: 171–174.Google Scholar
  21. 21.
    Randall, P. K., Severson, J. A., and Finch, C. E., 1981, Aging and the regulation of striatal dopaminergic mechanisms in mice. J. Pharmacol. Exp. Theraputics 219: 695–705.Google Scholar
  22. 22.
    Roth, G. S., Ingram, D. K., and Joseph, J. A., 1984, Delayed loss of striatal dopamine receptors during aging of dietarily restricted rats, Brain Res. 399: 27–32.CrossRefGoogle Scholar
  23. 23.
    Severson, J. A., Marcusson, J., Winblad, B., and Finch, C. E., 1982, Age related changes in dopaminergic binding sites in human basal ganglia, J. Neurochem. 39: 1623–1631.PubMedCrossRefGoogle Scholar
  24. 24.
    Severson, J. A. and Finch, C. E., 1980, Reduced dopaminergic binding during aging in the rodent striatum, Brain Res. 192: 147–162.PubMedCrossRefGoogle Scholar
  25. 25.
    Severson, J. A. and Randall, P. K., 1985, D-2 Dopamine receptors in aging mouse striatums determination of high-and low affinity agonist binding sites, J. Pharmacol. Exp. Theraputics 233: 361–368.Google Scholar
  26. 26.
    Thai, L. J., Horowitz, S. G., Dvorkin, B., and Markman, M. H., 1980, Evidence for loss of brain 3H-ADTN binding sites in rabbit brain with aging, Brain Res. 192: 185–194.CrossRefGoogle Scholar
  27. 27.
    Hirschhorn, I. D., Makman, M. H., and Sharpless, N. S., 1982, Dopamine receptor sensitivity following nigrostriatal lesions in the aged rat, Brain Res. 234: 357–368.PubMedCrossRefGoogle Scholar
  28. 28.
    Wong, D. F., Wagner, H. N., Dannals, R. F., Links, J. M., Frost, J. J., Rovert, H. T., Wilson, A. A., Rosenbaum, A. E., Gjedde, A., Douglass, K. H., Petronis, J. D., Folstein, M. F., Toung, J. K. T., Burns, H. D., and Kuhar, M. J., 1984, Effects of age on dopamine and serotonin receptors measured by position tomography in the living human brain, Science 226: 1391–1396.CrossRefGoogle Scholar
  29. 29.
    Henry, J. M., Filbum, C. R., Joseph, J. A., and Roth, G. S., in press, Effect of aging on striatal dopamine receptor subtypes in Wistar rats, Neurobiology of Aging.Google Scholar
  30. 30.
    Henry, J. M. and Roth, G. S. in press, Modulation of rat striatal membrane fluiditys Effects on age related differences in dopamine receptor concentration, Life Sciences.Google Scholar
  31. 31.
    Seeman, P., 1980, Brain dopamine receptors, Pharmacol. Rev. 32: 229–313.Google Scholar
  32. 32.
    Enna, S. J., Samorajski, T., and Beer, B., (Eds.) 1981, Brain Neurotransmitters and Receptors in Aging and Age-related Disorders, Raven Press, NY.Google Scholar
  33. 33.
    McNeill, T. H., Koek, L. L., Brown, S. A., and Rafols, J., Submitted, The Basal Ganglia and Aging.Google Scholar
  34. 34.
    Joseph, J. A., Whitaker, J. Roth, G. S., and Ingram, D. K., 1983, Lifelong dietary restriction affects striatally-mediated behavioral responses in aged rats, Neurobiology of Aging, 4: 191–196.Google Scholar
  35. 35.
    Hruska, R. E., Pitman, K. T., Silbergeld, E. K., and Ludner, L. M., 1982, Prolactin increases the density of striatal dopamine receptors in normal and hypothesectomized male rats. Life Sciences 30: 547–553.PubMedCrossRefGoogle Scholar
  36. 36.
    Joseph, J. A. and Lippa, A. S., 1986, Reduction of motor behavioral deficits in senescent animals via chronic prolactin administration II. Nonstereotypic behaviors, Neurobiology of Aging 7: 36–40.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • George S. Roth
    • 1
  • James A. Joseph
    • 2
  1. 1.Molecular Physiology and Genetics Section, Laboratory of Cellular and Molecular Biology, Gerontology Research CenterNational Institute on Aging, Francis Scott Key Medical CenterBaltimoreUSA
  2. 2.Armed Forces Radiobiological Research InstituteBethesdaUSA

Personalised recommendations