Functional Morphology of Neurons During Normal and Pathological Ageing

  • A. N. Davison
Part of the NATO ASI Series book series (volume 9)


The wet weight of the human brain is maintained at a mean of 1400 grams (male) and 1260 grams (female) from maturity until about 55 years of age (Haug, 1985). Loss in the frontal cortical and subcortical grey matter exceeds that in the parietal cortex and occipital lobe. Changes in the mass of white matter occur later in life (70–90 years) and may be due to loss of neurons (Creasey and Rapoport, 1985).


Neurofibrillary Tangle Basal Forebrain Senile Plaque Neuritic Plaque Paired Helical Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderton B H, Breinburg D, Downes M J, Green P J, Tomlinson B E, Ulrich J, Wood J N, Kahn J. (1982) Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants. Nature, 298, 84–86.PubMedCrossRefGoogle Scholar
  2. Aston-Jones G, Rogers J, Shaver R D, Dinan T G, Moss D E. (1985) Age-impaired impulse flow from nucleus basalis to cortex. Nature, 318, 462–464.PubMedCrossRefGoogle Scholar
  3. Ball M J. (1977) Neuronal loss, neuro-fibrillary tangles and granulovascular degeneration in the hippocampus with ageing and dementia. Acta Neuropath. (Berl.)., 37, 111–118.CrossRefGoogle Scholar
  4. Bobin S A, Currie J R, Merz P, Miller D L, Styles J, Walker W A, Wen G Y, Wisniewski H M. (1986) The comparative immunoreactivities of brain amyloids in Alzheimer’s Disease and scrapie. J. Neurochem., in press.Google Scholar
  5. Bowen D M. (1983) Biochemical assessment of neurotransmitter and metabolic dysfunction and cerebral atrophy in Alzheimer’s disease. In Biological aspects of Alzheimer’s disease. (Eds. R. Katzman ) pp. 219–231.Google Scholar
  6. Brion J P, Van Den Bosch De Aguilar P, Flament-Durand J. (1985) Senile Dementia of the Alzheimer Type: Morphological and Immunocytochemical Studies. In Senile Dementia of the Alzheimer Type (Eds. J. Traber and W. H. Gispen ) pp. 164–174.Google Scholar
  7. Chan-Palay V, Lang W, Allen Y S, Haesler U, Polak J M. (1985) II. Cortical neurons immunoreactive with antisera against neuropeptide Y are altered in Alzheimer’s-type dementia. J. Compar. Neurol., 238, 390–401.CrossRefGoogle Scholar
  8. Clark A W, Manz H J, White C L, Lehmann J, Miller D, Coyle J T. (1986) Cortical degeneration with swollen chromatolytic neurons: its relationship to Pick’s disease. Neuropathol. Exp. Neurol. 45, 268–284.CrossRefGoogle Scholar
  9. Cork L C, Sternberger N H, Sternberger L A, Casanova M F, Struble R G, Price D L. (1986) Phosphorylated Neurofilament Antigens in Neurofibrillary Tangles in Alzheimer’s Disease. J. Neuropathol. Exp. Neurol., 45, 56–64.PubMedCrossRefGoogle Scholar
  10. Creasey H, Rapoport S I. (1985) Neurological Progress - The Aging Human Brain. Annals Neurol., 17, 2–10.CrossRefGoogle Scholar
  11. Curcio C A, Kemper T. (1984) Nucleus raphe dorsalis in dementia of the Alzheimer type: Neurofibrillary changes and neuronal packing density. J. Neuropath. Exper. Neurol. 43, 359–368.CrossRefGoogle Scholar
  12. Davison, A N. (1986) New concepts in the Pathophysiology of Alzheimer’s Disease. In New Concepts in Alzheimer’s Disease. (Eds. M. Briley, A. C. Kato, M. Weber) Macmillan. London, in press.Google Scholar
  13. Dustin P, Flament-Durand J. (1982) Disturbances of axoplasmic transport in Alzheimer’s disease. In Axoplasmic transport in physiology and pathology. (Eds. D.G. Weis and A. Gorio) Springer-Verlag, Berlin.Google Scholar
  14. Francis P T, Palmer A M, Sims N R, Bowen D M, Davison A N, Esiri M M, Neary D, Snowden J S, Wilcock G K. (1985) Neurochemical studies of early-onset Alzheimer’s disease. Possible Influence on Treatment. New Eng. J., 313, 7–11.CrossRefGoogle Scholar
  15. Friede R L. (1962) The Relation of the Formation of Lipofuscin to the Distribution of Oxidative Enzymes in the Human Brain. Acta Neuropath., 2, 113–125.CrossRefGoogle Scholar
  16. Glenner G G. (1985) On causative theories in Alzheimer’s Disease. Human Pathology 16, 433–436.PubMedCrossRefGoogle Scholar
  17. Grundke-Iqbal I, Iqbal K, Quinlan M, Yunn-Chyn T, Zaidi MS, Wisniewski HM. (1986) Microtubule-associated Protein Tau - A Component of Alzheimer paired helical filaments. Biol. Chem., 261, 6084–6089.Google Scholar
  18. Henderson G, Tomlinson B E, Gibson P H. (1980) Cell Counts in Human Cerebral Cortex in Normal Adults Throughout Life Using An Image Analysing Computer. J. Neurol. Sci., 46, 113–136.PubMedCrossRefGoogle Scholar
  19. Hinton D R, Sadun A A, Blanks J C, Miller C A. (1986) Optic nerve degeneration in Alzheimers disease. New Eng. J. Med. 315, 485–489.PubMedCrossRefGoogle Scholar
  20. Horrocks L A, Van Rollins M, Yates A J. (1981) Lipid changes in the ageing brain. In The Molecular Basis of Neuropathology. (Eds. Davison A N, Thompson R H S.) Edward Arnold. London, pp. 601–630.Google Scholar
  21. Konigsmark BW, Murphy EA. (1970) Neuronal populations in the human brain. Nature, 228, 135–1336.CrossRefGoogle Scholar
  22. Mann D M A. (1 985) The neuropathology of Alzheimers disease: A review with pathogenetic aetiological and therapeutic considerations. Mechanisms of ageing & develop, 31, 213–256.Google Scholar
  23. Mann D M A, Yates P O. (1974) Lipoprotein Pigments - Their Relationship to Ageing in the Human Nervous System 1. The Lipofuscin Content of Nerve Cells. Brain, 97, 481–488.PubMedCrossRefGoogle Scholar
  24. Mann D M A, Yates P O and Marcyniuk B. (1984) Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s Syndrome in middle age from an age related continuum of pathological changes. Neuropath Appl. Neurobiol., 10, 185–207.CrossRefGoogle Scholar
  25. Mann D M A, Yates P O. (1982) Pathogenesis of Parkinson’s Disease. Arch. Neurol., 39, 545–549.PubMedGoogle Scholar
  26. Marcyniuk B, Mann D M A, Yates P O. (1986) Loss of nerve cells from loceus coerulus in Alzheimer’s disease is topographically arranged. Neurosci Lett., 64, 247–252.PubMedCrossRefGoogle Scholar
  27. Masters O L, Multhaup G, Simms G, Pottgiesser J, Martins R N, Beyreuther K. (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO Journal., 4, 2757–2763.PubMedGoogle Scholar
  28. Middlemiss D N, Palmer A M, Edel N, Bowen D M. (1986) Binding of the novel serotonin agonist 8-hydroxy-2-(di-n-propylamino)- tetralin in normal and Alzheimer brain. J. Neurochem, 46, 993–996.Google Scholar
  29. Miller C C J, Brion J-P, Calvert R, Chin T K, Eagles P A M, Downes M J, Flament-Durand J, Haugh M, Kahn J, Probst A, Ulrich J, Anderton B H. (1986) Alzheimer’s paired helical filaments share epitopes with neurofilament side arms. EMBO, 5, 269–276.Google Scholar
  30. Monagle R D, Brody H. (1971) The effects of age upon the main nucleus of the inferior olive in the human. Comp. Neurol., 155, 61–66.CrossRefGoogle Scholar
  31. Mountjoy C Q, Roth M, Evans N J R, Evans H M. (1983) Cortical neuronal counts in normal elderly controls and demented patients. Neurobiol. of Aging 4, 1–11.CrossRefGoogle Scholar
  32. Oppenheimer D R. (1984) Diseases of the basal ganglia, cerebellum and motor neurons. In Greenfield’s Neuropathology ( 2nd edn. ). (Eds. J. Hume Adams, J A N Corsellis, L W Duchen) Edward Arnold. London, pp. 699–748.Google Scholar
  33. Palmer A M, Procter A W, Stratmann G, Bowen D M. (1986) Excitatory amino acid-releasing and cholinergic neurons in Alzheimer’s disease. Neurosci. Lett., in press.Google Scholar
  34. Pearce B R, Palmer A M, Bowen D M, Wilcock G K, Esiri M M, Davison A N. (1984) Neurotransmitter dysfunction and atrophy of the caudate nucleus in Alzheimer’s disease. Neurochem. Path., 2, 221–233.Google Scholar
  35. Pearson R C A, Esiri M M, Hiorns R W, Wilcock G K, Powell T P S. (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc. Natl. Acad. Sci, USA., 82, 1–4.Google Scholar
  36. Pearson R C A, Gatter K C, Powell T P S. (1983) Retrograde Cell Degeneration in the Basal Nucleus in Monkey and Man. Brain, 261, 321–326.CrossRefGoogle Scholar
  37. Perry E K. (1986) The cholinergic hypothesis - ten years on. Brit. Med. Bull., 42, 63–69.PubMedGoogle Scholar
  38. Price D L, Whitehouse P J, Struble R G, Clarke A W, Coyle J T, De Long M R, Hedreen J C. (1982) Basal forebrain cholinergic systems in Alzheimer’s disease and related dementias. Neurosci. Commentaries., 1, 84–92.Google Scholar
  39. Roberts P J, McBean G J, Sharif N A, Thomas E M. (1982) Striatal glutamergic functions: modifications following specific lesions. Brain Res., 235, 83–91.PubMedCrossRefGoogle Scholar
  40. Scheibel A B, Tomiyasu U. (1978) Dendritic sprouting in Alzheimer’s presenile dementia. Exp. Neurol., 60, 1–8.PubMedCrossRefGoogle Scholar
  41. Scheibel A B. (1983) Dendritic changes. In Alzheimer’s Disease — The Standard Reference. (Eds. B. Reisberg) Macmillan. New York, pp. 69–73.Google Scholar
  42. Selkoe D J, Abraham C R, Podlisny M B, Duffy L K. (1986) Isolation of low-molecular-weight proteins from amyloid plaque fibers in Alzheimer’s Disease. Neurochem. 46, 1820–1834.Google Scholar
  43. Sims N R, Bowen D M, Allen S J, Smith C C T, Neary D, Thomas D J, Davison A N. (1983) Presynaptic Cholinergic Dysfunction in Patients with Dementia. J. Neurochem., 40, 503–509.PubMedCrossRefGoogle Scholar
  44. Sims N R, Bowen D M, Davison A N. (1981) [14C]-acetylcholine synthesis and [14C] carbon dioxide production from [U-14C] glucose by tissue prisms from human neocortex. Biochem. J., 196, 867–876.Google Scholar
  45. Tomlinson B E, Irving D, Blessed G. (1981) Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J. Neurol. Sci., 49, 419–428.PubMedCrossRefGoogle Scholar
  46. Yamamoto T, Hirano A. (1985) Nucleus raphe dorsalis in Alzheimer’s disease: neurofibrillary tangles and loss of large neurons. Ann. Neurol. 17, 573–577.PubMedCrossRefGoogle Scholar
  47. Wolozin B L, Pruchnicki A, Dickson D W, Davies P. (1986) A neuronal antigen in the brains of Alzheimer patients. Science, 232, 648–650.PubMedCrossRefGoogle Scholar
  48. Wong C W, Quaranta V, Glenner G G. (1985) Neuritic plaques and cerebrovascular amyloid in Alzheimer’s disease are antigenically related. Proc. Natl. Acad. Sci., 82, 8729–8732.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • A. N. Davison
    • 1
  1. 1.Department of NeurochemistryInstitute of NeurologyLondonUK

Personalised recommendations