NMR of Inert Gases in Aqueous Solutions

  • R. K. Mazitov
  • K. M. Enikeev
  • A. V. Ilyasov


Theoretical and experimental data on ion nuclear relaxation in liquids offer detailed information concerning molecular dynamics and structure of solvent [1–4l. Ions affect a medium they are dissolved in. Simple neutral particles, namely noble gas atoms, change the state of neighbouring molecules to a much less extent. Noble gas nuclear relaxation has been studied for liquid noble gases [.5], for ordinary liquids only Xenon nuclear relaxation was studied [6–8]. This work presents the results obtained for the longitudinal relaxation time T1 of 83 Kr and 131 Xe nuclei and δ chemical shifts of 83Kr and 129 Xe nuclei in aqueous solutions. “Spectrally pure” xenon and krypton with natural content of isotope was used for all measurements. liquids with gases dissolved were kept under pressure up to~35 atm for Xe and 10 atm for Kr in thickwalled quartz ampules, concentrations of Xe being ~0.1 M and Kr ~0.02 M. The measurements were made on Brucker WM-250 Spectrometer. Chemical shifts δ were determined relative to a signal in gas phase extrapolated to zero pressure. A positive δ value means the shift of a resonance to lower fields in comparison with a standard, The accuracy of measurements was 0.02 ppm for δ and 5% for T1


Nuclear Relaxation Cage Center MeOH Molecule Ordinary Liquid Salt LiCI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.A.Valiev, JETP (Engl.Trans.), 10 (1960) 77; 11 (1960) 883.Google Scholar
  2. 2.
    H.G.Hertz, in “Water, A Comprehensive Treatise”, V.3, p. 301, Plenum Press, N.Y., 1973.Google Scholar
  3. 3.
    H.Weingartner and H.G.Hertz, Ber.Buns.Ges., Phys.Chem., 81 (1977) 1204.Google Scholar
  4. 4.
    NMR and Periodic Table (Eds.R.K. Harris and B.E.Mann), Plenum Press, N.Y., 1978Google Scholar
  5. 5.
    D.F.Cowgill and R.E.Norberg, Phys.Rev., B8 (1973) 4966.CrossRefGoogle Scholar
  6. 6.
    R.K.Mazitov, H.G.Hertz V.F.Garanin, K.M.Enikeev, A.V. Il’yasov and V. F.Sukhoverkhov, Doklady Acad.Nauk SSSR, 273 (1983) 131.Google Scholar
  7. 7.
    T.R.Strengle and N.V.Reo, J.Phys.Chem., 83 (1984) 3225.Google Scholar
  8. 8.
    R.K.Mazitov, H.G.Hertz, K.M.Enikeev and A.V.IIfyasov, in “Materials of Summer School on Chemical Physics”, Technische Universitat, Leipzig, 1986.Google Scholar
  9. 9.
    J.A.Ripmeester, D.W.Davidson, J.Mol.Struct., 75 (1981) 67CrossRefGoogle Scholar
  10. 10.
    T.K.Strengle, S.M.Hosseini, H.G.Basiri and K.L.Williamson J.Sol.Chem., 13 (1984) 779.CrossRefGoogle Scholar
  11. 11.
    D.Eisenberg and W.Kauzmann, “Structure and Properties of Water” Ch. 4, Oxford, 1969.Google Scholar
  12. 12.
    M.Holz, H.Weingartner, J.Mag.Res., 27 (1977) 103.Google Scholar
  13. 13.
    R.K.Mazitov, O.J.Samojlov, M.P.Buslaeva et al. J.Struk. Chim., 1977, 18 958 (in Russian).Google Scholar
  14. 14.
    H.G.Hertz, Ber. Bunz.Ges., Phys.Chem., 77 (1973) 531, 688.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • R. K. Mazitov
    • 1
  • K. M. Enikeev
    • 2
  • A. V. Ilyasov
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryUSSR Academy of SciencesMoscowUSSR
  2. 2.Institute of Organic and Physical ChemistryUSSR Academy of SciencesKazanUSSR

Personalised recommendations