Kinetics of Adatom Ordering on Surfaces

  • J. D. Gunton
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 8)

Abstract

Chemisorbed and physisorbed systems provide in principle a rich testing ground for the study of pattern formation in systems undergoing phase transitions. This topic belongs to the general area of the kinetics of first order phase transitions, which involves the evolution of systems initially far from equilibrium to equilibrium, ordered states. The basic physics involves an understanding of interface instabilities in particular and the kinetics of topological defects in general. The field as such has a long history, involving experimental studies of systems such as liquid-gas, binary fluids, multicomponent alloys, intercalated compounds, and superfluids and superconductors. Only rather recently have detailed studies begun of similar phenomena in surface science. The article by K. Heinz in this volume provides a comprehensive summary of the current status of experimental work in this field. It also provides a thorough analysis of the difficulties involved in typical diffraction experiments. The general field has profited by computer simulation studies, which in surface science was initiated by a study of phase separation in a lattice gas model of 0/W(110) by SAHNI and GUNTON [1]. The difficulties involved in such Monte Carlo studies have been critically reviewed recently by MILCHEV et al [2].

Keywords

Anisotropy Graphite Soliton Eter Chemisorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. Sahni and J. D. Gunton, Phys. Rev. Lett. 47, 1754 (1981)Google Scholar
  2. 2.
    A. Milchev, K. Binder and D. W. Heermann, to be published in Zeit. Phys. B (1986)Google Scholar
  3. 3.
    G. F. Mazenko and 0. T. Vails, Phys. Rev. 33, 1823 (1986)Google Scholar
  4. 4.
    J. D. Gunton, M. San Miguel and P. S. Sahni, Vol. 8, p. 267 (1983), edited by C. Domb and J. L. Lebowitz ( New York, Academic Press )Google Scholar
  5. 5.
    K. Binder, Condensed Matter Research Using Neutrons, p. 1 (1985) edited by S. W. Lovesey and R. Scherm (New York, Plenum)Google Scholar
  6. 6.
    K. KawasakiGoogle Scholar
  7. 7.
    P. W. Voorhees, J. Stat. Phys. 38, 231 (1985)Google Scholar
  8. 8.
    G. F. Mazenko, O. T. Vails and F. C. Zhang, Phys. Rev. B32, 5807 (1985)Google Scholar
  9. 9.
    S. Kumar, J. D. Gunton and K. Kaski, Temple University preprint (1986)Google Scholar
  10. 10.
    M. Schick, in Progress in Surface Science, Vol. 11, 245 (1981)Google Scholar
  11. 11.
    S. M. Allen and J. W. CiFn, Acta Metall. 27, 1085 (1979)Google Scholar
  12. 12.
    K. Kawasaki, M. C. Yalabik and J. D. Gunton, Phys. Rev. A17, 455 (1978)Google Scholar
  13. 13.
    T. Ohta, D. Jasnow and K. Kawasaki, Phys. Rev. Lett. 49, 1223 (1982)Google Scholar
  14. 14.
    G. F. Mazenko and 0. T. Vails, Phys. Rev. B27, 6811 (1983); Phys. Rev. B3Q, 6732 (1984)Google Scholar
  15. 15.
    J. Vinals, M. Grant, M. San Miguel, J. D. Gunton and E. T. Gawlinski, Phys. Rev. Lett. 54, 1264 (1985)Google Scholar
  16. 16.
    K. Kaski, M. C. Yalabik, J. D. Gunton and P. Sahni, Phys. Rev. B28, 5263 (1983)Google Scholar
  17. 17.
    G. C. Wang and T. M. Lu, Phys. Rev. Lett. 50, 2014 (1983)Google Scholar
  18. 18.
    K. Diff, T. Ala-Nissila and J. D. Gunton, unpublishedGoogle Scholar
  19. 19.
    A. Sadiq and K. Binder, J. Stat. Phys. 35, 617 (1984); Phys. Rev. Lett. 51, 674 (1983)Google Scholar
  20. 20.
    I. M. Ufshitz andV. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961)Google Scholar
  21. 21.
    J. Vinals and J. D. Gunton, Surface Science 157, 473 (1985)Google Scholar
  22. 22.
    T. Ala-Nissila and J. D. Gunton, Temple University preprint (1986)Google Scholar
  23. 23.
    K. Kaski, T. Ala-Nissila and J. D. Gunton, Phys. Rev. B31., 310 (1985); T. Ala-Nissila, J. D. Gunton and K. Kaski, Phys. Rev. B33, 7583 (1986); T. Ala-Nissila, J. D. Gunton and K. Kaski, Temple University preprint (1986)Google Scholar
  24. 24.
    T. Ala-Nissila, J. Amar and J. D. Gunton, J. Phys. A19, L41 (1986)Google Scholar
  25. 25.
    P. Rujan, G. Uimin and W. Selke, Z. Phys. B Reprint (1986)Google Scholar
  26. 26.
    P. Rujan, G. V. Uimin and W. Selke, Phys. Rev. B32, 7453 (1985)Google Scholar
  27. 27.
    G. Ertl and J. Küppers, Surface Sei. 21, 61 (1970); P. Rujan, W. Selke and G. Uimin, Z. Phys. B53, 221 (1983)Google Scholar
  28. 28.
    T. Ala-Nissila and J. D. Gunton, this volumeGoogle Scholar
  29. 29.
    P. Bak and J. von Boehm, Phys. Rev. B21, 5297 (1980)Google Scholar
  30. 30.
    O Hudak, Phys. Lett. 89A, 245 (1982); S. Takeno, Prog. Theor. Phys. 68, 992 (1982); A. B. Borisov, A. P. Tankeyev, A. G. Shagalov and G. V. Bezmaternih, Phys. Lett. 111A, 15 O985)Google Scholar
  31. 31.
    E. T. Gawlinski and J. D. Gunton, Temple University preprint (1986)Google Scholar
  32. 32.
    F. Stillinger and T. Weber, Phys. Rev. B31, 5262 (1985)Google Scholar
  33. 33.
    H. J. Gossmann and L. C. Feldman, Phys. Rev. B32, 6 (1985)Google Scholar
  34. 34.
    K. Binder, in Berichte der Bunsen - Gesellschaft für Physikalische Chemie 90, 257 (1986)Google Scholar
  35. 35.
    ü. villain, Phys. Rev. Lett. 52, 1543 (1984)Google Scholar
  36. 36.
    G. Grinstein and J. F. Fernandez, Phys. Rev. B29, 389 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • J. D. Gunton
    • 1
  1. 1.Physics Department and Center for Advanced Computational ScienceTemple UniversityPhiladelphiaUSA

Personalised recommendations