Adsorption and Reaction of CO2 on Metal Surfaces. Detection of an Intrinsic Precursor to Dissociation

  • B. Bartos
  • H.-J. Freund
  • H. Kuhlenbeck
  • M. Neumann
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 8)


In the late seventies much progress was made in understanding the mecha nism of the CO oxidation reaction using the spectroscopic machinery of surface science /1–2/. ERTL and his group /3–5/ unambiguously showed by molecular beam and other experiments that CO oxidation on transition metal surfaces proceeds via a Langmuir-Hinshelwood mechanism rather than an Eley-Rideal mechanism. This implies that both reactants, CO and oxygen are adsorbed on the surface when CO2 is formed. The latter is readily desorbed at the temperatures used in the above-mentioned studies. Therefore, adsorbed CO2 has not been observed in those studies but only detected after desorption in the gas-phase /3–5/. In light of the fact that in addition to the importance of CO oxidation, CO2 dissociation /6–9/, the reverse reaction, is of considerable - even technical /10/ - interest, several groups have started to investigate the interaction and reactivity of CO2 with and on metal surfaces /7–9, 12–16/. In particular, from molecular beam experiments on CO2 reaction dynamics performed on different surfaces a picture arises that can schematically be represented in a simplified manner by the twodimensional potential energy diagram shown in Fig. 1 /17–18/. CO2 approaches the surface along the entrance channel and may, after passing through some kind of physisorbed (van der Waals) state, be trapped into an intermediate state which then dissociates along the exit channel into adsorbed CO and adsorbed oxygen.


Work Function Photoelectron Spectrum Normal Emission Molecular Axis Oxygen Coordination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Engel and G. Ertl “The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis” (Ed. D.A. King, D.P. Woodruff) Vol. 4, p. 92 (Elsevier, Amsterdam (1982)) and references thereinGoogle Scholar
  2. 2.
    M.P. D’Evelyn, R.J. Madix, Surf. Sci. Rep. 3 (1984) and ref. thereinGoogle Scholar
  3. 3.
    T. Engel and G. Ertl, Adv. Catalysis 28, 1 (1979)Google Scholar
  4. 4.
    T. Engel and G. Ertl, J. Chem. Phys. 69, 1267 (1978)Google Scholar
  5. 5.
    H. Conrad, G. Ertl and J. Küppers, Surf. Sci. 76, 323 (1978)CrossRefGoogle Scholar
  6. 6.
    D.W. Goodman, D.E. Peebles, J.M. White, Surf. Sci. 140, L 239 (1984)Google Scholar
  7. 7.
    W.H. Weinberg, Surf. Sci. 128, L 224 (1983)Google Scholar
  8. 8.
    L.H. Dubois, G.A. Somorjai, Surf. Sci. 128, L 231 (1983)Google Scholar
  9. 9.
    H. Behner, W. Spieß, D. Borgmann, G. Wedler, Surf. Sci. 175, 276 (1986) and H. Behner, W. Spieß, G. Wedler, D. Borgmann, H.-J. Freund, Surf. Sci. submittedGoogle Scholar
  10. 10.
    D.E. Peebles, D.W. Goodman, J.M. White, J. Phys. Chem. 87, 4378 (1983)CrossRefGoogle Scholar
  11. 11.
    D.C. Grenoble, M.M. Estadt, D.F. Ollis, J. Catal. 67, 90 (1981)CrossRefGoogle Scholar
  12. 12.
    F. Solymosi, J. Kiss, Surf. Sci. 149, 17 (1985)CrossRefGoogle Scholar
  13. 13.
    M.P. D’Evelyn, A.V. Hamza, G.E. Gidowski, R.J. Madix, Surf. Sci. 167, 451 (1986)CrossRefGoogle Scholar
  14. 14.
    H.-J. Freund, B. Bartos, H. Behner, G. Wedler, H. Kuhlenbeck and M. Neumann, Surf. Sci, in pressGoogle Scholar
  15. 15.
    H.-J. Freund, and R.P. Messmer, Surf. Sci. 172, 1 (1986)Google Scholar
  16. 16.
    B. Bartos, H.-J. Freund, H. Kuhlenbeck, M. Neumann, H. Lindner and K. Müller, Surf. Sci. in pressGoogle Scholar
  17. 17.
    G. Ertl, Ber. BunsengeselIschaft Phys. Chem. 86, 425 (1982)Google Scholar
  18. 18.
    J.C. Tully, Adv. Chem. Phys. 42, 63 (1980)Google Scholar
  19. 19.
    D.W. Turner, A.D. Baker, C. Baker, C.R. Brundle “Molecular Photoelectron Spectroscopy” ( Wiley, New York, 1970 )Google Scholar
  20. 20.
    H.-J. Freund, H. Kossmann, V. Schmidt, Chem. Phys. Lett. 123, 463 (1986)Google Scholar
  21. 21.
    J.-H. Fock, H.-J. Lau, E.E. Koch, Chem. Phys. 83, 377 (1984) and J.-H. Fock, Dissertation, Universität Hamburg (19831Google Scholar
  22. 22.
    W. Spieß, Dissertation, Universität Erlangen-Nürnberg (1984)Google Scholar
  23. 23.
    E.W. Plummer and W. Eberhardt, Adv. Chem. Phys. 49, 533 (1982)Google Scholar
  24. 24.
    R.W. Wyckhoff, Crystal Structures 2nd ed. Vol. 1 ( Wiley, New York 1963 )Google Scholar
  25. 25.
    M.A. Morrison, P.J. Hay, J. Phys. B10, 647 (1977)Google Scholar
  26. 26.
    G. Odörfer and H.-J. Freund, unpublished resultsGoogle Scholar
  27. 27.
    see e. g. H. Niehus, G. Comsa, Surf. Sci. 151, L 171 (1985)Google Scholar
  28. 28.
    A.D. Walsh, J. Chem. Soc. 2266 (1953)Google Scholar
  29. 29.
    see also: J. Pacanski, U. Wahlgren, P.S. Bagus, J. Chem. Phys. 62, 2740 (1985); W.B. England, Chem. Phys. Lett. 78, 607 (1981)Google Scholar
  30. 30.
    K.C. Prince, M. Surmann, Th. Lindner, A.M. Bradshaw, Solid State Comm. 59, 71 (1986), and G. Paolucci, R. Rosei, K.C. Prince, A.M. Bradshaw, Appl. Surf. 22/23, 582 (1983)Google Scholar
  31. 31.
    A. Stamatovic, K. Leiter, W. Ritter, K. Stephan, T.D. Märk, J. Chem. Phys. 83, 2942 (1985)Google Scholar
  32. 32.
    K.-H. Bowen, G.W. Liesegang, R.A. Sanders, D.R. Hershbach, J. Phys. Chem. 87, 557 (1983)Google Scholar
  33. 33.
    J. Stöhr, D.A. Outka, R.J. Madix, and U. Döbler, Phys. Rev. Lett 54, 1256 (1985)Google Scholar
  34. 34.
    T.H. Upton, J. Chem. Phys. 83, 5084 (1985)Google Scholar
  35. 35.
    G. Odörfer, B. Bartos, H.-J. Freund, H. Kuhlenbeck, M. Neumann, to be publishedGoogle Scholar
  36. 36.
    A. Baddorf, D. Heskett, E.W. Plummer, unpublishedGoogle Scholar
  37. 37.
    F. Solymosi and A. Berkó, to be publishedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • B. Bartos
    • 1
  • H.-J. Freund
    • 1
  • H. Kuhlenbeck
    • 2
  • M. Neumann
    • 2
  1. 1.Institut für Physikalische und Theoretische Chemie der Universität Erlangen-NürnbergErlangenFed. Rep. of Germany
  2. 2.Fachbereich Physik der Universität OsnabrückOsnabrückFed. Rep. of Germany

Personalised recommendations