Skip to main content

Adsorption and Reaction of CO2 on Metal Surfaces. Detection of an Intrinsic Precursor to Dissociation

  • Conference paper
Kinetics of Interface Reactions

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 8))

Abstract

In the late seventies much progress was made in understanding the mecha nism of the CO oxidation reaction using the spectroscopic machinery of surface science /1–2/. ERTL and his group /3–5/ unambiguously showed by molecular beam and other experiments that CO oxidation on transition metal surfaces proceeds via a Langmuir-Hinshelwood mechanism rather than an Eley-Rideal mechanism. This implies that both reactants, CO and oxygen are adsorbed on the surface when CO2 is formed. The latter is readily desorbed at the temperatures used in the above-mentioned studies. Therefore, adsorbed CO2 has not been observed in those studies but only detected after desorption in the gas-phase /3–5/. In light of the fact that in addition to the importance of CO oxidation, CO2 dissociation /6–9/, the reverse reaction, is of considerable - even technical /10/ - interest, several groups have started to investigate the interaction and reactivity of CO2 with and on metal surfaces /7–9, 12–16/. In particular, from molecular beam experiments on CO2 reaction dynamics performed on different surfaces a picture arises that can schematically be represented in a simplified manner by the twodimensional potential energy diagram shown in Fig. 1 /17–18/. CO2 approaches the surface along the entrance channel and may, after passing through some kind of physisorbed (van der Waals) state, be trapped into an intermediate state which then dissociates along the exit channel into adsorbed CO and adsorbed oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Engel and G. Ertl “The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis” (Ed. D.A. King, D.P. Woodruff) Vol. 4, p. 92 (Elsevier, Amsterdam (1982)) and references therein

    Google Scholar 

  2. M.P. D’Evelyn, R.J. Madix, Surf. Sci. Rep. 3 (1984) and ref. therein

    Google Scholar 

  3. T. Engel and G. Ertl, Adv. Catalysis 28, 1 (1979)

    Google Scholar 

  4. T. Engel and G. Ertl, J. Chem. Phys. 69, 1267 (1978)

    Google Scholar 

  5. H. Conrad, G. Ertl and J. Küppers, Surf. Sci. 76, 323 (1978)

    Article  CAS  Google Scholar 

  6. D.W. Goodman, D.E. Peebles, J.M. White, Surf. Sci. 140, L 239 (1984)

    Google Scholar 

  7. W.H. Weinberg, Surf. Sci. 128, L 224 (1983)

    Google Scholar 

  8. L.H. Dubois, G.A. Somorjai, Surf. Sci. 128, L 231 (1983)

    Google Scholar 

  9. H. Behner, W. Spieß, D. Borgmann, G. Wedler, Surf. Sci. 175, 276 (1986) and H. Behner, W. Spieß, G. Wedler, D. Borgmann, H.-J. Freund, Surf. Sci. submitted

    Google Scholar 

  10. D.E. Peebles, D.W. Goodman, J.M. White, J. Phys. Chem. 87, 4378 (1983)

    Article  CAS  Google Scholar 

  11. D.C. Grenoble, M.M. Estadt, D.F. Ollis, J. Catal. 67, 90 (1981)

    Article  CAS  Google Scholar 

  12. F. Solymosi, J. Kiss, Surf. Sci. 149, 17 (1985)

    Article  CAS  Google Scholar 

  13. M.P. D’Evelyn, A.V. Hamza, G.E. Gidowski, R.J. Madix, Surf. Sci. 167, 451 (1986)

    Article  Google Scholar 

  14. H.-J. Freund, B. Bartos, H. Behner, G. Wedler, H. Kuhlenbeck and M. Neumann, Surf. Sci, in press

    Google Scholar 

  15. H.-J. Freund, and R.P. Messmer, Surf. Sci. 172, 1 (1986)

    Google Scholar 

  16. B. Bartos, H.-J. Freund, H. Kuhlenbeck, M. Neumann, H. Lindner and K. Müller, Surf. Sci. in press

    Google Scholar 

  17. G. Ertl, Ber. BunsengeselIschaft Phys. Chem. 86, 425 (1982)

    Google Scholar 

  18. J.C. Tully, Adv. Chem. Phys. 42, 63 (1980)

    Google Scholar 

  19. D.W. Turner, A.D. Baker, C. Baker, C.R. Brundle “Molecular Photoelectron Spectroscopy” ( Wiley, New York, 1970 )

    Google Scholar 

  20. H.-J. Freund, H. Kossmann, V. Schmidt, Chem. Phys. Lett. 123, 463 (1986)

    Google Scholar 

  21. J.-H. Fock, H.-J. Lau, E.E. Koch, Chem. Phys. 83, 377 (1984) and J.-H. Fock, Dissertation, Universität Hamburg (19831

    Google Scholar 

  22. W. Spieß, Dissertation, Universität Erlangen-Nürnberg (1984)

    Google Scholar 

  23. E.W. Plummer and W. Eberhardt, Adv. Chem. Phys. 49, 533 (1982)

    Google Scholar 

  24. R.W. Wyckhoff, Crystal Structures 2nd ed. Vol. 1 ( Wiley, New York 1963 )

    Google Scholar 

  25. M.A. Morrison, P.J. Hay, J. Phys. B10, 647 (1977)

    Google Scholar 

  26. G. Odörfer and H.-J. Freund, unpublished results

    Google Scholar 

  27. see e. g. H. Niehus, G. Comsa, Surf. Sci. 151, L 171 (1985)

    Google Scholar 

  28. A.D. Walsh, J. Chem. Soc. 2266 (1953)

    Google Scholar 

  29. see also: J. Pacanski, U. Wahlgren, P.S. Bagus, J. Chem. Phys. 62, 2740 (1985); W.B. England, Chem. Phys. Lett. 78, 607 (1981)

    Google Scholar 

  30. K.C. Prince, M. Surmann, Th. Lindner, A.M. Bradshaw, Solid State Comm. 59, 71 (1986), and G. Paolucci, R. Rosei, K.C. Prince, A.M. Bradshaw, Appl. Surf. 22/23, 582 (1983)

    Google Scholar 

  31. A. Stamatovic, K. Leiter, W. Ritter, K. Stephan, T.D. Märk, J. Chem. Phys. 83, 2942 (1985)

    Google Scholar 

  32. K.-H. Bowen, G.W. Liesegang, R.A. Sanders, D.R. Hershbach, J. Phys. Chem. 87, 557 (1983)

    Google Scholar 

  33. J. Stöhr, D.A. Outka, R.J. Madix, and U. Döbler, Phys. Rev. Lett 54, 1256 (1985)

    Google Scholar 

  34. T.H. Upton, J. Chem. Phys. 83, 5084 (1985)

    Google Scholar 

  35. G. Odörfer, B. Bartos, H.-J. Freund, H. Kuhlenbeck, M. Neumann, to be published

    Google Scholar 

  36. A. Baddorf, D. Heskett, E.W. Plummer, unpublished

    Google Scholar 

  37. F. Solymosi and A. Berkó, to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bartos, B., Freund, HJ., Kuhlenbeck, H., Neumann, M. (1987). Adsorption and Reaction of CO2 on Metal Surfaces. Detection of an Intrinsic Precursor to Dissociation. In: Grunze, M., Kreuzer, H.J. (eds) Kinetics of Interface Reactions. Springer Series in Surface Sciences, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72675-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72675-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72677-4

  • Online ISBN: 978-3-642-72675-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics