Multiphoton-Induced Picosecond Photophysics of Chromium(III)- Polypyridyl Complexes

  • N. Serpone
  • M. Z. Hoffman
Conference paper


The photophysics of Cr(III)-polypyridyl complexes, Cr(NN)3 3+, have been the object of many studies in attempts at understanding the behaviour of these systems on absorption of light (Jamieson 1981; Serpone 1983). The usual photochemically relevant states of Cr(NN)3 3+ (Fig. 1) are: the ground state, \({\!^4{\text{A}}_2}\); the lowest energy spin-allowed quartet state, \({\!^4{\text{T}}_2}\); and the lowest energy spin-forbidden doublet states, \({\!^2{\text{T}}_1}/ {\!^2{\text{E}}}\). Also, shown are the other higher energy quartet and doublet states, and the ligand-centred states (Ohno 1983 1986) depicted as dashed curves? not shown are some 12 additional doublet states. Several studies have been
Fig. 1

Qualitative energy level diagram as a function of a distort- ion coordinate. Solid lines denote metal-centred state surfaces; dashed lines show ligand-centred surfaces. From (Serpone 1987).

directed toward the long-lived (τ ~ 0.1 - 1 ms) luminescent \({\!^2{\text{T}}_1}/ {\!^2{\text{E}}}\) states; prompt fluorescence from \({\!^4{\text{T}}_2}\) has not been observed in fluid media at ambient temperatures, implying either that the lifetime of \({\!^4{\text{T}}_2}\) is too short or that this state is not populated. Recent pulsed laser transient absorption spectroscopy experiments have indicated that τ of \({\!^4{\text{T}}_2}\) of Cr(acac)3, Cr(NCS)6 3-, t-Cr(NH3)2(NCS)4 -, t-Cr(en)2(NCS)2 +, Cr(en)3 3+, and Cr(bpy)3 3+ are a few ps or less (Kirk 1976; Rojas 1986 1987; Pyke 1978; I.eSage 1983 ; Nicollin 1980).


Chromium Manifold Phen Acac Kato 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Castelli F, Forster LS (1977) J Phys Chem 81: 403CrossRefGoogle Scholar
  2. Frost AA, Pearson RG (1961) Kinetics and Mechanisms, Wiley, New YorkGoogle Scholar
  3. Jamieson MA, Serpone N, Hoffman MZ (19 81) Coord Chem Rev 39: 121CrossRefGoogle Scholar
  4. Kane-Maguire NAP, Sharma DK (19 84) unpublished resultsGoogle Scholar
  5. Kirk AD, Hoggard PE, Porter GB, Rockley MG, Windsor MW (19 76) Chem Phys Lett 37: 199CrossRefGoogle Scholar
  6. Kirk AD, Porter GB, Sharma DK (1986) Chem Phys Lett 123: 548CrossRefGoogle Scholar
  7. LeSage R, Sala KL, Yip RW, Langford CH (1983) Can J Chem 61: 2761CrossRefGoogle Scholar
  8. Nicollin D, Bertels P, Koningstein JA (1980) Can J Chem 58: 1334CrossRefGoogle Scholar
  9. Ohno T, Kato S, Kaizaki S, Hanazaki I (1983) Chem Phys Lett 102: 471CrossRefGoogle Scholar
  10. Ohno T, Kato S, Kaizaki S, Hanazaki I (1986) Inorg Chem 25: 3853CrossRefGoogle Scholar
  11. Pyke SC, Windsor MW (1978) J Am Chem Soc 100: 6518CrossRefGoogle Scholar
  12. Rojas GE, Dupuy C, Sexton DA, Magde D (1986) J Phys Chem 90: 87CrossRefGoogle Scholar
  13. Rojas GE, Magde D (1987) J Phys Chem 91: 689CrossRefGoogle Scholar
  14. Serpone N, Hoffman MZ (1983) J Chem Educ 60: 853CrossRefGoogle Scholar
  15. Serpone N, Jamieson MA, Sharma DK, Danesh R, Bolletta F, Hoffman MZ (1984) Chem Phys Lett 104: 87CrossRefGoogle Scholar
  16. Serpone N, Hoffman MZ (1986) Chem Phys Lett 123: 551CrossRefGoogle Scholar
  17. Serpone N, Jamieson MA, Maestri M (1981) unpublished resultsGoogle Scholar
  18. Serpone N, Hoffman MZ (1987) J Phys Chem 91: 0000CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1987

Authors and Affiliations

  • N. Serpone
    • 1
  • M. Z. Hoffman
    • 2
  1. 1.Department of ChemistryConcordia UniversityMontrealCanada
  2. 2.Department of ChemistryBoston UniversityBostonUSA

Personalised recommendations