Topographic Brain Mapping and Conventional Evoked Potential to Checkerboard Reversal and Semantic Visual Stimulation in a Dyslexic Boy with Amblyopia

  • D. Wenzel
  • U. Brandl
  • E. Kraus-Mackiw
Conference paper


Amblyopia is defined as a loss of visual acuity caused by visual form deprivation and/or abnormal binocular interaction, for which no organic cause can be detected by the physical examination of the eye. As pointed out previously (Kraus-Mackiw etal. 1980), poor sensory binocularity with intermittent alternating central scotoma, as for example in amblyopia, can produce dyslexia, especially when the whole-word method is applied in learning to read and write. It is generally accepted that the end of the sensitive period for orthoptic management in amblyopia is about 8 years of age (von Noorden 1977), a time when dyslexia normally first becomes evident. Evoked potential (EP) measurement together with brain mapping is one direct method of studying cortical responses to different visual stimuli in amblyopia as well as in dyslexia and may help as a diagnostic tool in children to localize function and monitor therapy (Levi and Harwerth 1978, Duffy 1980).


P100 Latency Evoke Potential N130 Component Disable Reader Check Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Conners CK (1971) Cortical visual evoked response in children with learning disorders. Psycho-physiology 7:418–428Google Scholar
  2. Duffy FH, Denckla MB, Bartels PH, Sandini G (1980) Dyslexia: regional differences in brain electrical activity by topographic mapping. Ann Neurol 7:412–420PubMedCrossRefGoogle Scholar
  3. Kraus-Mackiw E, Müller-Küppers M, Rabetge G (1980) Binocularity in 10- to 12-year-old children with poor writing and reading ability. Metabolic and pediatric ophthalmology, vol 4. Pergamon, New York, pp 93–96Google Scholar
  4. Levi DM, Harwerth RS (1978) A sensory mechanism for amblyopia: electrophysiological studies. Am J Optom Physiol Opt 55:163–171PubMedGoogle Scholar
  5. Otto J (1983) Optomotorische Reizmethode nach Otto und Rabetge. In: Francois J, Hollwich F (eds) Augenheilkunde in Klinik und Praxis, vol 3(1). Thieme, Stuttgart, pp 34–38Google Scholar
  6. Preston MS, Guthrie JT, Childs B (1974) Visual evoked responses (VERs) in normal and disabled readers. Psychophysiology 11:452–457PubMedCrossRefGoogle Scholar
  7. Schuhmacher H (1985) Diagnostik und Therapie von visuellen Störfaktoren bei Kindern mit isolierter Lese-Rechtschreibschwäche. Ergebnisse eines Therapieprogrammes mit Okklusion. Thesis, Ruprecht-Karls-Universitat, HeidelbergGoogle Scholar
  8. Simmons JH, Languis ME, Drake ME (1986) Group difference in the P 300-wave between dyslexics and normals. Electroencephalogr Clin Neurophysiol 64:42–44CrossRefGoogle Scholar
  9. von Noorden GK (1977) Mechanisms of amblyopia. Adv Ophthalmol 34:93–115PubMedGoogle Scholar
  10. Wenzel D, Kraus-Mackiw E (1987) Verlauf muster-evozierter Potentiale unterschiedlicher Ortsfrequenz bei spätbehandelter Amblyopic Ophthalmology 129 (2–3): 146–147Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • D. Wenzel
    • 1
  • U. Brandl
    • 1
  • E. Kraus-Mackiw
    • 2
  1. 1.Universitäts-Kinderklinik ErlangenErlangenFederal Republic of Germany
  2. 2.Universitäts-Augenklinik HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations