Advertisement

On the Average Chemical Composition of Cometary Dust

Conference paper

Abstract

This is a progress report on our efforts to extract information from mass spectra obtained by the particulate impact analysers onboard the VEGA and GIOTTO spacecrafts. Analysing a subset of 23 selected spectra obtained with identical instrument conditions, we derive a preliminary average abundance pattern of the major and some minor elements in Halley’s dust. Within a factor of two the pattern is chondritic for the major elements. Carbon is enriched by a factor of 8 compared to CI chondrites. Halley’s dust is composed of chondritic “silicates” and refractory carbonaceous material.

Keywords

Cometary dust elemental abundance chondrite PIA PUMA organics density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sagdeev R Z et al. 1985, Venus-Halley Mission, Louis-Jean, GapGoogle Scholar
  2. 2.
    Kissel J 1986, Eur Space Ag Spec Publ 1077, 67–68.ADSGoogle Scholar
  3. 3.
    Kissel J et al. 1986, Composition of comet Halley dust particles from Vega observation. Nature 321, 280–282.ADSCrossRefGoogle Scholar
  4. 4.
    Kissel J et al. 1986, Composition of Halley dust particles from Giotto observations. Nature 321, 336–338.ADSCrossRefGoogle Scholar
  5. 5.
    Divine N 1981, Eur Space Ag Spec Publ 174, 25–30.ADSGoogle Scholar
  6. 6.
    Anders E 1971, How well do we know “cosmic” abundances? Geochim Cosmochim Acta 35, 516–522.ADSCrossRefGoogle Scholar
  7. 7.
    Brownlee D E 1985, Cosmic dust: collection and research. Ann Rev Earth Planet Sei 13, 147–173.ADSCrossRefGoogle Scholar
  8. 8.
    Bradley J P & Brownlee D E 1986, Cometary particle: thin sectioning and electron beam analysis. Science 231, 1542–1544.ADSCrossRefGoogle Scholar
  9. 9.
    Mukai T & Fechtig H 1983, Packing effect of fluffy particles. Planet Space Sci 31, 655–658.ADSCrossRefGoogle Scholar
  10. 10.
    Fraundorf P 1980, Microcharacterization of interplanetary dust collected in the Earth–s stratosphere. Ph D thesis, Washington Univ St. Louis, USA.Google Scholar
  11. 11.
    Jessberger E K & Wallenwein R 1986, PIXE characterization of stratospheric micrometeorites. Adv Space Res (in press).Google Scholar
  12. 12.
    Anders E 1975, Do stony meteorites come from comets? Icarus 24, 363–371.Google Scholar
  13. 13.
    Anders E 1986, What can meteorites tell us about comets? To appear in: “Comet Nucleus Sample Return”, Proc ESA Workshop, Canterbury, U.K.Google Scholar
  14. 14.
    Mason B 1971, Handbook of Elemental Abundances in Meteorites. Gordon and Breach Science Publ NY, 555 pages.Google Scholar
  15. 15.
    McSween H Y Jr & Richardson S M 1977, The compostions of carbonaceous chondrite matrix. Geochim Cosmochim Acta 1145–1161.Google Scholar
  16. 16.
    Van Schmus W R & Hayes J M 1974, Chemical and petrographic correlations among carbonaceous chondrites. Geochim Cosmochim Acta 38, 47–64.Google Scholar
  17. 17.
    Palme H, Suess H E & Zeh H D 1981, Abundances of the elements in the solar system. In: Landolt-Börnstein 2a (eds K Schaifers, H H Voigt ), pp 257–272.Google Scholar
  18. 18.
    Anders E & Ebihara M 1982, Solar system abundances of the elements. Geochim Cosmochim Acta 46, 2363–2380.Google Scholar
  19. 19.
    Delsemme A H 1977, The pristine nature of comets. In: “Comets, Asteroids, Meteorites” (ed. A H Delsemme, U. of Toledo Press ), pp 3–13.Google Scholar
  20. 20.
    Fechtig H, Grün E & Kissel J 1978, Laboratory simulation. In: “Cosmic Dust” (ed. J A M McDonnell), Wiley, Chichester, pp 607–667.Google Scholar
  21. 21.
    Krueger F & Kissel J 1984, Experimental investigations on ion emission with dust impact on solid surfaces. ESA SP–224, 43.Google Scholar
  22. 22.
    Kissel J & Krueger F 1986, Ion formation by impact of fast dust particles and comparison with related techniques. Appl Phys A (in press).Google Scholar
  23. 23.
    Ceplecha Z 1977, Meteoroid populations and orbits. In: “Comets, Asteroids, Meteorites” (ed. A H Delsemme ), U of Toledo Press, pp 143–152.Google Scholar
  24. 24.
    Verniani F 1969, Structure and fragmentation of meteoroids. Space Sci Rev 10, 230–261.Google Scholar
  25. 25.
    Krueger F R 1986, Ion emission from insulators during impact of accelerated dust particles and comparison with other techniques. Radiation Effects (in press).Google Scholar
  26. 26.
    Hanner M S 1981, On the detectability of icy grains in the comae of comets. Icarus 47, 342.Google Scholar
  27. 27.
    Fraundorf P, Brownlee D E & Walker R M 1982, Laboratory studies of interplanetary dust. In: “Comets” (ed. L L Wilkening) U of Arizona Press, pp 383–409.Google Scholar
  28. 28.
    Greenberg J M 1982, What are comets made of? A model based on interstellar dust. In: “Comets” (ed. L L Wilkening) U of Arizona Press, pp 131–163.Google Scholar
  29. 29.
    Greenberg J M 1983, Interstellar dust, comets, comet dust and carbonaceous meteorites. In: “Asteroids, Comets, Meteors” (eds. Greenberg J M ) pp 259–268, Uppsala Univ Press.Google Scholar
  30. 30.
    Strazulla G 1985, Modifications of grains by particle bombardment in the early solar system. Icarus 61, 48–56.Google Scholar
  31. 31.
    Rossler K, Jung H-J & Nebeling B 1984, Hot atoms in cosmic chemistry. Adv Space Res 4, 83–95.Google Scholar
  32. 32.
    Hoyle F & Wickramasinghe Ch 1981, Comets — a vehicle forpanspermia. In: “Comets and the Origin of Life” (ed. C Ponnamperuma ), D Reidel Publ Comp, pp 227–239.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  1. 1.Max-Planck-Institut für KernphysikHeidelbergFed. Rep. of Germany
  2. 2.MPI-ConsultantDarmstadtFed. Rep. of Germany

Personalised recommendations