Advertisement

Comet Explorations

Conference paper
  • 45 Downloads

Abstract

Several new missions to short period comets have been proposed. It is expected that these missions will extend our knowledge not only about comets, but also about the chemical and physical properties of the nebular region from which comets originate. Contrary to what is often implied, cometary material is not the pristine material of the nebula in which cometesimals formed. The gases in the coma have been chemically and physically processed by solar radiation and solar wind. The icy components of the nucleus have been altered by cosmic rays, ultraviolet radiation, the solar wind, and by radioactivity during the several 109 years that a comet spends in the Oort cloud. Even during the formation processes of cometesimals, selective condensation and chemical reactions have destroyed the chemical or physical records from the nebular region in which comet nuclei originated. To obtain the chemical composition and physical properties of the original nebular region from in situ measurements on comets, computer modeling, supplemented by laboratory determinations of material properties, is required. This general objective of modeling with laboratory support should be part of all mission plans.

Keywords

Solar Wind Solar System Comet Nucleus Oort Cloud Solar Wind Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bame, S. J., R. C. Anderson, J. R. Asbridge, D. N. Baker, W. C. Feldman, S. A. Fuselier, J. T. Gosling., D. J. McComas, M. F. Thomsen, D. T. Young, and R. D. Zwickl, Science 232, 356 (1986).ADSCrossRefGoogle Scholar
  2. Bar-Nun, A., G. Herman, M.L. Rappaport, and Yu. Mekler, Surface Science 150, 143ADSCrossRefGoogle Scholar
  3. Bar-Nun, A., G. Herman. D. Laufer, and M. L. Rappaport, Icarus 63 317 (1985b)ADSCrossRefGoogle Scholar
  4. Bar-Nun, A., J. Dror, E. Kochavi, and D. Laufer, Phys. Rev. in press (1986).Google Scholar
  5. Biermann, L. and K. W. Michel, Moon Planets 18, 447 (1978)ADSCrossRefGoogle Scholar
  6. Boice, D. C., W. F. Hueber, J. J. Keady, H. U. Schmidt, and R. Wegmann, Geophys. Res. Lett. 13, 381 (1986).ADSCrossRefGoogle Scholar
  7. Brown, W. L., L. J. Lanzerotti, J. M. Poate, and W. M. Augustyniak, Phys. Rev. Letters 40, 1027 (1978).ADSCrossRefGoogle Scholar
  8. Brown W. L., W. M. Augustyniak, E. Brody, B. Cooper, L. J. Lanzerotti, A. Ramirez, R. Evat, and R. E. Johnson, Nucl. Instr. Methods 170, 321 (1980).CrossRefGoogle Scholar
  9. Brown W. L., W. M. Augustyniak, E. Simmons, K. J. Marcantonio, L. J. Lanzerotti, R. E. Johnson, J. W. Boring, C. T. Reimann, G. Foti, and V. Pirronello, Nucl. Instr. Methods 189, 1 (1982).ADSGoogle Scholar
  10. Delsemme, A. H., “Chemical Composition of Cometary Nuclei,” in Comets, Ed. L. L. Wilkening, University of Arizona Press, p. 85, (1982).Google Scholar
  11. De Vries, A. E., R. Pedrys, R. A. Haring, and F. W. Saris, Nature 311, 39 (1984).Google Scholar
  12. Donn, B. and J. Rahe, “Structure and Origin of Cometary Nuclei,” in Comets, Ed. L. L. Wilkening, University of Arizona Press, p. 203 (1982).Google Scholar
  13. Draganic, I. G., Z. D. Draganc, and S. Vujosevic, Icarus 60, 464 (1984).Google Scholar
  14. Everhard, E., Astrophys. J. 10, L131 (1972).Google Scholar
  15. Fedder, J. A., J. G. Lyon, and J. L. Giuliani, Jr., EOS Trans. AGU 67, 17 (1986).Google Scholar
  16. Festou, C. M., Adv. Space Res. 4, 165 (1984).Google Scholar
  17. Foti, G., L. Calgano, K. L. Sheng, and g. Strazulla, Nature 310, 126 (1984).Google Scholar
  18. Gail, H.-P. and E. Sedlmayr, Astron. Astrophys. 132, 163 (19841).Google Scholar
  19. Gail, H.-P. R. Keller, and E. Sedlmayr, Astron. Astrphys. 133, 320 (1984).Google Scholar
  20. Greenberg, J. M. M., “What are Comets Made of? A Model Based on Interstellar Dust,” in Comets, Ed. L. L. Wilkening, The University of Arizona Press, p. 131 (1982).Google Scholar
  21. Herman, G. and M. Podolak, Icarus 61, 252 (1985).Google Scholar
  22. Hills, J. G., Astron. J. 87, 906 (1982).Google Scholar
  23. Hills, J. G. and M. T. Sandford II, Astron. J. 88, 1519 (1983a).Google Scholar
  24. Hills, J. G. and M. T. Sandford II, Astron. J. 88, 1522 (1983b).Google Scholar
  25. Huebner, W. F. F., “The Photochemistry of Comets,” in The Photochemistry of Atmospheres, J. S. Levine, Ed., Academic Press, Inc., Orlando San Diego, New York, London, Toronto, Montreal, Sydney, Tokyo, p. 437 (1985).Google Scholar
  26. Huebner, W. F., J. J. Keady, D. C. Boice, H. U. Schmidt, and R. Wegmann, “Chemico-Physical Models of Cometary Atmospheres,” in IAU Colloquium No. 120, in press (1986).Google Scholar
  27. Johnson, R. E., L. J. Lanzerotti, and W. L. Brown, Nucl. Instr. Methods 198, 147 (1982).Google Scholar
  28. Johnson, R. E., W. L. Brown, and L. J. Lanzerotti, J. Phys. Chem. 87, 4218 (1983a).Google Scholar
  29. Johnson, R. E., J. W. Boring, C. T. Reimann, L. A. Barton, E. M. Seiveka, J. W. Garrett, K. R. Farmer, W. L. Brown, and L. J. Lanzerotti, Geophys. Res. Letters 10, 892 (1983b).Google Scholar
  30. Klinger, J., Science 209, 271 (1980).Google Scholar
  31. Klinger, J., Icarus 47, 320 (1981).Google Scholar
  32. Klinger, J, J., “Composition and Structure of the Comet Nucleus and its Evolution on a Periodic Comet,” in Ices in the Solar System, Ed. J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski, D. Reidel Publishing Company, Dordrecht, Lancaster, Boston, p. 81 (1985).Google Scholar
  33. Klinger, J., D. Benest, A. Dollfus, and R. Smoluchowski, Ices in the Solar System, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster (1985).Google Scholar
  34. Kuehrt, E. Icarus, 60, 512 (1984).Google Scholar
  35. Lanzerotti, L. J., W. L. Brown, J. M. Poate, and W. M. Augustyniak, Geophys. Res. Letters 5, 155 (1978).Google Scholar
  36. Lanzerotti, L. J., W. L. Brown, W. M. Augustyniak, R. E. Johnson, and T. P. Armstrong, Astrophys. J. 259, 920 (1982).Google Scholar
  37. Lanzerotti, L. J., W. L. Brown, and R. E. Johnson, “Laboratory Studies of Ion Irradiations of Water, Sulfur Dioxide, and Methane Ices,” in Ices in the Solar System, Ed. J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski, D. Reidel Publishing Company, Dordrecht, Lancaster, Boston, p. 81 (1985).Google Scholar
  38. Marconi, M. L. and D. A. Mendis, Geophys. Res. Lett. 13, 405 (1986).Google Scholar
  39. Mayer, E. and R. Pletzer, “Polymorphism in Vapor Deposited Amorphous Solid Water,” in Ices in the Solar System, Ed. J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski, D. Reidel Publishing Company, Dordrecht, Lancaster, Boston, p. 81 (1985).Google Scholar
  40. Mendis, D. A., H. L. F. Houpis, and M. L. Marconi, Fund. Cosmic Phys. 10, 1 (1985).Google Scholar
  41. Meyer-Vernet, N., P. Couturier, S. Hoang, C. Perche, J.-L. Steinberg, J. Fainberg, and C. Meetre, Science 232, 370 (1986).Google Scholar
  42. Mignard, F. and F. Remy, Icarus 63, 20 (1985).Google Scholar
  43. Patashnick, H., G. Rupprecht, and D. W. Schuerman, Nature 250, 313 (1974).Google Scholar
  44. Pirronello, V., “Molecule Formation in Cometary Environments,” in Ices in the Solar System, Ed. J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski, D. Reidel Publishing Company, Dordrecht, Lancaster, Boston, p. 261 (1985).Google Scholar
  45. Podolak, M. and G. Herman, Icarus 61, 267 (1985).Google Scholar
  46. Prialnik, D., and A. Bar-Nun, “On the Evolution and Activity of Comet Nuclei,” preprint (1986).Google Scholar
  47. Remy, F. and F. Mignard, Icarus 63, 1 (1985).Google Scholar
  48. Rickman, H., and C. Froeschle, “Thermal Models for the Nucleus of Comet P/Halley,” in International Conference on Cometary Exploration, Ed. T. I. Gombosi, Budapest, Vol. I, p. 75 (1982a).Google Scholar
  49. Rickman, H., and C. Froeschle, “Model Calculations of Nongravitational Effects on Comet P/Halley,” in International Conference on Cometary Exploration, Ed. T. I. Gombosi, Budapest, Vol. Ill, p. 109 (1982b).Google Scholar
  50. Smoluchowski, R., Astrophys. J. Lett. 244, L31 (1981).Google Scholar
  51. Smoluchowski, R., “Amorphous and Porous Ices in Cometary Nuclei,” in Ices in the Solar System, Ed. J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski, D. Reidel Publishing Company, Dordrecht, Lancaster, Boston, p. 81 (1985).Google Scholar
  52. Strazulla, G., V. Pirronello, and G. Foti, Astron. Astrophys. 123, 93 (1983).ADSGoogle Scholar
  53. Strazulla, G., L. Calcagno, and G. Foti, Astron. Astrophys. 140, 441 (1984).ADSGoogle Scholar
  54. Strong, I. B., R. R. Brownlee, E. H. Farnum, W. F. Hueber, T. D. Kunkle, J. R. Stephens, and M. F. Bode “Plants for Release of Simulated Interplanetary Materials into Low Earth Orbit,” in IAU Colloquium No. 85, (19885).Google Scholar
  55. Tscharnuter, W. M., Space Sci. Rev. 27, 235 (1980).ADSCrossRefGoogle Scholar
  56. Wallis, M. K., Nature 284431 (1980).ADSCrossRefGoogle Scholar
  57. Weissman, R. P., and H. H. Kieffer, Icarus 47, 302 (1981).ADSCrossRefGoogle Scholar
  58. Weissman, R. P., and H. H. Kieffer, J. Geophys. Res. LPI, C358(1983).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  1. 1.T-4, Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations