Afterpotentials and Pacemaker Oscillations in an Ionic Model of Cardiac Purkinje Fibres

  • M. R. Guevara
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 36)

Abstract

Cardiac Purkinje fibres run along the inner surface of the ventricles of mammalian and avian hearts. These weakly contracting cells form the terminal part of the specialized electrical system that conducts the cardiac impulse from the point where it is generated (the sinoatrial node lying in the right atrium) to the working myocardium of the walls of the ventricles. When Purkinje fibres are removed from the heart, they are sometimes found to be spontaneously beating, othertimes not. Quiescent Purkinje fibres can be made to begin beating by a variety of interventions (e.g. by decreasing the K+ concentration in the solution bathing the fibre [1]). Conversely, it is quite easy to abolish activity in a spontaneously beating Purkinje fibre (e.g. by elevating the external K+ concentration).

Keywords

Clay Peri Stimul 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Vassale: Am. J. Physiol. 208, 770 (1965)Google Scholar
  2. 2.
    F.H. Smirk: Br. Heart J. 11, 23 (1949)CrossRefGoogle Scholar
  3. 3.
    M.R. Guevara: Chaotic Cardiac Dynamics, Ph.D. Thesis (McGill University, Montreal 1984)Google Scholar
  4. 4.
    R.E. McAllister, D. Noble, R.W. Tsien: J. Physiol. (Lond.) 251, 1 (1975)Google Scholar
  5. 5.
    B. Victorri, A. Vinet, F.A. Roberge, J.-P. Drouhard: Comp. Biomed. Res. 18, 10 (1985)CrossRefGoogle Scholar
  6. 6.
    P.F. Cranefield: Circ. Res. 41, 415 (1977)Google Scholar
  7. 7.
    R.L. Vick: Am. J. Physiol. 217, 451 (1969)Google Scholar
  8. 8.
    E. Bozler: Am. J. Physiol. 138, 273 (1943)Google Scholar
  9. 9.
    T.F. McDonald, H.G. Sachs: Pflüg. Arch. 354, 165 (1975)CrossRefGoogle Scholar
  10. 10.
    J.R. Clay, A. Shrier: unpublishedGoogle Scholar
  11. 11.
    M.R. Guevara, T. Op’t Hof, H.J. Jongsma: unpublishedGoogle Scholar
  12. 12.
    R. Guttman, R. Barnhill: J. Gen. Physiol. 55, 104 (1970)CrossRefGoogle Scholar
  13. 13.
    J.A. Connor, C.L. Prosser, W.A. Weems: J. Physiol. (Lond.) 240, 671 (1974)Google Scholar
  14. 14.
    K. Matsuda, T. Hoshi, S. Kameyama: Jap. J. Physiol. 9, 419 (1959)CrossRefGoogle Scholar
  15. 15.
    Y.M. Kokoz, Y.I. Krinskii, O.A. Mornev: Biophysics 19, 502 (1974)Google Scholar
  16. 16.
    A. Coulombe, E. Coraboeuf, E. Deroubaix: J. Physiol. (Paris) 76, 107 (1980)Google Scholar
  17. 17.
    T.R. Chay, Y.S. Lee: Biophys. J. 45, 841 (1984)CrossRefGoogle Scholar
  18. 18.
    T.R. Chay, Y.S. Lee: Biophys. J. 47, 641 (1985)CrossRefGoogle Scholar
  19. 19.
    L.F. Olsen, H, Degn: Nature (Lond.) 267, 177 (1977)ADSCrossRefGoogle Scholar
  20. 20.
    R.A. Schmitz, K.R. Graziani, J.L. Hudson: J. Chem. Phys. 67, 3040 (1977)ADSCrossRefGoogle Scholar
  21. 21.
    O.E. Rössler, K. Wegmann: Nature (Lond.), 271, 89 (1978)CrossRefGoogle Scholar
  22. 22.
    A.S. Pikovsky, M.I. Rabinovich: Physica 2D, 8 (1981)MathSciNetADSGoogle Scholar
  23. 23.
    J.S. Turner, J.-C. Roux, W.D. McCormick, H.L. Swinney: Phys. Lett. 85A, 9 (1981)ADSGoogle Scholar
  24. 24.
    R.H. Simoyi, A. Wolf, H.L. Swinney: Phys. Rev. Lett. 49, 245 (1982)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    J.-C. Roux, R.H. Simoyi, H.L. Swinney: Physica 8D, 257 (1983)MathSciNetADSGoogle Scholar
  26. 26.
    O.E. Rössler: Z. Naturforsch. 31a, 1168 (1976).ADSGoogle Scholar
  27. 27.
    A.S. Pikovskii, M.I. Rabinovich: Sov. Phys. Dokl. 213, 183 (1978)ADSGoogle Scholar
  28. 28.
    J.J. Tyson: J. Math. Biol. 5, 351 (1978)MathSciNetMATHGoogle Scholar
  29. 29.
    K. Tomita, I. Tsuda: Phys. Lett. 71A, 489 (1979)MathSciNetADSGoogle Scholar
  30. 30.
    A.S. Pikovsky: Phys. Lett. 85A, 13 (1981)ADSGoogle Scholar
  31. 31.
    R. Lozi: C. R. Acad. Sc. Paris, 294, 21 (1982)MathSciNetMATHGoogle Scholar
  32. 32.
    J. Maselko, H.L. Swinney: Physica Scripta T9, 35 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    R. FitzHugh: J. Gen. Physiol. 43, 867 (1960)CrossRefGoogle Scholar
  34. 34.
    J.R. Clay, M.R. Guevara, A. Shrier: Biophys. J. 45, 699 (1984)CrossRefGoogle Scholar
  35. 35.
    J.R. Clay: J. theor. Biol. 64, 671 (1977)CrossRefGoogle Scholar
  36. 36.
    L.P. Sil’nikov: Math. USSR Wornik 10, 91 (1970)CrossRefGoogle Scholar
  37. 37.
    A. Arnéodo, P. Coullet, C. Tresser: J. Stat. Phys. 27, 171 (1982)ADSMATHCrossRefGoogle Scholar
  38. 38.
    P. Gaspard, R. Kapral, G. Nicolis: J. Stat. Phys. 35 697 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  39. 39.
    P. Glendinning, C. Sparrow: J. Stat. Phys. 35, 645 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  40. 40.
    L. Glass, M.R. Guevara, J. Belair, A. Shrier: Phys. Rev. 29A, 1348 (1984)MathSciNetADSGoogle Scholar
  41. 41.
    M.R. Guevara, L. Glass: J. Math. Biol. 14, 1 (1982)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    M. Schell, S. Fraser, R. Kapral: Phys. Rev. 28A, 373 (1983)MathSciNetADSGoogle Scholar
  43. 43.
    W. Trautwein, D.G. Kassebaum: J. Gen. Physiol 45, 317 (1961)CrossRefGoogle Scholar
  44. 44.
    M. Vassale, A. Mugelli: Cir. Res. 48, 618 (1981)Google Scholar
  45. 45.
    D. DiFrancesco, D. Noble: Phil. Trans. Roy. Soc. Lond. 307B, 353 (1985)ADSGoogle Scholar
  46. 46.
    D. DiFrancesco: J. Physiol. (Lond.) 314, 359 (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. R. Guevara
    • 1
  1. 1.Department of PhysiologyMcGill UniversityMontrealCanada

Personalised recommendations