Cancer Genes Generated by Rare Chromosomal Rearrangements Rather than Activation of Oncogenes

  • P. H. Duesberg
Conference paper
Part of the Haematology and Blood Transfusion / Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 31)


In order to understand cancer, it is necessary to identify cancer genes. The search for such genes and for mechanisms that generate such genes must take into consideration that at the cellular level cancer is a very rare event. The kind of cellular transformation that leads to cancer in vivo occurs only in about one out of 2 × 1017 mitoses in humans and animals. The basis for this estimate is that most animal and human cancers are derived from single transformed cells and are hence monoclonal [1–5], that humans and corresponding animals represent about 1016 mitoses (assuming 1014 cells that go through an average 102 mitoses), and that about one person in five dies from tumors [6].


Cancer Gene Diploid Cell Rous Sarcoma Virus Avian Myeloblastosis Virus Cellular Oncogene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duesberg PH (1987) Cancer genes: rare recombinants instead of activated oncogenes. Proc Natl Acad Sci USA 84:2117–2124PubMedCrossRefGoogle Scholar
  2. 2.
    Wolman SR (1983) Karyotypic progression in human tumors. Cancer Metast Rev 2:257–293CrossRefGoogle Scholar
  3. 3.
    Rowley JD (1984) Introduction: consistent chromosomal alterations and oncogenes in human tumors. Cancer Surveys 3:355–357Google Scholar
  4. 4.
    Trent JM (1984) Chromosomal alterations in human solid tumors: implications of the stem cell model to cancer cytogenetics. Cancer Surveys 3:393–422Google Scholar
  5. 5.
    Duesberg PH (1987) Retroviruses as carcinogens and pathogens: expectations and reality. Cancer Res 47:1199–1220PubMedGoogle Scholar
  6. 6.
    Silverberg E, Lubera J (1986) Cancer statistics. CA 36:9–25PubMedGoogle Scholar
  7. 7.
    Duesberg PH (1983) Retroviral transforming genes in normal cells? Nature 304:219–226PubMedCrossRefGoogle Scholar
  8. 8.
    Duesberg PH (1985) Activated proto-onc genes: sufficient or necessary for cancer? Science 228:669–677PubMedCrossRefGoogle Scholar
  9. 9.
    Weiss R, Teich N, Varmus H, Coffin J (eds) (1985) RNA tumor viruses; molecular biology of tumor viruses, 2nd edn. Cold Spring Harbor Press, New YorkGoogle Scholar
  10. 10.
    Duesberg PH, Vogt PK (1970) Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses. Proc Natl Acad Sci USA 67:1673–1680PubMedCrossRefGoogle Scholar
  11. 11.
    Martin GS, Duesberg PH (1972) The a-sub-unit on the RNA of transforming avian tumor viruses. I. Occurrence in different virus strains. II. Spontaneous loss resulting in nontransforming variants. Virology 47:494–497PubMedCrossRefGoogle Scholar
  12. 12.
    Weiss R, Teich N, Varmus H, Coffin J (eds) (1982) RNA tumor viruses; molecular biology of tumor viruses. Cold Spring Harbor Press, New YorkGoogle Scholar
  13. 13.
    Duesberg PH (1979) Transforming genes of retroviruses. Cold Spring Harbor Symp Quant. Biol 44:13–27CrossRefGoogle Scholar
  14. 14.
    Scolnick EM, Rands F, Williams P, Parks WP (1973) Studies on the nucleic acid sequences of Kirsten sarcoma virus. A model for formation of a mammalian RNA-containing sarcoma virus. J Virol 12:458–463PubMedGoogle Scholar
  15. 15.
    Scolnick EM, Parks WP (1974) Harvey sarcoma virus. A second murine type C sarcoma virus with rat genetic information. J Virol 13:1211–1219PubMedGoogle Scholar
  16. 16.
    Tsuchida N, Gilden RV, Hatanaka M (1974) Sarcoma-virus-related RNA sequences in normal rat cells. Proc Natl Acad Sci USA 71:4503–4507PubMedCrossRefGoogle Scholar
  17. 17.
    Frankel AE, Fischinger PJ (1976) Nucleotide sequences in mouse DNA and RNA specific for Moloney sarcoma virus. Proc Natl Acad Sci USA 73:3705–3709PubMedCrossRefGoogle Scholar
  18. 18.
    Stehelin D, Varmus HE, Bishop JM, Vogt PK (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–173PubMedCrossRefGoogle Scholar
  19. 19.
    Watson DK, Reddy EP, Duesberg PH, Papas TS (1983) Nucleotide sequence analysis of the chicken c-myc gene reveals homologous and unique regions by comparison with the transforming gene of avian myelocytomatosis virus MC29, Δgag-myc. Proc Natl Acad Sci USA 80:2146–2150PubMedCrossRefGoogle Scholar
  20. 20.
    Bishop JM, Courtneidge SA, Levinson AD, Oppermann H, Quintrell N, Sheiness DK, Weiss SR, Varmus HE (1979) Origin and function of avian retrovirus transforming genes. Cold Spring Harbor Symposia Quant. Biol 44:919–930CrossRefGoogle Scholar
  21. 21.
    Karess RE, Hayward WS, Hanafusa H (1979) Transforming protein encoded by the cellular information of recovered avian sarcoma viruses. Cold Spring Harbor Symposia Quant. Biol 44:765–771CrossRefGoogle Scholar
  22. 22.
    Wang L-H, Snyder P, Hanafusa T, Moscovici C, Hanafusa H (1979) Comparative analysis of cellular and viral sequences related to sarcomagenic cell transformation. Cold Spring Harbor Symposia Quant. Biol 44:755–764CrossRefGoogle Scholar
  23. 23.
    Bishop JM (1981) Enemies within: the genesis of retrovirus oncogenes. Cell 23:5–6PubMedCrossRefGoogle Scholar
  24. 24.
    Klein G (1981) The role of gene dosage and genetic transposition in carcinogenesis. Nature 294:313–318PubMedCrossRefGoogle Scholar
  25. 25.
    Bishop JM, Varmus H (1982) Functions and origins of retroviral transforming genes in RNA tumor viruses. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses; molecular biology of tumor viruses. Cold Spring Harbor Press, New York, pp 999–1108Google Scholar
  26. 26.
    Bishop JM (1982) Oncogenes. Sci Am 246:80–90PubMedCrossRefGoogle Scholar
  27. 27.
    Bishop JM (1983) Cellular oncogenes and retroviruses. Annu Rev Biochem 52:301–354PubMedCrossRefGoogle Scholar
  28. 28.
    Varmus H, Bishop JM (1986) Introduction. Biochemical mechanisms of oncogene activity: proteins encoded by oncogenes. Cancer Surv 5:153–158PubMedGoogle Scholar
  29. 29.
    Weiss RA (1986) The oncogene concept. Cancer Rev 2:1–17Google Scholar
  30. 30.
    Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH (1982) Mechanism of activation of a human oncogene. Nature 300:143–149PubMedCrossRefGoogle Scholar
  31. 31.
    Reddy EP, Reynolds RK, Santos E, Barbacid M (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300:149–152PubMedCrossRefGoogle Scholar
  32. 32.
    Leder P, Battey J, Lenoir G, Moulding C, Murphy W, Potter M, Stewart T, Taub R (1983) Translocations among antibody genes in human cancer. Science 227:765–771CrossRefGoogle Scholar
  33. 33.
    Knudson AG Jr (1985) Hereditary cancer, oncogenes, and antioncogenes. Cancer Res 45:1437–1443PubMedGoogle Scholar
  34. 34.
    Huebner RJ, Todaro G (1969) Oncogenes of RNA tumor viruses as determinants of cancer. Proc Natl Acad Sci USA 64:1087–1094PubMedCrossRefGoogle Scholar
  35. 35.
    Pitot HC (1978) Fundamentals of oncology. Dekker, New YorkGoogle Scholar
  36. 36.
    Klein G, Ohno S, Rosenberg N, Wiener F, Spira J, Baltimore D (1980) Cytogenic studies on Abelson-virus-induced mouse leukemias. Int J Cancer 25:805–811PubMedCrossRefGoogle Scholar
  37. 37.
    Levan A (1956) Chromosomes in cancer tissue. Ann NY Acad Sci 63:774–792PubMedCrossRefGoogle Scholar
  38. 38.
    Feinberg AP, Vogelstein MJ, Droller S, Baylin B, Nelkin BD (1983) Mutation affecting the 12th amino acid of the c-Has-ras oncogene product occurs infrequently in human cancer. Science 220:1175–1177PubMedCrossRefGoogle Scholar
  39. 39.
    Fujita J, Srivastava S, Kraus M, Rhim JS, Tronick SR, Aaronson SA (1985) Frequency of molecular alterations affecting ras proto-oncogenes in human urinary tract tumors. Proc Natl Acad Sci USA 82:3849–3853PubMedCrossRefGoogle Scholar
  40. 40.
    Milici A, Blick M, Murphy E, Gutterman JU (1986) c-K-ras codon 12 GGT-CGT point mutation an infrequent event in human lung cancer. Biochem Biophys Res Commun 140:699–705PubMedCrossRefGoogle Scholar
  41. 41.
    Cichutek K, Duesberg PH (1986) Harvey ras genes transform without mutant codons, apparently activated by truncation of a 5′ exon (exon-1). Proc Natl Acad Sci USA 83:2340–2344PubMedCrossRefGoogle Scholar
  42. 42.
    Lowy DR, Willumsen BW (1986) The ras gene family. Cancer Surv 5:275–289PubMedGoogle Scholar
  43. 43.
    Marshall C (1985) Human oncogenes. In: Weiss R et al. (eds) RNA tumor viruses; molecular biology of tumor viruses. Cold Spring Harbor Press, New York, pp 487–558Google Scholar
  44. 44.
    Barbacid M (1986) Mutagens, oncogenes and cancer. Trends Gen 2:188–192CrossRefGoogle Scholar
  45. 45.
    Needleman SW, Kraus MH, Srivastava SK, Levine PH, Aaronson SA (1986) High frequency of N-ras activation in acute myelogenous leukemia. Blood 67:753–757PubMedGoogle Scholar
  46. 46.
    Hastings RJ, Franks LM (1981) Chromosome pattern, growth in agar and tumorigenicity in nude mice of four human bladder carcinoma cell lines. Int J Cancer 27:15–21PubMedCrossRefGoogle Scholar
  47. 47.
    Wabl M, Burrows PD, Gabain A von, Steinberg A (1984) Hypermutation at the immunoglobulin heavy chain locus in a pre-B cell line. Proc Natl Acad Sci USA 82:479–482CrossRefGoogle Scholar
  48. 48.
    Drake JW (1969) Comparative rates of spontaneous mutation. Nature 221:1132PubMedCrossRefGoogle Scholar
  49. 49.
    Sharkey FE, Fogh J (1984) Considerations in the use of nude mice for cancer research. Cancer Metast Rev 3:341–360CrossRefGoogle Scholar
  50. 50.
    Kinlen LJ (1982) Immunosuppressive therapy and cancer. Cancer Surv 1:565–583Google Scholar
  51. 51.
    Sager R, Tanaka K, Lau CC, Ebina Y, Anisowicz A (1983) Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proc Natl Acad Sci USA 80:7601–7605PubMedCrossRefGoogle Scholar
  52. 52.
    Land H, Parada LF, Weinberg RA (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602PubMedCrossRefGoogle Scholar
  53. 53.
    Land H, Parada LF, Weinberg RA (1983) Cellular oncogenes and multistep carcinogenesis. Science 222:771–778PubMedCrossRefGoogle Scholar
  54. 54.
    Newbold RF, Overell RW (1983) Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene. Nature 304:648–651PubMedCrossRefGoogle Scholar
  55. 55.
    Boone CW (1975) Malignant hemangioendotheliomas produced by subcutaneous inoculation of BALB/3T3 cells attached to glass beads. Science 188:68–70PubMedCrossRefGoogle Scholar
  56. 56.
    Littlefield JW (1982) NIH/3T3 cell line. Science 218:214–216PubMedCrossRefGoogle Scholar
  57. 57.
    Greig RG, Koestler TP, Trayner DL, Corwin SP, Miles L, Kline T, Sweet R, Yokoyama S, Poste G (1985) Tumorigenic and metastatic properties of “normal” and ras-transfected NIH/3T3 cells. Proc Natl Acad Sci USA 82:3698–3701PubMedCrossRefGoogle Scholar
  58. 58.
    Rubin H, Chu BM, Arnstein P (1983) Heritable variations in growth potential and morphology within a clone of Balb/3T3 cells and their relation to tumor formation. J Natl Cancer Inst 71:365–373PubMedGoogle Scholar
  59. 59.
    Spandidos DA, Wilkie NM (1984) In vitro malignant transformation of early passage rodent cells by a single mutated human oncogene. Nature 310:469–475PubMedCrossRefGoogle Scholar
  60. 60.
    Stenman G, Delorme EO, Lau CC, Sager R (1987) Transfection with plasmid pSV2gptEJ induces chromosome rearrangements in CHEF cells. Proc Natl Acad Sci USA 84:184–188PubMedCrossRefGoogle Scholar
  61. 61.
    Reynolds SH, Stowers SJ, Maronpot RR, Anderson MW, Aaronson SA (1986) Detection and identification of activated oncogenes in spontaneously occurring benign and malignant hepatocellular tumors of the B6C3F1 mouse. Proc Natl Acad Sci USA 83:33–37PubMedCrossRefGoogle Scholar
  62. 62.
    Balmain A, Ramsden M, Bowden GT, Smith J (1984) Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature 307:658–660PubMedCrossRefGoogle Scholar
  63. 63.
    Balmain A, Pragnell IB (1983) Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene. Nature 304:596–602CrossRefGoogle Scholar
  64. 64.
    Klein G, Klein E (1984) Oncogene activation and tumor progression. Carcinogenesis 5:429–435PubMedCrossRefGoogle Scholar
  65. 65.
    Balmain A (1985) Transforming ras oncogenes and multistage carcinogenesis. Br J Cancer 51:1–7PubMedCrossRefGoogle Scholar
  66. 66.
    Burns FJ, Vanderlaan M, Snyder E, Albert RE (1978) Induction and progression kinetics of mouse skin papillomas. In: Slaga TJ, Sivac A, Boutwell RK (eds) Carcinogenesis, vol 2. Mechanisms of tumor promotion and cocarcinogenesis. Raven, New York, pp 91–96Google Scholar
  67. 67.
    Albino AP, Le Strange AI, Oliff MI, Furth ME, Old LJ (1984) Transforming ras genes from human melanoma: a manifestation of tumour heterogeneity? Nature 308:69–72PubMedCrossRefGoogle Scholar
  68. 68.
    Tainsky MA, Cooper GS, Giovanella BC, Vande Woude GF (1984) An activated ras N gene: detected in late but not early passage human teratocarcinoma cells. Science 225:643–645PubMedCrossRefGoogle Scholar
  69. 69.
    Vousden KH, Marshall CJ (1984) Three different activated ras genes in mouse tumors: evidence for oncogene activation during progression of a mouse lymphoma. EMBO J 3:913–917PubMedGoogle Scholar
  70. 70.
    Aaronson SA, Weaver CA (1971) Characterization of murine sarcoma virus (Kirsten) transformation of mouse and human cells. J Gen Virol 13:245–252PubMedCrossRefGoogle Scholar
  71. 71.
    Hoelzer-Pierce J, Aaronson SA (1982) BALB- and Harvey-murine sarcoma virus transformation of a novel lymphoid progenitor cell. J Exp Med 156:873–887CrossRefGoogle Scholar
  72. 72.
    Rapp UR, Cleveland JL, Fredrickson TN, Holmes KL, Morse III HC, Jansen HW, Patschinsky T, Bister K (1985) Rapid induction of hemopoietic neoplasms in newborn mice by a raf(mil)/myc recombinant murine retrovirus. J Virol 55:23–33PubMedGoogle Scholar
  73. 73.
    Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318:533–538PubMedCrossRefGoogle Scholar
  74. 74.
    Biggar RJ, Lee EC, Nkrumah FK, Whang-Peng J (1981) Direct cytogenetic studies by needle stick aspiration of Burkitt’s lymphoma in Ghana, West Africa. J Natl Cancer Inst 67:769–776PubMedGoogle Scholar
  75. 75.
    Sprent J (1977) Migration and life span of lymphocytes. In: Loor F, Roelants GE (eds) B and T cells in immune recognition. Wiley, New York, pp 59–82Google Scholar
  76. 76.
    Stark GR (1986) DNA amplification in drug resistant cells and in tumours. Cancer Surv 5:1–23PubMedGoogle Scholar
  77. 77.
    Schimke RT, Sherwood SW, Hill AB, Johnston RN (1986) Overreplication and recombination of DNA in higher eukaryotes: potential consequences and biological implications. Proc Natl Acad Sci USA 83:2157–2161PubMedCrossRefGoogle Scholar
  78. 78.
    Heisterkamp N, Stam K, Groffen J, Klein A De, Grosveld G (1985) Structural organization of the bcr gene and its role in the Ph’ translocation. Nature 315:758–761PubMedCrossRefGoogle Scholar
  79. 79.
    Kraemer PM, Ray FA, Brothman AR, Bartholdi MF, Cram LS (1986) Spontaneous immortalization rate of cultured Chinese hamster cells. J Natl Cancer Inst 76:703–709PubMedGoogle Scholar
  80. 80.
    Ray FA, Bartholdi MF, Kraemer PM, Cram LS (1986) Spontaneous in vitro neoplastic evolution: recurrent chromosome changes of newly immortalized Chinese hamster cells. Cancer Genet Cytogenet 21:35–51PubMedCrossRefGoogle Scholar
  81. 81.
    Terzi M, Hawkins TSC (1975) Chromosomal variation and the establishment of somatic cell lines in vitro. Nature 253:361–362PubMedCrossRefGoogle Scholar
  82. 82.
    Harnden DG, Benn PA, Oxford JM, Taylor AMR, Webb TP (1976) Cytogenetically marked clones in human fibroblasts cultured from normal subjects. Somatic Cell Genet 2:55–62PubMedCrossRefGoogle Scholar
  83. 83.
    Martin GM, Smith AC, Ketterer DJ, Ogburn CE, Disteche CM (1985) Increased chromosomal aberrations in first metaphases of cells isolated from the kidneys of aged mice. Israel J Med Sci 21:296–301PubMedGoogle Scholar
  84. 84.
    Hook EB (1985) The impact of aneuploidy upon public health: mortality and morbidity associated with human chromosome abnormalities. In: Dellarco VL, Voytek PE, Hollaender A (eds) Aneuploidy: etiology and mechanisms. Plenum, New YorkGoogle Scholar
  85. 85.
    Dzarlieva RT, Fusenig NE (1982) Tumor promoter 12-0-tetradecanoyl-phorbol-13-acetate enhances sister chromatid exchanges and numerical and structural chromosome aberrations in primary mouse epidermal cell cultures. Cancer Lett 16:7–17PubMedCrossRefGoogle Scholar
  86. 86.
    Petersson H, Mitelman F (1985) Nonrandom de novo chromosome aberrations in human lymphocytes and amniotic cells. Hereditas 102:33–38PubMedCrossRefGoogle Scholar
  87. 87.
    Diamond A, Cooper GM, Ritz J, Lane M-A (1983) Identification and molecular cloning of the human B-lym transforming gene activated in Burkitt’s lymphomas. Nature 305:112–116PubMedCrossRefGoogle Scholar
  88. 88.
    Varmus H (1984) The molecular genetics of cellular oncogenes. Annu Rev Genet 18:553–612PubMedCrossRefGoogle Scholar
  89. 89.
    Duesberg PH, Bister K, Vogt PK (1977) The RNA of avian acute leukemia virus MC29. Proc Natl Acad Sci USA 74:4320–4324PubMedCrossRefGoogle Scholar
  90. 90.
    Mellon P, Pawson A, Bister K, Martin GS, Duesberg PH (1978) Specific RNA sequences and gene products of MC29 avian acute leukemia virus. Proc Natl Acad Sci USA 75:5874–5878PubMedCrossRefGoogle Scholar
  91. 91.
    Wang L-H, Duesberg PH, Beemon K, Vogt PK (1975) Mapping RNase T1-resistant oligonucleotides of avian tumor virus RNAs: sarcoma-specific oligonucleotides are near the poly(A) end and oligonucleotides common to sarcoma and and transformation-defective viruses are at the poly(A) end. J Virol 16:1051–1070PubMedGoogle Scholar
  92. 92.
    Wang L-H (1978) The gene order of avian RNA tumor viruses derived from biochemical analyses of deletion mutants and viral recombinants. Annu Rev Microbiol 32:561–592PubMedCrossRefGoogle Scholar
  93. 93.
    Kan NC, Flordellis CS, Mark GE, Duesberg PH, Papas TS (1984) Nucleotide sequence of avian carcinoma virus MH2: two potential onc genes, one related to avian virus MC29 and the other related to murine sarcoma virus 3611. Proc Natl Acad Sci USA 81:3000–3004PubMedCrossRefGoogle Scholar
  94. 94.
    Zhou R-P, Kan N, Papas T, Duesberg P (1985) Mutagenesis of avian carcinoma virus MH2: only one of two potential transforming genes (δgag-myc) transforms fibroblasts. Proc Natl Acad Sci USA 82:6389–6393PubMedCrossRefGoogle Scholar
  95. 95.
    Hayflick J, Seeburg PH, Ohlsson R, Pfeifer-Ohlsson S, Watson D, Papas T, Duesberg PH (1985) Nucleotide sequence of two overlapping myc-related genes in avian carcinoma virus OK 10 and their relation to the myc genes of other viruses and the cell. Proc Natl Acad Sci USA 82:2718–2722PubMedCrossRefGoogle Scholar
  96. 96.
    Duesberg PH, Bister K, Moscovici C (1980) Genetic structure of avian myeloblastosis virus, released from transformed myeloblasts as a defective virus particle. Proc Natl Acad Sci USA 77:5120–5124PubMedCrossRefGoogle Scholar
  97. 97.
    Lee W-H, Bister K, Pawson A, Robins T, Moscovici C, Duesberg PH (1980) Fujinami sarcoma virus: an avian RNA tumor virus with a unique transforming gene. Proc Natl Acad Sci USA 77:2018–2022PubMedCrossRefGoogle Scholar
  98. 98.
    Bentley DL, Groudine M (1986) Novel promoter upstream of the human c-myc gene and regulation of c-myc expression in B-cell lymphomas. Mol Cell Biol 6:3481–3489PubMedGoogle Scholar
  99. 99.
    Duesberg P, Vogt PK, Beemon K, Lai M (1974) Avian RNA tumor viruses: mechanism of recombination and complexity of the genome. Quant Biol 39:847–857Google Scholar
  100. 100.
    Nunn MF, Seeburg PH, Moscovici C, Duesberg PH (1983) Tripartite structure of the avian erythroblastosis virus E26 transforming gene. Nature 306:391–395PubMedCrossRefGoogle Scholar
  101. 101.
    Pfaff SL, Zhou R-P, Young JC, Hayflick J, Duesberg PH (1985) Defining the borders of the chicken proto-fps gene, a precursor of Fujinami sarcoma virus. Virology 146:307–314PubMedCrossRefGoogle Scholar
  102. 102.
    van der Hoorn A, Neupert B (1986) The repressor sequence upstream of c-mos acts neither as polyadenylation site nor as transcription termination region. Nucleic Acids Res 14:8771–8782PubMedCrossRefGoogle Scholar
  103. 103.
    Ikawa S, Hagino-Yamagishi K, Kawai S, Yamamoto T, Toyoshima K (1986) Activation of the cellular src gene by transducing retrovirus. Mol Cell Biol 6:2420–2428PubMedGoogle Scholar
  104. 104.
    Naharro G, Robbins KC, Reddy EP (1984) Gene product of v-fgr onc: Hybrid protein containing a portion of actin and a tyrosine-specific protein kinase. Science 223:63–66PubMedCrossRefGoogle Scholar
  105. 105.
    Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. Fischer, JenaGoogle Scholar
  106. 106.
    Klein G (1983) Specific chromosomal translocations and the genesis of B-cell-derived tumors in mice and men. Cell 32:311–315PubMedCrossRefGoogle Scholar
  107. 107.
    Dracopoli NC, Houghton AN, Old LJ (1985) Loss of polymorphic restriction fragments in malignant melanoma: implications for tumor heterogeneity. Proc Natl Acad Sci USA 82:1470–1474PubMedCrossRefGoogle Scholar
  108. 108.
    Rous P (1967) The challenge to man of the neoplastic cell. Science 157:24–28PubMedCrossRefGoogle Scholar
  109. 109.
    Cairns J (1978) Cancer, science and society. Freeman, San FranciscoGoogle Scholar
  110. 110.
    Zinder ND (1953) Infective heredity in bacteria. Cold Spring Harbor Symp Quant Biol 18:261–269PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • P. H. Duesberg
    • 1
  1. 1.Department of Molecular BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations